Skip to main content
Log in

Numerical simulation of neuronal population coding: influences of noise and tuning width on the coding error

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Performance of neuronal population coding is investigated numerically, in neurons with Gaussian tuning functions of various widths and noise ratios. The present model is applicable to both direction coding and orientation coding. It is shown that the coding error exhibits peculiar dependence on the width of the tuning function and that the dependence under the influence of noise is different from that of the noise-free case. In the absence of noise, the coding error increases monotonically with the width of the tuning function. The increment obeys the power law (the exponent estimated is 0.501) when the width is less than the critical value. In this region of the width a scaling law is obtained, which shows that the root-mean-square error is proportional to the square root of the ratio of the width of the tuning function to the population size. When the width exceeds the critical value, the coding error increases more rapidly than the power law. The reason for this ‘anomalous increase’, not seen previously, is argued. Existence of noise changes the dependence of the coding error on the width of the tuning function. Unlike the noise-free case, the error under the influence of noise becomes minimum at an intermediate value of the width. The width that gives the minimum coding error is termed the optimum width in this article. The numerical results suggest that the optimum width is roughly proportional to the square root of the noise ratio but has only a weak dependence on the population size. It is further shown that the coding error for the optimum width increases sharply when the noise ratio exceeds about 0.5 and is inversely proportional to the square root of the population size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130

    Google Scholar 

  • Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex 4:590–600

    PubMed  Google Scholar 

  • Ashe J, Taira M, Smyrnis N, Pellizzer G, Georgakopoulos T, Lurito JT, Georgopoulos AP (1993) Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend. Exp Brain Res 95:118–130

    Article  PubMed  Google Scholar 

  • Bruce C, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 64:489–508

    Google Scholar 

  • Bruce C, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 64:489–508

    Google Scholar 

  • Burnod Y, Grandguillaume P, Otto I, Johnson PB, Caminiti R (1992)Reaching toward visual targets. II. Computational studies. In: Caminiti R et al. (ed) Control of arm movement in space. Springer, Berlin Heidelberg New York, pp 159–174

    Google Scholar 

  • Caminiti R, Johnson PB (1992) Internal representations of movement in the cerebral cortex as revealed by the analysis of reaching. Cerebral Cortex 2:269–276

    PubMed  Google Scholar 

  • Caminiti R, Johnson PB, Burnod Y, Galli C, Ferraina S (1990a) Shift of preferred directions of premotor cortical cells with arm movements performed across the workspace. Exp Brain Res 83:228–232

    Article  PubMed  Google Scholar 

  • Caminiti R, Johnson PB, Urbano A (1990b) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10:2039–2058

    PubMed  Google Scholar 

  • Caminiti R, Johnson PB, Galli C, Ferraina S, Burnod Y (1991) Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J Neurosci 11:1182–1197

    PubMed  Google Scholar 

  • Caminiti R, Johnson PB, Ferraina S, Burnod Y (1992) Reaching toward visual targets. I. Neurophysiological studies. In: Caminiti R et al. (eds) Control of arm movement in space. Springer, Berlin Heidelberg New York, pp 147–158

    Google Scholar 

  • Cheng K, Hasegawa T, Saleem KS, Tanaka K (1994) Comparison of normal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J Neurophysiol 71:2269–2280

    PubMed  Google Scholar 

  • De Valois RL, Yund EW, Hepler N (1982) The orientation and direction selectivity of cells in macaque visual cortex. Vision Res 22:531–544

    Article  PubMed  Google Scholar 

  • Drew T (1993) Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. J Neurophysiol 70:179–199

    PubMed  Google Scholar 

  • Eysel UT, Woergoetter F, Pape H-C (1987) Local cortical lesions abolish lateral inhibition at direction selective cells in cat visual cortex. Exp Brain Res 68:606–612

    Article  PubMed  Google Scholar 

  • Eysel UT, Muche T, Woergoetter F (1988) Lateral interactions at direction-selective striate neurones in the cat demonstrated by local cortical inactivation. J Physiol (Lond) 399:657–675

    Google Scholar 

  • Fortier PA, Kalaska JF, Smith AM (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J Neurophysiol 62:198–211

    PubMed  Google Scholar 

  • Fortier PA, Smith AM, Kalaska JF (1993) Comparison of cerebellar and motor cortical activity during reaching: directional tuning and response variability. J Neurophysiol 69:1136–1149

    PubMed  Google Scholar 

  • Fregnac Y, Shulz D, Thorpe S, Bienenstock E (1992) Cellular analogs of visual cortical epigenesis. I. Plasticity of orientation selectivity. J Neurosci 12:1280–1300

    PubMed  Google Scholar 

  • Fu Q-G, Suarez JI, Ebner TJ (1993) Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. J Neurophysiol 70:2097–2116

    PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831

    PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483

    PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic ‘scotomas’. J Neurosci 13:1479–1497

    PubMed  Google Scholar 

  • Georgopoulos AP (1986) On reaching. Annu Rev Neurosci 9:147–170

    Article  PubMed  Google Scholar 

  • Georgopoulos AP (1987) Cortical mechanisms subserving reaching. In: Motor areas of the cerebral cortex. Ciba Foundation Symposium 132. Wiley, Chichester, pp 125–141

    Google Scholar 

  • Georgopoulos AP (1988) Neural integration of movement: role of motor cortex in reaching. FASEB J 2:2849–2857

    PubMed  Google Scholar 

  • Georgopoulos AP (1989) Motor cortex and reaching. In: Ito M (eds) Neural programming. Japan Scientific Societies, Tokyo, pp 3–12

    Google Scholar 

  • Georgopoulos AP (1990) Neurophysiology of reaching. In: Jeannerod M (eds) Attention and performance XIII. LEA, Hillsdale, NJ, pp 227–263

    Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    PubMed  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Crutcher MD, Caminiti R, Massey JT (1984) The representation of movement direction in the motor cortex: single cell and population studies. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 501–524

    Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R (1985) Relations between two-dimensional arm movements and single-cell discharge in motor cortex and area 5: movement direction versus movement nd point. Exp Brain Res [Suppl] 10:175–183

    Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    PubMed  Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8:2928–2937

    PubMed  Google Scholar 

  • Girard P, Salin PA, Bullier J (1992) Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J Neurophysiol 67:1437–1446

    PubMed  Google Scholar 

  • Glimcher PW, Sparks DL (1993) Representation of averaging saccades in the superior colliculus of the monkey. Exp Brain Res 95:429–435

    Article  PubMed  Google Scholar 

  • Hawken MJ, Parker AJ, Lund JS (1988) Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey. J Neurosci 8:3541–3548

    PubMed  Google Scholar 

  • Henry GH, Bishop PO, Tupper RM, Dreher B (1973) Orientation specificity and response variability of cells in the striate cortex. Vision Res 13:1771–1779

    Article  PubMed  Google Scholar 

  • Henry GH, Bishop PO, Dreher B (1974) Orientation axis and direction as stimulus parameters for striate cells. Vision Res 14:767–777

    Article  PubMed  Google Scholar 

  • Kalaska JF (1988) The representation of arm movements in postcentral and parietal cortex. Can J Physiol Pharmacol 66:455–463

    PubMed  Google Scholar 

  • Kalaska JF (1991) What parameters of reaching are encoded by discharges of cortical cells? In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. Wiley, Chichester, pp 307–330

    Google Scholar 

  • Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–1523

    PubMed  Google Scholar 

  • Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51:247–260

    Article  PubMed  Google Scholar 

  • Kalaska JF, Cohen DAD, Hyde ML, Prud'Homme M (1989) A comparison of movement direction-related versus load directionrelated activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9:2080–2102

    PubMed  Google Scholar 

  • Kalaska JF, Cohen DAD, Prud'Homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp Brain Res 80:351–364

    Article  PubMed  Google Scholar 

  • Kettner R, Schwartz AB, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins. J Neurosci 8:2938–2947

    PubMed  Google Scholar 

  • Kruger J, Aiple F (1988) Multielectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. J Neurophysiol 60:798–828

    PubMed  Google Scholar 

  • Kyriazi HT, Simons DJ (1993) Thalamocortical response transformations in simulated whisker barrels. J Neurosci 13:1602–1615

    Google Scholar 

  • Kyriazi HT, Carvell GE, Simons DJ (1994) OFF response transformation in the whisker/barrel system. J Neurophysiol 72:392–401

    PubMed  Google Scholar 

  • Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360

    Article  PubMed  Google Scholar 

  • Li B, Wang Y, Diao Y (1994) Quantification of directional and orientational selectivities of visual neurons to moving stimuli. Biol Cybern 70:281–290

    PubMed  Google Scholar 

  • Logothetis N, Schall JD (1989) Neuronal correlates of subjective visual perception. Science 245:761–763

    PubMed  Google Scholar 

  • Lukashin AV (1990) A learned neural network that simulates properties of the neuronal population vector. Biol Cybern 63:377–382

    Article  Google Scholar 

  • Lukashin AV, Georgopoulos AP (1993) A dynamical neural network model for motor cortical activity during movement: population coding of movement trajectories. Biol Cybern 69:517–524

    Article  PubMed  Google Scholar 

  • Lukashin AV, Georgopoulos AP (1994a) Directional operations in the motor cortex modeled by a neural network of spiking neurons. Biol Cybern 71:79–85

    PubMed  Google Scholar 

  • Lukashin AV, Georgopoulos AP (1994b) A neural network for coding of trajectories by time series of neuronal population vectors. Neural Comput 6:19–28

    Google Scholar 

  • Maunsell JHR, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  Google Scholar 

  • Mussa-Ivaldi FA (1988) Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neurosci Lett 91:106–111

    Article  PubMed  Google Scholar 

  • Orban GA (1984) Neuronal operations in the visual cortex. Spinger, Berlin Heidelberg New York

    Google Scholar 

  • Orban GA (1991) Quantitative electrophysiology of visual cortical neurons. In: Leventhal AG (ed) The neural basis of visual function. Vision and visual dysfunction, vol 4. Macmillan, Houndmills, UK, pp 173–222

    Google Scholar 

  • Orban GA, Kato H, Bishop PO (1979a) End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. J Neurophysiol 42:818–832

    PubMed  Google Scholar 

  • Orban GA, Kato H, Bishop PO (1979b) Dimensions and properties of end-zone inhibitory areas in receptive fields of hypercomplex cells in cat striate cortex. J Neurophysiol 42:833–849

    PubMed  Google Scholar 

  • Ottes FP, Van Gisbergen JAM, Eggermont JJ (1986) Visuomotor fields of the superior colliculus: a qualitative model. Vision Res 26:857–873

    Article  PubMed  Google Scholar 

  • Paradiso MA (1988) A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol Cybern 58:35–49

    Article  PubMed  Google Scholar 

  • Redish AD, Touretzky DS (1994) The reaching task: evidence for vector arithmetic in the motor system? Biol Cybern 71:307–317

    Article  PubMed  Google Scholar 

  • Reid RC, Soodak RE, Shapley RM (1991) Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J Neurophysiol 66:505–529

    PubMed  Google Scholar 

  • Sanger TD (1994) Theoretical considerations for the analysis of population coding in motor cortex. Neural Comput 6:29–37

    Google Scholar 

  • Sato H, Hata Y, Masui H, Tsumoto T (1987) A functional role of cholinergic innervation to neurons in the cat visual cortex. J Neurophysiol 58:765–780

    PubMed  Google Scholar 

  • Schwartz AB (1992) Motor cortical activity during drawing movements: single-unit activity during sinusoid tracing. J Neurophysiol 68:528–541

    PubMed  Google Scholar 

  • Schwartz AB (1993) Motor cortical activity during drawing movements: population representation during sinusoid tracing. J Neurophysiol 70:28–36

    PubMed  Google Scholar 

  • Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in threedimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8:2913–2927

    PubMed  Google Scholar 

  • Seung HS, Sompolinsky H (1993) Simple models for reading neuronal population codes. Proc Natl Acad Sci USA 90:10749–10753

    PubMed  Google Scholar 

  • Shevelev IA, Lazareva NA, Novikova BV, Tikhomirov AS, Sharaev GA (1994) Double orientation tuning in the cat visual cortex units. Neuroscience 61:965–973

    Article  PubMed  Google Scholar 

  • Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41:798–820

    PubMed  Google Scholar 

  • Simons DJ (1983) Multi-whisker stimulation and its effects on vibrissa units in rat SmI barrel cortex. Brain Res 276:178–182

    Article  PubMed  Google Scholar 

  • Simons DJ (1985) Temporal and spatial integration in the rat SI vibrissa cortex. J Neurophysiol 54:615–635

    PubMed  Google Scholar 

  • Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol 61:311–330

    PubMed  Google Scholar 

  • Smyrnis N, Taira M, Ashe J, Georgopoulos AP (1992) Motor cortical activity in a memorized delay task. Exp Brain Res 92:139–151

    Article  PubMed  Google Scholar 

  • Snippe HP, Koenderink JJ (1992) Discrimination thresholds for channel-coded systems. Biol Cybern 66:543–551

    Article  Google Scholar 

  • Sparks DL, Holland R, Guthrie BL (1976) Size and distribution of movement fields in the monkey superior colliculus. Brain Res 113:21–34

    Article  PubMed  Google Scholar 

  • Taira M, Georgopoulos AP (1993) Cortical cell types from spike trains. Neurosci Res 17:39–45

    Article  PubMed  Google Scholar 

  • Tanaka S (1994) Numerical study of coding of the movement direction by a population in the motor cortex. Biol Cybern 71:503–510

    PubMed  Google Scholar 

  • Van Gisbergen JAM, Tax AAM (1987) Collicular ensemble coding of saccades based on vector summation. Neuroscience 21:541–555

    Article  PubMed  Google Scholar 

  • Van Opstal AJ, Van Gisbergen JAM (1989) A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades. Biol Cybern 60:171–183

    Article  PubMed  Google Scholar 

  • Vogels R, Spileers W, Orban GA (1989) The response variability of striate cortical neurons in the behaving monkey. Exp Brain Res 77:432–436

    Article  PubMed  Google Scholar 

  • Vogels R (1990) Population coding of stimulus orientation by striate cortical cells. Biol Cybern 64:25–31

    Article  PubMed  Google Scholar 

  • Zohary E (1992) Population coding of visual stimuli by cortical neurons tuned to more than one dimension. Biol Cybern 66:265–272

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, S., Nakayama, N. Numerical simulation of neuronal population coding: influences of noise and tuning width on the coding error. Biol. Cybern. 73, 447–456 (1995). https://doi.org/10.1007/BF00201479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201479

Keywords

Navigation