Skip to main content
Log in

Human stereovision without localized image features

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Many theories of human Stereovision are based on feature matching and the related correspondence problem. In this paper, we present psychophysical experiments indicating that localized image features such as Laplacian zerocrossings, intensity extrema, or centroids are not necessary for binocular depth perception. Smooth one-dimensional intensity profiles were combined into stereograms with mirror-symmetric half-images such that these localized image features were either absent or did not carry stereo information. In a discrimination task, subjects were asked to distinguish between stereograms differing only by an exchange of these half-images (ortho- vs. pseudoscopic stereograms). In a depth ordering task, subjects had to judge which of the two versions appeared in front. Subjects are able to solve both tasks even in the absence of the mentioned image features. The performance is compared to various possible stereo mechanisms. We conclude that localized image features and the correspondences between them are not necessary to perceive stereoscopic depth. One mechanism accounting for our data is correlation or mean square difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beverly KI, Regan D (1973) Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space. J Physiol (Lond) 235:17–29

    Google Scholar 

  2. Blake A, Bülthoff HH (1990) Does the brain know the physics of specular reflection? Nature 343:165–168

    CAS  PubMed  Google Scholar 

  3. Blake A, Bülthoff HH (1991) Shape from specularities: computation and psychophysics. Philos Trans R Soc Lond [Biol] 331:237–252

    CAS  Google Scholar 

  4. Blake R, Cormack RH (1979) Does contrast disparity alone generate stereopsis? Vision Res 19:913–915

    CAS  PubMed  Google Scholar 

  5. Blake R, Wilson HR (1991) Neural models of stereoscopic vision. Trends Neurosci 14:445–452

    CAS  PubMed  Google Scholar 

  6. Bülthoff HH, Mallot HA (1988) Integration of depth modules: stereo and shading. J Opt Soc Am A 5:1749–1758

    PubMed  Google Scholar 

  7. Bülthoff HH, Mallot HA (1990) Integration of stereo, shading and texture. In: Blake A, Troscianko T (eds) AI and the eye. Wiley, Chichester, pp 119–146

    Google Scholar 

  8. Bülthoff HH, Yuille AL (1991) Bayesian models for seeing shapes and depth. Comments Theor Biol 2:283–314

    Google Scholar 

  9. Bülthoff HH, Fahle M, Wegmann M (1991) Perceived depth scales with disparity gradient. Perception 20:145–153

    PubMed  Google Scholar 

  10. Cagenello R, Rogers B (1993) Anisotropies in the perception of stereoscopic surfaces: the role of orientation disparity. Vision Res 33:2189–2201

    CAS  PubMed  Google Scholar 

  11. Carman GJ, Welch L (1992) Three-dimensional illusory contours and surfaces. Nature 360:585–587

    CAS  PubMed  Google Scholar 

  12. Cernuschi-Frias B, Cooper DB, Hung YP, Belhumeur PN (1989) Toward a model-based Bayesian theory for estimating and recognizing parameterized 3-D objects using two or more images taken from different positions. IEEE Trans Patt Anal Mach Intell 11:1028–1052

    Google Scholar 

  13. Christou CG, Parker AJ (1993) An investigation of intensity-based stereo in human shape judgements. Perception 22 (Suppl):106

    Google Scholar 

  14. Cormack LK, Stevenson SB, Schor CM (1991) Interocular correlation, luminance contrast and cyclopean processing. Vision Res 31:2195–2207

    CAS  PubMed  Google Scholar 

  15. Daugman JG (1988) Pattern and motion vision without Laplacian zero crossings. J Opt Soc Am A 5:1142–1148

    CAS  PubMed  Google Scholar 

  16. Dhond UR, Aggarwal JK (1989) Structure from stereo - a review. IEEE Trans Syst Man Cybern 19:1489–1510

    Google Scholar 

  17. Foley JD, Dam A van, Feiner SK, Hughes JF (1990) Computer graphics. Principles and practice, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  18. Halpern DL, Blake R (1988) How contrast affects stereoacuity. Perception 17:483–495

    CAS  PubMed  Google Scholar 

  19. Haralick RM, Shapiro LG (1992) Computer and robot vision, Addison Wesley, Reading

    Google Scholar 

  20. Hassenstein B, Reichardt W (1956) Reihenfolgen-Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch B 11:513–524

    Google Scholar 

  21. Heydt JR von der (1979) Stereoskopische Wahrnehmung der Orientierungsdisparation. PhD thesis, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland

    Google Scholar 

  22. Jenkin MRM, Jepson AD, Tsotsos JK (1991) Techniques for disparity measurement. CVGIP: Image Understanding 53:14–30

    Google Scholar 

  23. Jordan JR III, Geisler WS, Bovik AC (1990) Color as a source of information in the stereo correspondence process. Vision Res 30:1955–1970

    PubMed  Google Scholar 

  24. Julesz B (1971) Foundations of cyclopean perception. Chicago University Press, Chicago

    Google Scholar 

  25. Koenderink JJ, Doom AJ van (1976) Local structure of movement parallax of the plane. J Opt Soc Am 66:717–723

    Google Scholar 

  26. Krol JD, Grind WA van de (1980) The double-nail illusion: experiments on binocular vision with nails, needles, and pins. Perception 9:651–669

    CAS  PubMed  Google Scholar 

  27. Legge GE, Gu Y (1989) Stereopsis and contrast. Vision Res 29:989–1004

    CAS  PubMed  Google Scholar 

  28. Liu L, Stevenson SB, Schor CM (1994) Quantitative stereoscopic depth without binocular correspondence. Nature 367:66–69

    CAS  PubMed  Google Scholar 

  29. Mallot HA, Arndt PA (1992) Disparity-evoked vergence in directed towards average depth. Invest Ophth Vis Sci Suppl 33:707

    Google Scholar 

  30. Mallot HA, Bideau H (1990) Vergence eye movements influence the assignment of stereo correspondences. Vision Res 30:1521–1523

    CAS  PubMed  Google Scholar 

  31. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond [Biol] 207:187–217

    CAS  Google Scholar 

  32. Marr D, Poggio T (1976) Cooperative computation of stereo disparity. Science 194:283–287

    CAS  PubMed  Google Scholar 

  33. Marr D, Poggio T (1979) A computational theory of human stereovision. Proc R Soc Lond [Biol] 204:301–328

    CAS  Google Scholar 

  34. Mayhew JEW, Frisby JP (1981) Psychophysical and computational studies towards a theory of human stereopsis. Artif Intell 17:349–385

    Google Scholar 

  35. McKee SP, Mitchison GJ (1988) The role of retinal correspondance in stereoscopic matching. Vision Res 28:1001–1012

    CAS  PubMed  Google Scholar 

  36. Metzger W (1975) Gesetze des Sehens. Verlag Waldemar Kramer, Frankfurt am Main

    Google Scholar 

  37. Morgan MJ, Mather G, Moulden B, Watt RJ (1984) Intensity-response nonlinearities and the theory of edge localization. Vision Res 24:713–719

    CAS  PubMed  Google Scholar 

  38. Ninio J (1981) Random-curve stereograms: a flexible tool for the study of binocular vision. Perception 10:403–410

    CAS  PubMed  Google Scholar 

  39. Pomerantz JR, Kubovy M (1986) Theoretical approaches to perceptual organization, simplicity and likelihood principles. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance, Vol 2. Cognitive processes and performance. Wiley, New York

    Google Scholar 

  40. Regan D, Frisby JP, Poggio GF, Schor CM, Tyler CW (1990) The perception of stereodepth and stereo-motion: cortical mechanisms. In: Spillmann L, Werner JS (eds) Visual perception. The neurophysiological foundations. Academic Press, San Diego

    Google Scholar 

  41. Rogers BJ, Bradshaw MF (1993) Vertical disparities, differential perspective and binocular stereopsis. Nature 361:253–255

    CAS  PubMed  Google Scholar 

  42. Rogers BJ, Cagenello R (1989) Disparity curvature and the perception of three-dimensional surfaces. Nature 339:135–137

    CAS  PubMed  Google Scholar 

  43. Schor CM, Wood I, Ogawa J (1984) Binocular sensory fusion is limited by spatial resolution. Vision Res 24:661–665

    CAS  PubMed  Google Scholar 

  44. Sedgwick HA (1986) Space perception. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance. Vol 1. Sensory processes and perception. Wiley, Chichester

    Google Scholar 

  45. Shimojo S, Nakayama K (1990) Real world occlusion constraints and binocular rivalry. Vision Res 30:69–80

    CAS  PubMed  Google Scholar 

  46. Theimer WM, Mallot HA (1994) Phase-based binocular vergence control and depth reconstruction using active vision. Comput Vision Graph Image Process Image Understanding 60:343–358

    Google Scholar 

  47. Watt RJ, Morgan MJ (1985) A theory of the primitive spatial code in human vision. Vision Res 25:1661–1674

    CAS  PubMed  Google Scholar 

  48. Weinshall D (1991) Seeing “ghost” planes in stereovision. Vision Res 31:1731–1748

    CAS  PubMed  Google Scholar 

  49. Westheimer G, McKee SP (1980) Stereoscopic acuity with defocused and spatially filtered retinal images. J Opt Soc Am 70:772–778

    Google Scholar 

  50. Wheatstone C (1838) Some remarkable phenomena of vision. I. Philos Trans R Soc 13:371–395

    Google Scholar 

  51. Yuille AL, Poggio T (1986) Scaling theorems for zero crossings. IEEE Trans Pattern Anal Mach Intell 8:15–25

    CAS  PubMed  Google Scholar 

  52. Yuille AL, Geiger D, Bülthoff HH (1991) Stereo integration, mean field theory and psychophysics. Network 2:423–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, P.A., Mallot, H.A. & Bülthoff, H.H. Human stereovision without localized image features. Biol. Cybern. 72, 279–293 (1995). https://doi.org/10.1007/BF00202784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202784

Keywords

Navigation