Skip to main content
Log in

A kinematic theory of rapid human movements: Part I. Movement representation and generation

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This paper proposes a kinematic theory that can be used to study and analyze rapid human movements. It describes a synergy in terms of the agonist and antagonist neuromuscular systems involved in the production of these movements. It is shown that these systems have a log-normal impulse response that results from the limiting behavior of a large number of interdependent neuromuscular networks, as predicted by the central limit theorem. The delta log-normal law that follows from this model is very general and can reproduce almost perfectly the complete velocity patterns of an end-effector. The theory accounts for the invariance and rescalability of these patterns, as well as for the various observations that have been reported concerning the change in maximum and mean velocities, time to maximum velocity, etc., under different experimental conditions. Movement time, load effects, and control strategies are discussed in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    CAS  PubMed  Google Scholar 

  • Alimi A, Plamondon R (1993a) Performance analysis of handwritten stroke generation models. Proc of the 3rd Int Workshop on Frontiers in Handwriting Recognition, Buffalo, NY, 272–283

  • Alimi A, Plamondon R (1993b) Parameter analysis of handwriting stroke generator models. Proc of the 6th International Conference on Handwriting and Drawing, Paris, 4–6

  • Alimi A, Plamondon R (1994) Analysis of the parameter dependence of handwriting generation models on movement characteristics. Advances in handwriting and drawing: a multidisciplinary approach. Faure C, Keuss P, Lorette G, Vinter A (eds) Europia, Paris, pp 363–378

    Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. Neurosci 5:2318–2330

    CAS  Google Scholar 

  • Beggs WDA, Howarth CI (1972) The movement of the hand toward a target. Q J Exp Psychology 24:448–453

    CAS  Google Scholar 

  • Benecke R, Meinck HM, Conrad B (1985) Rapid goal-directed elbow flexion movements: limitations of the speed control system due to neural constraints. Exp Brain Res 59:470–477

    CAS  PubMed  Google Scholar 

  • Bernstein NA (1967) The coordination and regulation of movements. Pergamon Press, London

    Google Scholar 

  • Binet A, Courtier J (1893) Sur Ia vitesse des mouvements graphiques. Revue Philosophique 35:664–671

    Google Scholar 

  • Brooks VB (1974) Some examples of programmed limb movements. Brain Res 71:299–308

    CAS  PubMed  Google Scholar 

  • Brown JS, Slater-Hammel AT (1949) Discrete movements in the horizontal plane as a function of their length and direction. J Exp Psychol 39:84–95

    CAS  PubMed  Google Scholar 

  • Brown SHC, Cooke JD (1981) Amplitude- and instruction-dependent modulation of movement-related electromyogram activity in humans. J Physiol 316:97–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WM (1963) Analysis of linear time-invariant systems. McGrawHill, New York

    Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. In: Grossberg S (ed) Neural networks and natural intelligence. MIT Press, Cambridge, Mass. pp 553–622

    Google Scholar 

  • Carlon LG (1980) Movement control characteristics of aiming responses. Ergonomics 23:1019–1032

    Google Scholar 

  • Corcos DM, Gottlieb GL, Agarwal GC, Liubinskas TJ (1986) Effect of inertial load on agonist and antagonist EMG patterns. Proceedings of the 22nd Annual Conference on Manual Control, pp 219–232

  • Corcos DM, Agarwal GC, Flaherty BP, Gottlieb GL (1990) Organizing principles for single-joint movements IV. Implications for isometric contraction. J Neurophysiol 64:1033–1042

    CAS  PubMed  Google Scholar 

  • De Russo PM, Roy RJ, Close CM (1965) State variables for engineers. Wiley, New York

    Google Scholar 

  • Evinger D, Shaw MD, Peck CK, Manning KA, Baker R (1984) Blinking and associated eye movements in humans, guinea pigs and rabbits. J Neurophysiol 52:323–339

    CAS  PubMed  Google Scholar 

  • Fel'dman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscles. Biophysics 11:565–578

    Google Scholar 

  • Fel'dman AG (1986) Once more on the equilibrium point hypothesis (model) for motor control. J Motor Behav 18:17054

    Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman FN (1914) Experimental analysis of the writing movement. Psychol Rev Monogr 17:1–46

    Google Scholar 

  • Freund H-J, Budingen HJ (1978) The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Exp Brain Res 31:1–12

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction time of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46:725–743

    CAS  PubMed  Google Scholar 

  • Ghez C (1991) The control of movement. In: Kandel EK, Schwartz JH, Jessel TM (eds) Principles of neural science, 3rd edn. Elsevier, New York, pp 533–547

    Google Scholar 

  • Gibrat R (1931) Les inégalitiés économiques: application d'une loi nouvelle: la loi de l'effet proportionnel. Thèse de doctorat, Université de Lyon

  • Gielen CCAM van den, Oosten K van den, Pull ter Gunne F (1985) Relation between EMG activation patterns and kinematic properties of aimed arm movements. J Motor Behav 17:421–442

    CAS  Google Scholar 

  • Gisbergen JAM van, Opstal AJ van, Schoenmakers JJM (1985) Experimental test of two models for the generation of oblique saccades. Exp Brain Res 57:321–336

    PubMed  Google Scholar 

  • Goggin NL (1990) A kinematic analysis of age-related differences in the control of spatial aiming movements. Ph. D. Thesis University of Wisconsin-Madison

  • Goggin NL, Stelmach GE (1990) Age-related differences in a kinematic analysis of precued movements. Can J Aging 9:371–385

    Google Scholar 

  • Gottlieb GL, Corcos DM, Agarwal GC (1989) Organizing principles for single-joint movements. I. A speed-insensitive strategy as a default. J Neurophysiol 63:625–636

    Google Scholar 

  • Guerfali W, Plamondon R (1994) Robust parameter extraction techniques for the delta lognormal model. Proc Vision Interface, pp 218–225

  • Hoffman DS, Strick PL (1986) Step-tracking movements of the wrist in humans. I. Kinematics analysis. J Neurosci 6:3309–3318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4:2745–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollerbach JM, Flash T (1982) Dynamic interactions between limb segments during planar arm movements. Biol Cybern 44:67–77

    CAS  PubMed  Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Motor Behav 16:235–254

    CAS  Google Scholar 

  • Kaminski TR, Gentille AM (1989) A kinematic comparison of single and multi-joint pointing movements. Exp Brain Res 78:547–556

    CAS  PubMed  Google Scholar 

  • Kunesh E, Burkofski F, Freund HJ (1989) Invariant temporal characteristics of manipulative hand movements. Exp Brain Res 79:539–546

    Google Scholar 

  • Lacquaniti F, Licata F, Soechting JF (1982) The mechanical behavior of the human forearm. Biol Cybern 44:35–46

    CAS  PubMed  Google Scholar 

  • Leclerc F, Plamondon R, Lorette G (1992) Des gaussiennes pour la modélisation des signatures et la segmentation des tracés manuscrits. Traitement du Signal 9(4): 347–358

    Google Scholar 

  • Lestienne F (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Exp Brain Res 35:407–418

    CAS  PubMed  Google Scholar 

  • MacKenzie CL, Marteniuk RG, Dugas C, Liske D, Eickemeter B (1987) Three-dimensional movement trajectories in Fitts' task: implications for control. Q J Exp Psychol 39A:629–647

    Google Scholar 

  • Marteniuk RG, MacKenzie CL, Jeannerod M, Athenes, Dugas C (1987) Constraints on human arm movement trajectories. Can J Psychol 41:365–378

    CAS  PubMed  Google Scholar 

  • Massey JT, Schwartz AB, Georgopoulos AP (1985) On information processing and performing a movement sequence. In: Fromm C, Heuver H (eds) Generation and modulation of action patterns. Exp Brain Res Suppl 15:242–251

  • Milner TE (1986) Controlling velocity in rapid movements. J Motor Behav 18:147–161

    CAS  Google Scholar 

  • Milner TE, Ijaz MM (1990) The effect of accuracy constraints on threedimensional movement kinematics. Neuroscience 35:365–374

    CAS  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    CAS  PubMed  Google Scholar 

  • Munhall KG, Ostry DJ, Parush A (1985) Characteristics of velocity profiles of speech movements. J Exp Psychol Hum Percept 11:457–474

    CAS  PubMed  Google Scholar 

  • Mustard BE, Lee RG (1987) Relationship between EMG patterns and kinematic properties for flexion movements at the human wrist. Exp Brain Res 66:247–256

    CAS  PubMed  Google Scholar 

  • Nagasaki H (1989) Asymmetric velocity and acceleration profiles of human arm movements. Exp Brain Res 74:319–326

    CAS  PubMed  Google Scholar 

  • Ostry DJ, Cooke JD, Munhall KG (1987) Velocity curves of human arm and speech movements. Exp Brain Res 68:37–46

    CAS  PubMed  Google Scholar 

  • Papoulis A (1987) The Fourier integral and its applications. McGrawHill, New York

    Google Scholar 

  • Papoulis A (1991) Probability, random variables and stochastic processes. McGraw-Hill, New York

    Google Scholar 

  • Plamondon R (1989) A handwriting model based on differential geometry. In: Plamondon R, Suen CY, Simner ML (eds) Computer recognition and human production of handwriting. World Scientific, Singapore, pp 179–192

    Google Scholar 

  • Plamondon R (1991a) On the origin of asymmetric bell-shaped velocity profiles in rapid-aimed movements. In: Requin J, Stelmach GE (eds) Tutorials in motor neuroscience. Kluwer Scientific, Dordrecht, pp 283–295

    Google Scholar 

  • Plamondon R (1991b) Apparatus and method for digitizing and segmenting a handwriting movement. US Patent no. 5,077,802, December

  • Plamondon R (1992a) A theory of rapid movements. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. II. Elsevier, North Holland, Amsterdam, pp 55–69

    Google Scholar 

  • Plamondon R (1992b) A model-based segmentation framework for computer processing of handwriting. Proc 11th Int Conf on Pattern Recognition, The Hague, II:303–307

    Google Scholar 

  • Plamondon R (1992c) Method and apparatus for comparing a test handwritten signature with a reference signature by using information relative to curvilinear and angular velocities of the signature. US Patent 5,101,437, March

  • Plamondon R (1993a) Looking at handwriting generation from a velocity control perspective. Acta Psychol (special issue on motor control of handwriting. Gelen GP van, Stelmach GE (eds) 82:89–101

  • Plamondon R (1993b) The generation of rapid human movements. Part II. Quadratic and power laws. Rapport technique EPM/RT 93-5, École Polytechnique de Montréal, 8 Février 1993

  • Plamondon R (1995) A Kinematic theory of rapid movements. Part II. Movement time and control. Biol Cybern 72:309–320

    CAS  PubMed  Google Scholar 

  • Plamondon R, Clément B (1991) Dependence of peripheral and central parameters describing handwriting generation on movement direction. Hum Move Sci (thematic issue on handwriting. Gelen GP van, Thomassen AJWM, Wing AM (eds) 10:193–221

    Google Scholar 

  • Plamondon R, Maarse FJ (1989) An evaluation of motor models of handwriting. IEEE Trans Syst Man Cybern 19:1060–1072

    Google Scholar 

  • Plamondon R, Yu L, Stelmach GE, Clément B (1991) On the automatic extraction of biomechanical information from handwriting signals. IEEE Trans Syst Man Cybern 21:90–101

    Google Scholar 

  • Plamondon R, Alimi A, Yergeau P, Leclerc F (1993) Modeling velocity profiles of rapid movements: a comparative study. Biol Cybern 69:119–128

    CAS  PubMed  Google Scholar 

  • Polit A, Bizzi E (1979) Characteristics of motor programs underlying arm movements in monkeys. J Neurophysiol 42:183–194

    CAS  PubMed  Google Scholar 

  • Riehle A, Requin J (1989) Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol 61:534–549

    CAS  PubMed  Google Scholar 

  • Ruitenbeek JC (1984) Invariants in loaded goal-directed movements. Biol Cybern 51:11–20

    CAS  PubMed  Google Scholar 

  • Soechting JF (1984) Effect of target size on spatial and temporal characteristics of a pointing movement. Exp Brain Res 54:121–132

    CAS  PubMed  Google Scholar 

  • Soechting JF, Laquantini F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1:710–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stark L (1982) Neurological ballistic movements: sampled data or intermittent open-loop control. Behav Brain Sci 5:564–566

    Google Scholar 

  • Ulrich R, Wing AM (1993) Variability of brief force impulse. In: Newell KM, Corcos DM (eds) Variability and motor control. Human Kinematics, Champaign, pp 37–51

    Google Scholar 

  • Uno Y, Kawato MR, Suzuki R (1989) Formation and control of optimal trajectory in human multi-joint arm movement. Biol Cybern 61:89–101

    CAS  PubMed  Google Scholar 

  • Wadman WJ, Denier van der Gon JJ, Geuze RH, Mo CR (1979) Control of fast goal-directed arm movements. J Hum Move Stud 5:3–17

    Google Scholar 

  • Zahl S (1966) Bounds for the central limit theorem errors. SIAM Appl Math 14:1225–1245

    Google Scholar 

  • Zangemeister WH, Lehman S, Stark L (1981) Simulation of head movement trajectories: model and fit to main sequence. Biol Cybern 41:19–32

    CAS  PubMed  Google Scholar 

  • Zelaznik HN, Schmidt RA, Gielen SACM (1986) Kinematic properties of rapid-aimed hand movements. J Motor Behav 18:353–372

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plamondon, R. A kinematic theory of rapid human movements: Part I. Movement representation and generation. Biol. Cybern. 72, 295–307 (1995). https://doi.org/10.1007/BF00202785

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202785

Keywords

Navigation