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Abstract. One way hash functions are an important cryptographic primitive, and 
can be used to solve a wide variety of problems involving authentication and 
integrity. It would be useful to adopt a standard one-way hash function for use in 
a wide variety of systems throughout the word. Such a standard one-way hash 
function should be easy to implement, use, and understand; resistant to crypto- 
graphic attack, and should be fast when implemented in software. We present a 
candidate one-way hash function which appears to have these desirable properties. 
Further analysis of its cryptographic security is required before it can be considered 
for widespread use. 
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1. Introduction 

Authentication and integrity are central goals in computer systems today. Wide- 
spread concern over virus attacks has highlighted the need to protect computer 
programs against unauthorized or unintended changes. More generally, as com- 
puters become more pervasive and more critical, the requirement that changes both 
to computer programs and to the data stored in computers be controlled has 
become more important I-15]. 

A fundamental requirement in controlling such changes is the ability to detect 
them. If programs and data can be undetectably changed, then there is no way to 
verify their correctness. If you cannot detect the changes made to the binary form 
of your computer program by a computer virus, you cannot protect yourself against 
the virus. 

This fundamental desire to detect changes (of any form, whether authorized or 
not) has motivated the use of one-way hash functions (also called MDCs (Manipula- 
tion Detection Codes), fingerprints, cryptographically secure checksums, message 
digests, or simply one-way functions). One-way hash functions provide a rapid and 
convenient method of detecting any change at all, no matter how trivial. 

Unfortunately, the design of one-way hash functions has not produced entirely 
satisfactory results 1,41 [51 1,11], 1,12], [13]. A recent proposal by IBM 1-22], 1,23] 

i Date received: November 7, 1989. Date revised: July 18, 1990. 
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based on DES [9], [14], [16], [19] is apparently secure (a significant accomplish- 
ment!) but is slower than Snefru. A previous proposal by the author (also based on 
DES) is likewise significantly slower than Snefru [ 18]. 

At the present time there is no widely accepted standard one-way hash function, 
despite its obvious desirability. 

There is now a consensus on some of the major design principles for one-way 
hash functions [1], [3], [6], [18], [24] which allows greater confidence in at least 
some of the technical aspects of the design. In addition, because one-way hash 
functions are relatively unaffected by export regulations, it should be possible to 
obtain fairly wide if not universal adoption of a single standard one-way hash 
function. 

This happy confluence of circumstances motivated the present work, which 
describes a candidate one-way hash function: Snefru. 

Soon after the design and publication of Snefru, Rivest proposed MD4 [26]. The 
fundamental design criteria for MD4 (e.g., good security and the ability to hash data 
rapidly on a 32-bit RISC processor) are the same as those for Snefru, although the 
design itself is radically different. Neither the security of Snefru nor the security of 
MD4 has been adequately established at the present time. Further review will be 
required to determine which, if either, of these two candidate one-way hash func- 
tions should see widespread use. 

2. Snefru 

Snefru was named after an Egyptian Pharaoh (following a suggestion by Dan 
Greene). 

A one-way hash function is a function F which accepts an arbitrarily large input 
x, and produces a small fixed-size output y: 

y = F ( x ) .  

Further, no other input x' can be found (although many such inputs almost certainly 
exist) which will generate y. Because of this, a small y (perhals 128 bits) can 
authenticate an arbitrarily large x. This property is crucial for the convenient 
authentication of large amounts of information. 

As an example, x might be a computer program whose integrity we wish to check. 
The output, y, is a "checksum" that is stored in a safe place. (A wide variety of issues 
are involved in providing a "safe" place for y. We do not touch on these issues in 
this paper. One-way hash functions do not, in and of themselves, provide a solution 
to integrity and authentication problems: they should be viewed as a fundamental 
tool which can be used to build any one of many possible solutions.) If the program, 
x, has been changed, then the output, y, will also have changed. Thus, any time we 
wish to verify the integrity of x, we can recompute F(x) and compare the result 
against the (previously known) value of y. If the two values differ, then someone has 
changed x and we are alerted to the existence of a problem. If the two values are 
the same, then x has not been changed. 
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Somewhat more formally, a one-way hash function is a function F with the 
following properties: 

1. F can be applied to any argument of any size. For notational convenience, F 
applied to more than one argument is equivalent to F applied to the bitwise 
concatenation of all its arguments. 

2. F produces a fixed-size output. (The output might be 128 or 256 bits.) 
3. Given F and x, it is easy to compute F(x). 
4. Given F, it is computationally infeasible to find any pair of values x and x' 

such that x # x' and F(x) = F(x'). 

The phrase "computationally infeasible" used above can be replaced with any one 
of several more precise definitions--each definition will in turn result in a somewhat 
different definition of a one-way hash function. Snefru is intended to be a "random" 
one-way hash function [20], e.g., for all practical purposes it can be modeled by a 
very large table of random numbers, or by a "demon" who selects a random number 
whenever we wish to compute some output value. This is discussed further in [18]. 

This definition is also called a "strong one-way hash function." Weak one-way 
hash functions are discussed further in I-2] and [18] (and a similar definition is used 
in I-3]). Weak one-way hash functions can be very useful, and it is possible to use 
Snefru as a weak one-way hash function if desired. We will not explain such usage 
here for three reasons: 

(1) in most system applications strong one-way hash functions would probably 
be used anyway, 

(2) weak one-way hash functions are much easier to misuse, and 
(3) the performance advantage of weak one-way hash functions is usually modest. 

For most uses, strong one-way hash functions provide a simpler and more foolproof 
tool. In this paper the term "one-way hash function" is used to mean "strong 
one-way hash function." 

A one-way hash function F accepts an arbitrarily large input--however, it is 
much easier to specify a function that accepts a fixed-size input. We therefore follow 
a two-step procedure in defining F. First, we define a fixed-size function Fo which 
has the same properties as F but which accepts a fixed-size input, and then we use 
Fo to construct F. By definition, Fo has properties 2, 3, and 4 listed above for F; but 
replaces property 1 (which says that F can have an unlimited input size) with the 
simpler property that F o can accept only a fixed-size input. 

A fixed-size one-way hash function Fo has the following properties: 

1. Fo can be applied to a fixed-size input argument (the input might be 512 bits). 
The size of the input must be larger than the size of the output. For notational 
convenience, Fo applied to more than one argument is equivalent to Fo applied 
to the bitwise concatenation of all its arguments. 

2. F o produces a fixed-size output. (The output might be 128 bits.) 
3. Given F o and x, it is easy to compute Fo(x ). 
4. Given Fo, it is computationaUy infeasible to find any pair x, x'  such that x # x' 

and Fo(x) = Fo(x'). 



46 R.C. Merkle 

We also introduce the auxilliary funtion Fsimple. This function is used purely as a 
notational convenience in the proof that follows. 

If we view x as an array, then we can define F(x) in terms of Fo (and F~implr in 
the following fashion: 

Notation: II is the bitwise concatenation operator. 

FUNCTION Fsimplc (X [ 1.. n]) 
BEGIN 
result := 0; 
FOR i := l to n DO 
result := Fo(resultllx[i]); 
ENDLOOP;  
RETURN(result); 
END; 

FUNCTION F(x[1 .. hi) 
BEGIN 
RETURN(Fo(Fsimple(x) II (length of x in bits))); 
END: 

(Note that x can be padded with zero bits to ensure that x I-n] is of the correct size. 
In addition, the size of "result" in bits plus the size of x[i] in bits must equal the 
input size of Fo: 512 bits. If"result" is 128 bits, then each x[i] must be 512 - 128 = 
384 bits. If"result" is 256 bits, then each x[i] must be 512-256 = 256 bits.) 

We can show that F must satisfy properties 1-4 if F0 satisfies properties 2-4, and 
if Fo accepts only a fixed-size input. From the definition of F it is obvious that it 
will accept an input of arbitrary size, so property 1 is satisfied. It is also obvious 
that F will produce a fixed-size output--which is the size of "result"--so property 
2 is satisfied. Property 3 follows because computation of F(x) requires time linear 
in the size of x (which we actually take as the definition of "easy") and because 
computation of Fo is "easy." 

The method of construction, and the proof technique, have been given previously 
[1], [3], [18], [24]. 

We show that property 4 holds for F in a somewhat roundabout way. First, we 
note that we have defined the slightly simpler function Fsimp~, which is almost the 
same as F but omits the final application of Fo. We first prove that a slightly 
weakened version of property 4 holds for Fsimpl~--we call this property 4'. We then 
show that if Fsimplr r has property 4', then F must have property 4. Propetry 4' is: 

4'. Finding two inputs x and x' of the same length such that Fsimple(X) -- Fsimple(X') 
is computationally infeasible. 

The inductive proof that property 4' holds for fsimpl�9 is straightforward: Clearly, if 
n = 1, then property 4' holds for it holds for Fo. Assume, then, that the property 
holds for n - 1, and we wish to prove it for n. We know that 

result := Fo(Fsimple(X[1... n - 1]), x[n]). 
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From the fact that property 4 holds for Fo it follows that neither Fsimple(X[1...  n - 1]) 
nor x [n] could have been changed-- if  they had been, we would have two inputs 
to F o that produced the same output. But if Fsimp~e(x[1... n - 1]) has not been 
changed, then x[1 . . ,  n - 1] has not been changed, by the induction hypothesis. 

Q.E.D. 
We can now prove that property 4 holds for F in the following fashion: 

F(x) := Fo(Fsimple(x),(length of x in bits)). 

If two different inputs x and x' differ in their length, then the two inputs to the final 
application of Fo will be different, and so if F(x) = F(x'), then we would have broken 
Fo. If two different inputs x and x' have the same length, then we know that 
Fsimple(X ) ~ Fsimple(X' ) ifx r x'. Again, we would have generated two different inputs 
to Fo that map to the same output, thus breaking Fo. Therefore, if/70 has property 
4, then F has property 4. 

The implications of this construction are quite simple: in order to design a 
one-way hash function F we need only design a fixed-size one-way hash function 
Fo, from which we can then build F. The critical problem, therefore, is how to design 
Co. 

Although F is provably as secure as Fo, we cannot prove any desirable properties 
for Fo at the present time. We must fall back on cryptographic intuition and review 
by a wide range of people experienced in the field of cryptography. A significant 
reason for publishing the present proposed design of Fo is to facilitate and encourage 
its review by a wide audience. If Fo resists attack for some reasonable period (a year 
or two), then our confidence in it as a cryptographic primitive will increase, and its 
widespread use can then be considered. 

In what follows, we define/70 and present intuitive arguments that it is difficult 
to break. 

Traditionally, one-way hash functions have been designed by treating the input, 
x, as the key and then encrypting a fixed-size block. We pursue a different approach. 
In this approach, we treat the input, x, as the input to a block cipher which uses a 
fixed (all 0) key. We then encrypt x and exclusive or the output of the encryption 
function with x. That is, 

Fo(x ) is defined as E(0, x) XOR x, 

where E(key, plaintext) is a "good" conventional block cipher. We then retain as 
many bits of the output as we desire. 

This general approach has been used before [12], [17] but must still be justified. 
We prefer this approach to the more traditional approach (in which x is treated as 
the key to an encryption function) because it is faster. In the traditional approach, 
it is necessary to mix the key with a fixed plaintext block during the encryption 
process. This mixing process requires additional steps. In particular, the key must 
be repeatedly reloaded from memory to be remixed with the block being encrypted. 
(By way of example, consider that the 56-bit key used in DES is actually expanded 
internally into a 768-bit key, so that each bit of key material can be mixed into the 
block being encrypted several times.) On the other hand, if we treat x as the input 
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to a block cipher, then we can use a fixed key, need do not key mixing, and can still 
provide excellent security. To show that security is preserved using this method, we 
appeal to the intuition that a 'good" encryption function appears to be random. 
That is, any change to the input will produce an unpredictable and apparently 
random change in the output. E(0, x) is totally unrelated to E(0, x XOR 1 ) -  
changing a single bit produced a "random" change. We presume that there is no 
effective method of analyzing E and that therefore it must be viewed as a "black 
box"-- i t  is possible to encrypt or decrypt, but it is not possible to make any 
prediction about the value that will be produced (unless we have already encrypted 
or decrypted that particular value). 

If E is random then E(0, x) is random--even if x is highly structured. Therefore 
E(0, x) XOR x is random and cannot be predicted from a knowledge of x. To 
determine an x' such that Fo(x) = Fo(x'), x '  must (by definition) satisfy the equation 

E(0, x) XOR x = y = E(0, x') XOR x'. 

However, if we assume that the only operations we can perform for the cryptanalysis 
are encryption and decryption of a block, i.e., the computation of E(0, w) or D(0, w) 
(where D stands for Decryption) for any value of w that we choose, then our chances 
of actually finding x' are little better than chance. We can select some w by any 
method we desire, and then compute E(0, w)--but this will produce a nearly 
random value which, when XORed with w, will have a very small probability of 
being equal to y. If we operate in the reverse fashion and compute D(0, w) XOR w 
it too, for the same reason, will only equal y by chance. 

The critical property that we cannot prove is whether E is in fact "random" in 
the sense needed for the foregoing proof. This question (at present) can only be 
answered empirically by means of a certificational a t tack--we have been unable to 
break this system, and so we hope that it cannot be broken. 

We propose a fixed-size one-way hash function, HASH512, which accepts a 
512-bit input and produces a 128 or 256-bit output, as desired. We then define the 
final hash function, HASH, in terms of HASH512. Note that HASH512 corresponds 
to Fo, while HASH corresponds to F. HASH512 is illustrated in Fig. 1. 

If it is indeed the case that this one-way hash function is "random" and no 
unexpected weaknesses are discovered, then its security will depend on the size of 
the output value chosen. If the output is 128 bits, then it should require an exhaustive 
search of some 264 different values of x before finding two that map onto the same 

Fig. 1. 

512 bit input 
128 bits I 384 bits 

~ H A S H 5 1 2 ~  

128 bit output 
Block diagram of HASH512 with 128-bit output. 
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output. If the output is 256 bits, then it should require an exhaustive search of some 
2128 different values of x before finding two that map onto the same output. While 
an exhaustive search of 264 possible values provides sufficient security for almost 
all commercial transactions, some transactions might require higher security. For 
these transactions, the larger output size is available. 

HASH512 accepts a 512-bit input, x. We can provide a definition of HASH512 
in terms of a 512-bit block cipher E512 as follows: 

HASH512(x) = leading 128 (or leading 256) bits of (E512(0, x) XOR x). 

If we now specify E512(0, x) - -a  conventional block cipher that encrypts a 512-bit 
block and which uses a fixed key- -our  task is complete. 

The block of 512 bits (sixteen 32-bit words) was selected as a compromise between 
two factors. We can more efficiently hash more data if the block size is large. On 
the other hand, if the block size is too large it will not fit into the registers on the 
computer implementing the hash function, so parts of the block will have to be 
repeatedly loaded and stored. Most modern RISC chips have many registers (more 
than sixteen 32-bit registers), so on most of these chips all sixteen 32-bit words being 
hashed can be kept in registers. There will then be no need to load or store parts of 
the block during computation of the hash function. 

We add an additional security parameter,"passes," to both E512 and HASH512. 
This parameter can be adjusted to suit the security requirements of the particular 
application. Further study will be required to verify the minimum number of passes 
that provides adequate security for most commercial applications. Biham crypt- 
analyzed the two-pass version of Snefru [27], thus demonstrating that more passes 
are required. A preliminary assessment is that four passes might be sufficient. Users 
that have requirements for higher security can set this parameter to higher values, 
as they deem suitable. 

The algorithm for E512 is as follows: 

Function E512(0, x, passes) 
x: INT512; - - a  512-bit"integer" 
passes; - - a  security parameter than can take on the value 2, 3, 4, or even 

higher 
BEGIN 
blockSize = 512; - - a  constant specifying the block size in bits 
blockSizelnBytes = blockSize/8; - - the  block size in 8-bit bytes, here just 64 

bytes 
blockSizelnWords = blockSize/32 - - the  blocksize in 32-bit words, here just 

16 words 
tempBlock, Block: array [0..  blockSizelnWords-1] of int32; 
StandardSBoxes: ARRAY [1..passes*2] OF ARRAY [0..255] OF int32; 

- -Fixed for all t ime--note  that if more passes are needed, more S-boxes 
must be precomputed 

rotateSchedule: ARRAY [1..  4] := [16, 8, 16, 24]; 
index: integer; 
bytelnWord: integer; 
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sBoxEntry: int32; 
Block := x; - -no te  that x must be 512 bits or smaller. The trailing bits in 

Block are zero-filled 
FOR index := 1 to passes DO 
FOR bytelnWord := 1 to 4 Do - - for  each of the four columns 
FOR i := 0 to blockSizeln Words-1 DO 
next := (i + 1) MOD blockSizelnWords; 
last := (i - 1) MOD blockSizelnWords; 
Pick sboxes in sequence of  1, I, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2 . . . . .  1, 1, 2, 2, 3, 3, 4, 4, 

3, 3, 4, 4,--etc.  Note  that using the S-boxes in this sequence prevents 
self-cancelation if  the same entry is used twice. 

SBoxEntry := standardSBoxes[2*index + ((//2) MOD 2) - 1] [Block[i]. 
bottomByte]: 

Block [next] := Block [next] XOR SBoxEntry; 
Block[last] := Block [last] XOR SBoxEntry; 
ENDLOOP; 

- - ro ta te  all the 32-bit words in the block at once by the correct amount 
FOR i: INTEGER IN [0.. .wordCount) DO 
Block [i] := RotateRight [Block [i], rotateSchedule [byteInWord] ]; 
ENDLOOP; 
ENDLOOP; - - end  of byteIn Word going from 1 to 4 
ENDLOOP; - - end  of index going from 1 to passes 

--flip the Block. The first word and the last word are interchanged, etc. 
tempBlock := Block; 
For i := 0 to blockSizeIn Words-1 DO 
Block[i] := tempBlock[blockSizeInWords-i-1]; 
ENDLOOP;  
RETURN(Block); 
END; 

For efficiency reasons, it is expected that in an actual implementation the inner 
loops would be unrolled blocksize or 4*blocksize times. This would mean that all 
shifts would be by fixed amounts (if unrolled 4*blocksize times) and that no array 
indexing, divisions, or mod computations would actually be performed in the 
unrolled loop because the values would be known at compile time. The array 
"Block" would be kept in 16 registers, and reference to individual array elements 
(because the array indices would be known at compile time) would be to specific 
registers. 

We can define HASH512 in terms of E512 as follows: 

Function HASH512(x, passes): INT512; 
x: INT512; 
BEGIN 
RETURN(E512(0, x, passes)XOR x); 
END: 
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Note that HASH512 returns 512 bits of result. We only use the first 128 or the 
first 256 bits of the result depending on context. For reasons discussed later, the full 
512 bits of output should never be used. 

Finally, we define HASH(x, passes) in terms of the fixed-size hash function: 

Function HASH(x, passes): INT128; 
x: ARRAYI-0.. n - 1] OF INT384; - - this  declaration actually defines n 
bitCount: INT64; - - b y  definition, this is the number of valid bits in x 
BEGIN 
result: INT128; - - a  128-bit "integer" 
result := 0; 
FOR i := 0 to n - 1 DO result := HASH512(result [I x[i],  passes); 
result := (HASH512(result II (bitCount right justified in a 384-bit field), 

passes)); 
RETURN(result); 
END; 

The definition of HASH is also illustrated in Fig. 2. 
The stronger version of the hash function, which produces a 256-bit output, is 

defined as 

Function STRONGERHASH(x, passes): INT256; 
x: ARRAYF0.. n - 1] OF INT256; - - th is  declaration actually defines n 
bitCount: INT64; - - b y  definition, this is the number of valid bits in x 
BEGIN 
result: INT256; - - a  256-bit "integer" 
result := 0; 
FOR i := 0 to n - 1 DO result := HASH512(result II x[i], passes); 
result := HASH512(result II (bitCount right justified in a 256 bit field), 

passes); 
RETURN(result); 
END; 

Result 

Fig. 2. Block diagram of HASH(x, passes). 
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Although the above algorithms have been checked for accuracy, the C version 
(available via anonymous FTP from arisia.xerox.com (13.1.100.206) in directory 
/pub/hash) should be viewed as defining the actual function. At the time of writing. 
Snefru Version 2.0 in C is the standard definition. Note that the work of Biham 
[27] has shown that the number of passes should be greater than two. 

3. Making the Standard S-Boxes 

We need standard S-boxes in Snefru during the hashing process. We need assur- 
ances about how they were generated to avoid any questions or concerns about 
"trapdoors" or hidden structure. To provide these assurances, the standard S-boxes 
were generated from a stream of truly random numbers by a simple program. To 
avoid concerns about "cooked" S-boxes, we adopt the following rules: 

1. The program that generates the S-box from a stream of random numbers will 
be public. 

2. The stream of random numbers used as input to the program should be above 
reproach--it should be selected in such a fashion that it could not reasonably 
have been tampered with in a fashion that might allow insertion of a trapdoor 
or other weakness. 

The first criteria is met rather simply by publishing the algorithm used to generate 
the standard S-boxes. The second criteria is met by using the random numbers 
published in 1955 by the RAND corporation in A Million Random Digits with 
100,000 Normal Deviates (available on magnetic tape for a nominal fee). 

Given this approach, insertion of a trapdoor would require 

(1) that the publicly known programs that generate the standard S-boxes insert 
the trapdoor under the very nose of a watching world or that 

(2) the trapdoor have been planned and inserted into the random numbers 
generated by RAND in 1955, over 30 years prior to the design of Snefru (at 
a time when Snefru's chief designer found successfully negotiating a flight of 
stairs an absorbing challenge). 

4. Summary 

We have presented a one-way hash function, Snefru. We hope that Snefru will resist 
public scrutiny and analysis, but this cannot be taken for granted. A C program 
implementing Snefru is available from the author for those interested in reviewing 
the algorithm or in using the algorithm on a preliminary basis. 
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Appendix 

The following appendix contains observations that will primarily be useful to those 
interested in a detailed analysis of the algorithm. 

The final "flip" in E512 that reverses the encrypted block has a very specific 
purpose. Close examination of the algorithm will reveal that without this "flip," the 
final several table lookups would actually have no impact on the final result. 
HASH512 throws away the final 256 or 384 bits, so the final computations would 
be thrown away (would be useless) if the output were not flipped. It seems crypto- 
graphically (and otherwise) foolish to compute intermediate values that never 
influence the final result, and so E512 was "adjusted" so that the values actually 
used in the final output of HASH512 are influenced by the final computations in 
E512. 

It might be unclear why StandardSBoxes is declared as ARRAY I-1.. passes*2] 
of ARRAY I-0.. 255] OF int32. Essentially, we are defining an array of S-boxes, 
where each individual S-box has 256 entries of 32 bits. Why not use a single S-box, 
i.e., declare StandardSBox: ARRAY [,0.. 255] OF int32? This would eliminate the 
rather complicated subscript computations that determine which S-box to use in 
each table lookup. Unfortunately, if we used the same S-box throughout, we might 
suffer from cancellation problems. That is, if we should chance to load the same 
entry from the S-box twice, then when we XORed the same value twice the duplicate 
values would cancel out. This can be clarified by giving an example of the values of 
the variables in the inner loop. If we modified the code for the inner loop to use a 
single S-box, it would appear as follows: 

next := (i + 1) MOD blockSizelnWords; 
last := (i - 1) MOD blockSizelnWords; 
SBoxEntry := standardSBox[,Block[,i].bottomByte]; 
Block [-next] := Block [-next] XOR SBoxEntry; 
Block [,last] := Block[last] XOR SBoxEntry; 

Let us suppose that the variables in the inner loop have the following values: 

i = 4 ,  

next = 5, 

last = 3, 

Block [-i].bottomByte = 31 (could be any number from 0 to 255, 
just happens to be 31), 

SBoxEntry = 2356664 (some random 32-bit value). 

And let us suppose that two iterations later these variables take on the values 

i = 6 ,  

next = 7, 

last = 5, 
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Block[i].bottomByte = 31 (just happens to be 31 again. 
About 1 in 256 of this occurring), 

SBoxEntry = 2356664 
(the s a m e  random 32-bit value that occured before). 

In this case, the first iteration will execute the statement 

Block[next] := Block[next] XOR SBoxEntry 

which can be given more specifically as 

Block[5] := Block [5] XOR 2356664. 

When i is increased by two, we will execute the statement 

Block[last] := Block[last] XOR SBoxEntry 

which can be given more specifically as 

Block[5] := Block[5] XOR 2356664. 

Putting these two statements together, we have 

Block[5] := Block[5] XOR 2356664 XOR 2356664 

or  

Block[5] := Block[5]. 

In other words, our two table lookups have canceled each other out. The S-box 
selection method was chosen specifically to prevent this cancellation from occurring. 

It is also unclear why the sixteen 32-bit values in the intermediate block are all 
rotated at once, instead of being rotated following each table lookup. (This refers 
to the RotateRight in the almost-inner loop of E512.) The reason for this is some- 
what complex, but basically was done to allow efficient implementation of Snefru 
on machines with differing instruction sets. Snefru is designed so that either a SHIFT 
or a ROTATE can be used, with some not-too-difficult algorithmic rearrangements. 
These algorithmic rearrangements, however, cannot be done if each 32-bit word is 
rotated immediately after the XOR operations in the inner loop of Snefru. 

A more complex point is the double use of each entry loaded from the S-box. In 
the inner loop of Snefru we load a single 32-bit entry from the S-box and XOR this 
32-bit entry with both the previous 32-word, and the following 32-bit word. Why 
not simply XOR with the following 32-bit word? 

The reason for doing this is as follows: while the XOR with the previous 32-bit 
word could be eliminated, it would seriously weaken the hash function. In par- 
ticular, it would drastically reduce the "circuit depth" of the function. In the 
following few paragraphs we explain what "circuit depth" is, and why it would be 
reduced if only a single XOR were used in the inner loop. 

For our purposes here, a cryptographic function involves a series of lookups in 
a series of S-boxes. Each such lookup contributes to the cryptographic complexity 
of the function. One view of a cryptographic function is just a circuit diagram, in 
which the "wires" show where the data goes, simple reversible operations (such as 
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XOR) are used to "mix" data (although they do not contribute any "complexity" 
to the encryption function), and S-boxes (or table lookups) provide the complexity 
which is at the heart of the encryption function by taking a set of "input wires," 
looking up the value encoded on those wires in a ROM, and producing a value on 
a set of "output wires" corresponding to the results of the table lookup. 

According to this view, we can select a single input wire, and a single output wire, 
and look at the path through the intermediate computations which connects the 
input to the output. If this path goes through only a few S-boxes, then there cannot 
have been a great deal of complexity or "mixing" in the encryption function. If, on 
the other hand, the path has gone through a great many S-boxes, then there has 
been a great deal of mixing and the encryption function is presumably stronger. We 
can count the number of S-boxes through which we must go in traveling from input 
to output, and call this number the "circuit depth." 

It would at first seem that if we eliminate the XOR with the previous block in 
the inner loop that the circuit depth would be unaffected. When we encrypt a 512-bit 
block, each table lookup is used to produce a 32-bit value which is XORed with the 
following 32-bit word, and eight bits of this following 32-bit word is then used in 
turn to provide an index for another lookup operation. That is, each table lookup 
affects the input to the next table lookup. However, we can view Snefru from two 
equally valid and symmetrical perspectives: we are either encryptin9 a 512-bit block 
and XORing the result with the input, or we are decrypting a 512-bit block and 
XORing the result with the "output." While the circuit depth is the same as the 
number of table lookups if we view the computation as an encryption process. If 
we look at the hash function as decrypting a 512-bit block, the circuit depth drops 
dramatically. 

When we are decrypting a 512-bit block, every time we load a 32-bit value from 
the S-box we are XORing it not with the following 32-bit word, but the preceding 
32-bit words. This means that we have made no contribution at all to the "circuit 
depth," because the next eight-bix index will be take from the preceding (unchanged) 
32-bit word. Therefore, the circuit depth collapses. 

To prevent this, we can make the encryption and decryption processes sym- 
metrical. If we XOR the 32-bit word with bozh the preceding and the following 32-bit 
word, then it does not matter whether we are decrypting or encrypting. The circuit 
depth will be the same, and will equal the number of lookups in either case. 

Coppersmith [25] pointed out a very interesting consequence of this double use 
of the same 32-bit entry. Because a single 32-bit entry is XORed with both the 
preceding and following word, the overall parity of the 512-bit block is preserved. 
If the 32-bit entry is of even parity, then the parity of both the following and 
preceding 32-bit words is preserved when they are XORed with the even parity 
entry. If the 32-bit entry is of odd parity, then the parity of both the following and 
preceding 32-bit words is flipped, and therefore the parity of the 512-bit block as a 
whole is preserved. Further, the odd words and the even words have their parity 
preserved independently of each other. More generally, Coppersmith observed the 
following: the 512-bit block can be viewed as a 16 by 32 bit matrix. The 16 bits in 
a single column remain aligned throughout all the operations in F512, and as a 
consequence the parity of all thirty-two 16-bit columns is preserved. If we divide 
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the 16 bits in each column into eight "even-word" bits and eight "odd-word" bits, 
then the parity is preserved in each of these eight-bit sets as well. Thus, fully 64 bits 
of parity information is preserved in E512. 

The 512-bit block of data used as input to E512 and the 512-bit block of data 
produced as output are related by the preservation of parity in these 64 disjoint 
subsets of bits. What cryptographic implications does this preservation have? 

First and most obviously, it shows that E512 is unsuited for use as a conventional 
encryption function (even ignoring the fact that E512 does not specify any method 
of mixing in key material). Secondly, it means that at least 64 bits (one bit from each 
subset of the 64 subsets of bits whose parity is preserved, i.e., two consecutive 32-bit 
words) must be thrown away from the output of E512 if we wish to avoid this 
problem. 

We can more carefully analyze the implications of this observation in the follow- 
ing way: presume, for the moment, that every table lookup in the computation of 
E512 was in fact random. That is, instead of taking the index from the bottom eight 
bits of some 32-bit word in the 512-bit block being hashed, instead we imply selected 
a random eight-bit value, used this as an index into the S-box, and took the resulting 
32-bit entry and XORed it with the preceding and following 32-bit words. What 
patterns would be preserved in the 512-bit output block? 

We can view this in the following way. First, we focus on the 16 bits in a single-bit 
column. Then, we further focus on the bits from the odd words in such a column. 
(We could equally focus on the bits from the even words, it makes no difference.) 
These eight bits are modified every time we do a table lookup and two XORs. The 
XORs modify these eight bits by either flipping or not flipping two adjacent bits. 
That is, when we do two XORs on two odd words, we either alter two adjacent bits 
in our set of eight, or we leave all the bits alone. More concisely, we are XORing 
our eight-bit vector with one of the following eight-bit patterns: 

1000 0001 
1100 0000 
01100000 
00110000 
OODI I000 
0000 1100 
00000110 
0000 0011 

What we note immediately about this set of eight vectors is that they are not linearly 
independent. This is the essence of Coppersmith's observation. However, although 
they are not linearly independent, we do have a matrix of rank 7. That is, this matrix 
can be used to generate all possible even-parity combinations. This means any 
subset of seven bits selected from our eight-bit subset of bits will be entirely random. 
Put another way, throwing away one bit of the eight is sufficient to ensure that the 
remaining seven bits appear random. 

Because HASH throws away fully 384 bits of the output of E512, and STRONG- 
ERHASH throws away 256 bits of the output of E512, the specific use of E512 in 
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these two cases is safe. However, any use of E512 which does not throw out at least 
two adjacent words would not be safe. Therefore, it would be unwise to use E512 
as the basis for the design of an encryption function. 
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