Skip to main content
Log in

Discrimination thresholds for channel-coded systems

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We present an analytical ideal observer model to predict discrimination thresholds for stimuli that are processed by arrays of noise-perturbed receptors that have smooth and overlapping tuning functions. We show that hyperacuity phenomena are natural properties of these systems. A comparison of thresholds for a number of discrimination tasks allows a psychophysically derived estimate of parameters of the receptor array involved. We note the consistency of this scheme with data from a number of visual subfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahumada Jr AJ (1987) Putting the visual system noise back in the picture. J Opt Soc Am A4:2372–2378

    Google Scholar 

  • Altes RA (1989) Ubiquity of hyperacuity. J Acoust Soc Am 85:943–952

    Google Scholar 

  • Baldi P, Heiligenberg W (1988) How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol Cybern 59:313–318

    Google Scholar 

  • Ballard DH (1986) Cortical connections and parallel processing: Structure and function. Behav Brain Sci 9:67–90

    Google Scholar 

  • Bradley A, Skottun BC, Ohzawa I, Sclar G, Freeman RD (1985) Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination. J Opt Soc Am A 2:1607–1610

    Google Scholar 

  • Bradley A, Skottun BC, Ohzawa I, Sclar G, Freeman RD (1987) Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. J Neurophysiol 57:755–773

    Google Scholar 

  • Cohn TE, Lasley DJ (1986) Visual sensitivity. Ann Rev Psychol 37:495–521

    Google Scholar 

  • Cornsweet TN, Pinsker HM (1965) Luminance discrimination of brief flashes under various conditions of adaptation. J Physiol 176:294–310

    Google Scholar 

  • Dean AF (1981) The variability of discharge of simple cells in the cat striate cortex. Exp Brain Res 44:437–440

    Google Scholar 

  • Doorn AJ van, Koenderink JJ, van de Grind WA (1984) Limits in spatio-temporal correlation and the perception of visual movement. In: van Doorn AJ, Koenderink JJ, van de Grind WA (eds) Limits in perception. VNU Science Press, Amsterdam, pp 203–234

    Google Scholar 

  • Erickson RP (1968) Stimulus coding in topographic and nontopographic afferent modalities: on the significance of the activity of individual neurons. Psychol Rev 75:447–465

    Google Scholar 

  • Geisler WS (1984) Physical limits of acuity and hyperacuity. J Opt Soc Am A 1:775–782

    Google Scholar 

  • Geisler WS (1989) Sequential ideal-observer analysis of visual discriminations. Psychol Rev 96:267–314

    Google Scholar 

  • Geisler WS, Davila KD (1985) Ideal discriminators in spatial vision: two-point stimuli. J Opt Soc Am A 2:1483–1497

    Google Scholar 

  • Graham RL, Knuth DE, Patashnik O (1988) Concrete mathematics, Chap 9, ex 59. Addison Wesley, Reading Mass

    Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Hogg RV, Craig AT (1978) Introduction to mathematical statistics, 4th edn. Macmillan, New York

    Google Scholar 

  • Hinton GE (1981) Shape representation in parallel systems. Proceedings of the 7th International Joint conference on Artificial Intelligence. Vancouver, BC, Canada, pp 1088–1096

  • Koenderink JJ, van Doorn AJ (1986) Logical stratification of organic intelligence. In: Trappl R (eds) Cybernetics and systems '86. Reidel, Dordrecht Boston Lancaster, pp 871–878

    Google Scholar 

  • Laming DRJ (1986) Sensory analysis. Academic Press, London

    Google Scholar 

  • Lasley DJ, Cohn TE (1981) Why luminance discrimination may be better than detection. Vision Res 21:273–278

    Google Scholar 

  • Leshowitz B, Taub HB, Raab DH (1968) Visual detection of signals in the presence of continuous and pulsed backgrounds. Percept Psychophys 4:207–213

    Google Scholar 

  • Levi DM, Klein SA (1990) Equivalent intrinsic blur in spatial vision. Vision Res 30:1071–1993

    Google Scholar 

  • Marr D, Poggio T, Hildreth E (1980) Smallest channel in early human vision. J Opt Soc Am 70:868–870

    Google Scholar 

  • Määttänen LM, Koenderink JJ, Nienhuis B (1988) Contrast discrimination: invariant to spatial parameters. Vision Res 28:811–818

    Google Scholar 

  • Melsa JL, Cohn DL (1978) Decision and estimation theory. McGraw-Hill, New York

    Google Scholar 

  • Paradiso MA (1988) A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol Cybern 58:35–49

    Google Scholar 

  • Parker AJ, Yang Y (1989) Spatial properties of disparity pooling in human stereo vision. Vision Res 29:1525–1538

    Google Scholar 

  • Post RB, Leibowitz HW (1980) Independence of radial localization from refractive error. J Opt Soc Am 70:1377–1379

    Google Scholar 

  • Prucnal PR, Teich MC (1982) Mutliplication noise in the human visual system at threshold: 2. Probit estimation of parameters. Biol Cybern 43:87–96

    Google Scholar 

  • Ratliff F, Sirovich L (1978) Equivalence classes of visual stimuli. Vision Res 18:845–851

    Google Scholar 

  • Shapley R, Victor J (1986) Hyperacuity in cat retinal ganglion cells. Science 231:999–1002

    Google Scholar 

  • Stevenson SB, Cormack LK, Schor CM (1989) Hyperacuity, superresolution and gap resolution in human stereopsis. Vision Res 29:1597–1605

    Google Scholar 

  • Toet A, Snippe HP, Koenderink JJ (1988) Effects of blur and eccentricity on differential spatial displacement discrimination. Vision Res 28:535–553

    Google Scholar 

  • Tolhurst DJ, Movshon JA, Thompson ID (1981) The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast. Exp Brain Res 41:414–419

    Google Scholar 

  • Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey striate cortex. Vision Res 23:775–785

    Google Scholar 

  • Toraldo di Franca G (1955) Resolving power and information. J Opt Soc Am 45:497–501

    Google Scholar 

  • Vogels R, Spileers W, Orban GA (1989) The response variability of striate cortical neurons in the behaving monkey. Exp Brain Res 77:432–436

    Google Scholar 

  • Westheimer G (1981) Visual hyperacuity. Prog Sens Physiol 1:1–30

    Google Scholar 

  • Westheimer G, McKee SP (1977) Spatial configurations for visual hyperacuity. Vision Res 17:941–947

    Google Scholar 

  • Williams RA, Enoch JM, Essock EA (1984) The resistance of selected yperacuity configurations to retinal image degradation. Invest Opthalmol Vis Sci 25:389–399

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snippe, H.P., Koenderink, J.J. Discrimination thresholds for channel-coded systems. Biol. Cybern. 66, 543–551 (1992). https://doi.org/10.1007/BF00204120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204120

Keywords

Navigation