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Abstract. The recently emerging paradigm of Active 
Vision advocates studying visual problems in form of 
modules that are directly related to a visual task for 
observers that are active. Along these lines, we are 
arguing that in many cases when an object is moving in 
an unrestricted manner (translation and rotation) in the 
3D world, we are just interested in the motion's transla- 
tional components. For a monocular observer, using 
only the normal f low-  the spatio-temporal derivatives 
of the image intensity function - we solve the problem 
of computing the direction of translation and the time 
to collision. We do not use optical flow since its compu- 
tation is an ill-posed problem, and in the general case it 
is not the same as the motion field - the projection of 
3D motion on the image plane. The basic idea of our 
motion parameter estimation strategy lies in the em- 
ployment of fixation and tracking. Fixation simplifies 
much of the computation by placing the object at the 
center of the visual field, and the main advantage of 
tracking is the accumulation of information over time. 
We show how tracking is accomplished using normal 
flow measurements and use it for two different tasks in 
the solution process. First it serves as a tool to compen- 
sate for the lack of existence of an optical flow field and 
thus to estimate the translation parallel to the image 
plane; and second it gathers information about the 
motion component perpendicular to the image plane. 

1 Introduction 

For years visual motion interpretation has been ap- 
proached through studying the "structure from motion" 
problem. The idea is to find methods of recovering the 
three-dimensional motion parameters and the structure 
of the objects in view from the dynamic imagery (Marr 
1982; UUman 1979; Koenderink and van Doorn 1975; 
Koenderink 1986). 
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The way the problem has been addressed, was first 
to compute the exact position where each point in the 
image moved to. In cases of small motion the vector field 
that represents the change of every point in the image, 
the so called optical flow field, is computed from the 
spatio-temporal derivatives of the image intensity func- 
tion. This requires the employment of additional con- 
straints, such as smoothness. In cases, where the motion 
is considered large, features, such as points, line or 
contours in images taken at different time instances are 
corresponded. From the derived optical flow field or the 
correspondence between features the three-dimensional 
motion is then determined. 

One can distinguish three phases in the evolution of 
research on the structure from motion problem. First, 
work dealt with the question of the existence of a 
solution, i.e. can we extract any information from a 
sequence of images about the structure and 3-D motion 
of the scene that cannot be found from a single image? 
Intensive research has been conducted in this field and 
several theoretical results have appeared that deal with 
questions such as: what can be recovered from a certain 
number of feature points in a given number of frames 
(Ullman 1979; Aloimonos and Brown 1989). Then the 
uniqueness aspects of the problem were studied. Non- 
linear algorithms for the recovery of structure and 
motion from point (Longuet-Higgins and Prazdny 
1980) or line correspondences and optic flow (Waxman 
et al. 1987) appeared increasingly in the literature. Such 
algorithms were based on iterative approximation tech- 
niques. So they lacked guaranteed convergence as well 
as a clear analytical formulations that would make a 
proof of uniqueness possible and allow other re- 
searchers to build upon them. Later "linear" algorithms 
and uniqueness proofs came out for points (Tsai and 
Huang 1984) and lines (Spetsakis and Aloimonos 
1990), as well as flow (Adiv 1985); all were based on 
the same linearization technique. Although research in 
these lines has been accompanied by many experiments, 
none of the existing techniques could be used as a basic 
for an integrated system, working robustly in general 
environments. 
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The reasons for the lack of applicability to real 
world problems are due to the difficulty of estimating 
retinal correspondence, which is an ill-posed problem, 
the assumptions that have to be made to derive optical 
flow, and the sensitivity of 3D motion estimation to 
small changes in the data. Even optimal algorithms 
(Spetsakis and Aloimonos 1988)- optimal under the 
assumption of Gaussian noise-  perform quite poorly 
in the presence of moderate noise. The efforts to re- 
move these shortcomings gave birth to a new concept, 
Active Vision. The idea is to abandon the concept of 
recovering in any case all five possible motion parame- 
ters and the relative depth. If we consider simpler, 
specific problems (Aloimonos 1990) and allow the ob- 
server to be active, problems are easier to solve (Aloi- 
monos et al. 1988) and a restriction to well defined 
input may be possible. 

2 Active vision on w d l  defined input 

If we can "recover from a sequence of images the 
involved structure of the imaged scene and the relative 
three-dimensional motion", then various subsets of the 
computed parameters provide sufficient information to 
solve many practical problems, such as detection of 
independent motion, passive navigation, obstacle 
avoidance, prey catching, etc., as well as many other 
problems related to robotics and automation-  hand- 
eye coordination, automatic docking, teleconferencing, 
etc. The difficulties posed from the structure from mo- 
tion problem raise the idea to seek direct solutions to 
the above problems that don't presume complete re- 
covery. If we can furthermore supply additional infor- 
mation to the solution finding task, we may solve 
problems that were originally considered as ill-posed, 
ill-conditioned and nonlinear. Additional information 
can be obtained by making the observer active and 
allow him therefore to manipulate and control certain 
parameters. This is the approach called for by the 
paradigm of Active Vision (Bajcsy 1985; Aloimonos et 
al. 1988). In their paper Aloimonos et al. discuss solu- 
tions to a few problems for an active observer, but 
they consider optical flow as input to their modules. 
We go one step further and restrict to just the spatio- 
temporal derivatives of the image intensity function. 
The question now is, what kind of activities enable us 
to solve certain visual problems? 

Here, we analyze the following problem that ap- 
pears in various visual tasks, where response to object 
motion has to be generated and the translation of the 
moving object is the relevant factor: "Given an active 
observer viewing an object moving in a rigid manner 
(translation+rotation), recover the direction of the 
3-D translation and the time to collision by using only 
the spatio-temporal derivatives of the image intensity 
function," Although this problem is not equivalent to 
"structure from motion", because it does not fully 
recover the 3-D motion, it is of importance in a vari- 
ety of situations. If an object is rotating around itself 
and also translating in some direction, we are usually 

interested in its translation- for example in problems 
related to tracking, prey catching, interception, obsta- 
cle avoidance, etc. 

We want to avoid using optical flow and use data 
that is derived from just the variations in the image 
intensity function as the input to the estimation of 
3D-motion. As the only available constraint for the 
flow (u, v) of the time changing image l(x, y, t) we 
accept the constraint Ixu +IyV + l t  = 0  (Horn and 
Schunck 1981),. where subscripts denote partial differ- 
entiation. This just means that we can only com- 
pute the projection of the flow on the gradient 
direction ((Iz, Iy)'(U, V)= --/t), i.e. the so-called nor- 
mal flow. This equation, the optic flow constraint 
equation, is derived when assuming that the irradiance 
at time t at point P(x, y) and at time t + 6t at point 
P(z + fix, y + @) are the same, or in other words 

dI/dt = O. 

The input we use is the spatio-temporal variation 
in the brightness pattern, which is associated with the 
vector field of apparent velocities, the optical flow 
field. It is often considered to coincide with the motion 
field, the projection of the 3D-motion on the image 
plane. This fact is stated through the assumption dl/  
dt = 0, which says that the two fields are the same. 
However, the optic flow field and the motion field are 
not equal in general. Verri and Poggio (1987) reported 
some general results in an attempt to quantify the 
difference between them. In Fermfiller and Aloimonos 
(1991) the difference between the normal components 
of these two fields is estimated by using a first-order 
Taylor series approximation for the spatio-temporal 
variation in the image intensity. If un denotes the nor- 
mal flow value at point (x, y) and ~n the normal mo- 
tion value at the same point, then the difference is 
given by: 

1 dI 

- u n  - I I V l I I  dt 
This shows that the two fields are closer when the 

local image intensity gradient V1 is high. Thus, if we 
measure normal flow only in regions where the inten- 
sity gradients are of high magnitude, we'll guarantee 
that the normal flow measurements can be used for 
inferring 3-D motion. 

The idea of using the image gradients to directly 
estimate 3D motion without going through the interme- 
diate stage of calculating the optic flow field first ap- 
peared in the work of Aloimonos and Brown (1984). 
They presented a complete solution for the case of pure 
rotation, whereas a detailed study of translational mo- 
tion can be found in Horn and Weldon (1987) and 
Negahdaripour (1986). Finally, a hybrid technique ap- 
peared recently (Taalebi-Nezhaad 1990), using both 
optical flow and image gradients for addressing the 3-D 
motion estimation in the general case (rotation and 
translation). In this paper we address the general case, 
but we perform partial motion recovery. We estimate 
the direction of translation of a rigidly moving object 
using just normal flow. 



3 Overview 

We present a method for estimating the direction of 
translation and the time to collision for a monocular 
observer that has the capability of tracking. The ob- 
server derives from the image sequence the tracking 
movement of the observer's motor and uses these track- 
ing parameters as input to the computation of the 
object's 3-D motion. 

To begin with, the observer detects independent 
motion (Sharma and Aloimonos 1991) and fixates at 
the object, thus causing the optical axis to pass through 
the object. The translational direction of an object 
moving with translational parameters (U, V, W) and 
rotating with velocity (co z, COy, ogx) is represented in the 
image plane by the point (U/W, V/W), the Focus of 
Expansion (FOE). To give a graphical explanation: If 
we put the object at a distance equal to the focal length 
f in front of the nodal of the camera, the FOE repre- 
sents the intersection point of the image plane and the 
motion trajectory which passes through the nodal point 
(see Fig. 1). 

It has been argued that tracking is used in biological 
vision for the sake of simplifying the estimation of 
motion. Since we are studying computer vision for an 
active observer, our first question concerns the nature 
of the activities themselves. Therefore we should ask 
why one should go a roundabout way and derive 
intermediately the tracking movement. What do we 
gain from tracking? 

Through tracking we can accumulate information 
over time and add therefore the parameter of time as 
additional component to the input information. An- 
other advantage of tracking is, that since it is accom- 
plished for a number of steps, the tracking parameters 
can be corrected sequentially (smoothed) and we don't 
rely on just one measurement. 

The idea of using the tracking parameters for mo- 
tion estimation was used before by Bandopadhay and 
Ballard (1991). They provide closed form solutions for 
the computation of the egomotion parameters for a 
binocular observer by employing the rotation angle and 
its first and second derivative (angular velocity and 

Ng. 1. FOE in the image plane 
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acceleration). In their paper they did not show how 
tracking was actually done, whereas we propose a 
complete solution: we first show how to compute the 
tracking parameters using normal flow and then how to 
use them for a 3-D motion estimation. 

We are accomplishing the computation of the FOE 
and the time-to-collision through three modules, that 
involve the activities of fixation and tracking. 

1. By fixating at an object point, which we consider 
to be the origin of the used coordinate system, we get 
image velocity at the center that represents the projec- 
tion of parallel translation. We show how tracking can 
be used to derive the projection of parallel translation 
from just the spatio-temporal derivatives. 

2. In the next step, the output of the first module is 
used to acquire information about translation parallel 
to the optical axis. Again tracking is used, here as a tool 
for accumulating depth information over time. 

3. In a third module we show that time to collision 
is related to the FOE and how to estimate it from the 
spatio-temporal information at the fixated point. 

4 The choice of the coordinate system 

Since the motion parameter (U, V, W) and (COx, 
COy, coz) are expressed relative to a coordinate system, 
the prediction of the object's position in subsequent 
frames is dependent on the choice of the coordinate 
system. The ideal place to put the origin of the coordi- 
nate system would be the mass center of the object (the 
"natural" system). Since the mass center is not known, 
different choices have to be made. Most commonly the 
camera's nodal point is chosen as the center of the 
coordinate system ("camera centered" coordinate sys- 
tem). Rotation is described around the nodal point. In 
the case of object motion this leads to different values 
for the motion parameters for each new frame, which is 
an unwelcome effect in the task of finding translational 
motion. 

We therefore decided to attach the center of rota- 
tion to the object's point of intersection with the optical 
axis (an "object centered" coordinate system) (see Fig. 
2). The active observer is free in its choice of the center 
and will therefore decide for a point belonging to a 
neighborhood of non-uniform brightness with distin- 
guishable features. 

This approach can be justified by the following 
argument: When choosing as fixated point the mass 
center of the object's image or a point in its near 
neighborhood, the resulting motion parameters are in 
many cases close to those of the natural system. In the 
natural coordinate system with center Onatura~ the veloc- 
ity v at point P is due to the translational and the 
rotational component: 

) 

V = /natural "~- r X O naturalP 

and in the object centered coordinate system with cen- 
ter Oobj~t the same velocity is expressed as 

) 

t) = tobject + (D • O object P 
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/ 
Fig. 2. Object centered coordinate system 

3, to tO 

Fig. 3. The difference in translation between t n in the natural system 
with center O.  and t o in the object centered system with center Oo is 

o) x 0 o 0  n 

Therefore the difference in translation between tnatura 1 

and tobject (see Fig. 3) is given by: 

) ) 

/natural - -  tobject = 09 • (Oob jec tP  - -  Ona t u r a l P  ) 

) 

-~- CO X Oobject Onatural 

) 

The value becomes smaller a s  O o b j e c t O n a t u r a  I decreases. 

5 Tracking gives parallel translation 

The first activity used in this approach is fixation. 
This action provides us with linear relations between 
the 3D- and the 2D-velocity-parameters. An object 
at distance Z in front of the camera moves in the 
3D environment with translational velocity (U, V, W) 
and rotational velocity (COx, 09y, 09z). In an object cen- 
tered coordinate system with center P(X0, I1o, Zo) un- 
der perspective projection the optical flow (u, v) is 
related to these parameters through the following 
equations: 

dx Uf Wx xy091 
dt Z Z f 

+ 092 ( f + f ( Z - Z ~  

d t = v = z  Z 

0 9 2 x y  A F T  -[-(s 

In a small area around the center x, y and 
(Z -Zo) /Z  are close to zero. The optical flow compo- 
nents due to rotation and due to translation parallel to 
the optical axis converge to zero, and u becomes Uf/Z 
and v becomes Vf/Z. 

The flow at the center of  the image gives the pro- 
jection of parallel translation, but only normal flow is 
available. We show that tracking can be used for the 
evaluation of optical flow in an iterative technique and 
prove the convergence of the method to the exact 
solution. 

The problem of  current optical flow algorithms is 
that additional constraints are imposed. Constraints 
that impose a relationship on the values of  the flow 
field are usually used, and this amounts in assump- 
tions, such as smoothness, about the scene in view. 
This basic problem is overcome by providing the ob- 
server with activity. The computation is thus trans- 
ferred to the active observer, who has the ability to 
iteratively adjust his motion through his control mech- 
anism to the given situation. 

In cases, where the dominant motion of  the object 
is translation towards the observer, the resulting opti- 
cal flow vectors are emanating from a point which lies 
inside the object's image. The coordinates of  this 
point, the FOE, are consequently close to zero. Other- 
wise the optical flow pattern is due to vectors that are 
about parallel and have about the same magnitude. 
Typical normal flow patterns for both cases are shown 
in Fig. 4. 
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a 

Fig. 6. a Normal flow vectors in different directions, b The new flow 
vector (resulting from object motion and tracking) is due to a, the 
error in magnitude, and due to b, the error in direction 

b 
Fig. 4. a Normal flow vectors emanating from a point inside the 
object, b Normal flow vectors, when the translational component 
parallel to the image plane is not much larger than the component 
perpendicular to the plane 

For  these cases, where the FOE lies inside the 
object, the normal flow vectors are mainly due to 
translation, because the rotational components near the 
object center are very small. Therefore a simple tech- 
nique using only the direction of  the normal flow 
measurements can be applied. Given the normal flow 
vector at a point, we know that the FOE lies in the 
half-plane, which is separated from the one containing 
the normal flow vector through the greylevel edge. 
Considering every available normal flow measurement 

Fig. 5. Each available normal flow measurement constrains the possi- 
ble location of the FOE 

will narrow the possible location of  the FOE to a 
small area (see Fig. 5) (see also Horn and Weldon 
1987; Aloimonos 1990). When dealing with such nor- 
mal flow patterns, it would make no sense to use the 
method introduced in this paper; we are concerned 
here with the more complicated case as displayed in 
Fig. 4b. 

Let us compute the normal flow in a set of  direc- 
tions in a small area around the origin (fixation point). 
The normal flow is the projection of  the optical flow 
on the gradient direction. The largest of  the normal 
flow values in the different directions is therefore 
the one closest to the optical flow. Let us call this 
normal flow vector the "maximum normal flow" and 
denote it by (u n, v n) (see Fig. 6a). We take it as an 
approximation to the correct optic flow and use it to 
track the fixated point. The purpose of  tracking is to 
correct for the error in the approximation. In order to 
keep a point with optical flow (u, v) in the center of  
the image the observer has to perform a movement 
that produces the same value of  optical flow in the 
opposite direction. The way our observer accomplishes 
this task is by rotating the camera around the nodal 
point about the x- and y-axis. While the observer is 
moving it takes the next image and computes again 
the normal flow vectors. I f  the maximum normal flow 
was equal to the optical flow, a new optical flow (due 
to object motion and egomotion) of  zero will be 
achieved. 

Usually, however, the maximum normal flow and 
the optical flow are not equal; they will differ in mag- 
nitude and/or in direction. An error in magnitude re- 
sults in a flow vector in the direction of  maximum 
normal flow, and an error in direction creates a flow 
vector perpendicular to it (see Fig. 6b). The actual 
error is usually in both magnitude and direction. Thus 
the new flow vector is a vector sum of the two compo- 
nents. Again it can be approximated by the largest 
normal flow vector measurement. The new measured 
normal flow is used as a feedback value to correct the 
optical flow and the tracking parameters; the new nor- 
mal flow vector is added to the maximum normal flow 
vector computed in the first step. Proceeding by apply- 
ing the same technique to the successive estimated 
errors will result in an accurate estimate of  the actual 
flow after a few iterations. The proof  of  convergence 
to the exact solution follows: 
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We use here a simplified model to explain tracking. 
The change of  the local coordinate system during tracking 
and the fact, that the object is coming closer, is not 
considered. Since, for the purpose of  optical flow estima- 
tion the number of tracking steps is small, the error 
originating from this model is not essential. Concerning 
a specific application, the algorithm will stop when the 
computed error is smaller than a given threshold, which 
will cover model errors. 

In each iteration step we are computing an approx- 
imation to difference between the observer's egomotion 
and the object motion. Considering the possible sources 
of  error we have to show that the approximation error 
will become zero. 

Deviations of  the chosen maximum normal flow from 
the optical flow value are due to the following reasons. 
�9 Deviations covered through the model: 

The fact that normal flow measurements are com- 
puted in a finite number of  directions causes an error 
in direction of  up to half the size of the interval's size 
between two normal flow measurements. If  measure- 
ments in n directions are performed the maximum 
error y is bounded by: y < zc/n. 

�9 Deviations coming from simplifications and discrete 
computations: 
In the evaluation of  flow measurements the parts 
linear and quadratic in x, y, and Z - Z0 are ignored. 
Furthermore each measurement in one direction is 
computed as the average of  the normal flow values in 
a range y of  directions. These reasons may cause 
errors in magnitude as well as direction, and a differ- 
ent vector than the closest normal flow vector may be 
chosen. 

�9 General errors occuring in normal flow computation: 
Sensor noise in normal flow measurements and the 
numerical computation of  the derivatives of the image 
intensity function can influence the magnitude and 
the direction of  the estimated value. 

Let v be the magnitude of  the actual optical flow. 
The error sources give rise to specifying the error in 
magnitude, x, in percentage of  the actual value, x~ is 
the magnitude error in the maximum normal flow 
measurement in step i and y~ is the angle between the 
maximum normal flow vector and the optical flow 
vector, where x, < x and Yi < y. Therefore the differ- 
ence between the optical flow and the first measure- 
ment of  maximum normal flow is given by 

= (VXl COS yt~ 
d/i l  k v s i n y l  ] '  

where the x-axis is aligned with the maximum normal 
flow vector (see Fig. 7). The square of  its magnitude is 
computed as: 

[Id/i~ 112 -- v2x2 cos2 y, + v 2 sin2 yl 

The second normal flow vector, if measured from the 
direction of  the maximum normal flow vector derived 
in the second step is given by 

d/i2 = {lld/i~ IIx2 cos y2~ 

\ lid/i, II sin Y2 J' 

/ ' ~ t  ~ ~ .sin Yl 

(un,v n) xl .~ .COS Yl 

Fig. 7. Error between optical flow vector and maximum normal flow 
vector 

and the square of its magnitude is therefore 

H dt)Cf2112 = x, IA2U_2.2.2 COS2 y ,  COS2 Y2 -t- X2V 2 COS 2 Yl sin2 Y2 

+ v 2 sin2 yl sin2 y2 + x2v 2 sin2 yx COS2 y2 

In general, if we denote by {a, b } the fact that either a 
or b has to be chosen, then Hd/i. II 2 can be expressed 
as  

lid/in II 2 = v 2 Z IeI {x 2 cos y2, sin y2 } 
all permutations i=  1 

Since x; < 1 and sin Yi < 1 it follows that Hi (x~ cos 
y2, sin y2 } and thus the whole term converges to zero. 
Therefore we have shown the convergence of the ap- 
proximation value to the actual optical flow value for 
the "simplified tracking model". 

6 Estimating the FOE using tracking 

When continuing with tracking over time, as an object 
comes closer and the value of  Z becomes smaller, the 
optical flow value increases. In order to track correctly 
and adjust to the increasing magnitude of the optical 
flow value the tracking parameters h a v e  to be 
changed, too. From the change of  the tracking 
parameters the change in Z can be derived. If  tracking 
is accomplished by rotation with a certain angular 
velocity, this just means, that the change in depth is 
derived from the angular acceleration. In the sequel 
we show the relation between image motion and track- 
ing movement and explain the computation of the 
tracking parameters, which have to be changed in ev- 
ery step. We explain the exact process of  tracking for a 
geometric setting consisting of a camera that is al- 
lowed to rotate around two fixed axes: X- and Y-. 
These axes coincide with the local coordination system 
of  the image plane at the beginning of  the tracking 
p r o c e s s .  

We describe rotation by an angle ~ around an 
axis, which is given by its directional cosines nl, n2, n3, 
where 2 2 2 = n ~ + n z + n 3  1. The transformation of a 
point P with coordinates (X, Y , Z )  before and 
(X', Y', Z ' )  after motion is described through the lin- 
ear relation: 

(x) Y" = R  

Z '  
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where the transformation matrix R is of the following form: 

( n 2 + ( 1 - - n 2 )  cosq~ n l n 2 ( l - c o s ~ b  ) - n s s i n t ~  n l n 3 ( 1 - c o s r  

nln2(1-cosdp)+n2s ind? n2 + (1 - n2) cos tk n 2 n 3 ( l - c o s 4 a ) - n l s i n  - 

n l n 3 ( 1 - c o s q ~ ) - n 2 s i n 4 ~  n 2 n 3 ( 1 - c o s $ ) + n l s i n r  n 2 + ( 1 - n  2) c 0 s r  

Since the image coordinates (x, y) are related to the 
3D-coordinates through: x = X f / Z  and y = Yf/Z, we 
get the following equations: 

(rl x + r2y + ra f ) f  
X I __ 

(r7x + rsy + r9f) 
(taX + rsy + ra f ) f  y t  

(r7x + rsy + r9f) 

In order to compensate for the image motion (u, v) 
of  the point Po, which moves from (0, 0) to (u, v) at one 
time unit the camera has to be rotated by q~, nl, and n2, 
where 

u = nzf tan r 

v = - nlf tan r 

Taking at the center of  the image the flow measure- 
ments (u, v) at the beginning of  the tracking process at 
time tl, and assuming that the object doesn't change its 
distance Zl to the camera, we can conclude that during 
a time interval At an image flow (u At, v At) would be 
measured. The tracking motion necessary for compen- 
sation is given by 

vf 
- -  = n2 tan tk. 
Z1 

But at time t2 the object has moved to distance Z2 and 
we measure a rotation 

Uf , 4~' - -  = n2  tan 
z: 

r l  /'2 r3) 
r4 r5 r6 = R 

r7 r8 r9 

Figure 8 shows the relationship between the 3D 
motion and the tracking parameter. Since 
Z 2 -  Z~ = W At, the change in the reciprocal of  the 
rotation angle is proportional to W/U,  because 

1 1 Z 2 - Z I  W A T  

n~ tan ~b' n2 tan q5 UfAt  UfAt  

and the FOE (U/W,  V~ W) can be computed as 

W =  n~tan4~' n 2 t a n r  = I  n ~ t a n r  uAt  

and 

v ,/,( l ,) 
w= -#itanr ,,~i " 

It remains to be explained how tracking is actually 
pursued, since we are facing the problem of  a con- 
stantly changing local coordinate system. The interested 
reader can consult Appendix A, which is devoted to the 
tracking parameter computation. 

7 E s t i m a t i n g  t h e  t i m e  to  c o l l i s i o n  

If  the values of the motion parameters don' t  change 
over the tracking time the value Z / W ,  the time to 
collision, expresses the time left until the object will hit 
the infinitely large image plane. A relationship between 

Y 

P(t2) Wa t 

,~ 

Fig. 8. From the optical flow value, which is due only 
to translation parallel to the image plane, a translation 
of P from P(q) to P(t2) is inferred, and therefore the 
tracking parameters (n 2, r are expected. But actually 
the point has moved to P(t2) and a rotation described 
by (n2,, t~') is measured 
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FOE and time to collision is inherent in the scalar 
product  of  the optical flow vector (u, v) with the vec- 
tors in gradient direction (or, Ii): 

( :)G) - 
For  the pixels in the center, for which we ignore 

the linear and quadratic parts in x, y and ( Z -  Zo)/Z 
in the relation between optical flow and 3D-parameters 
we get the relationship: 

of vf 

U f  Vf Z 

Since we know the FOE, we can compute the time 
to collision from this relationship, by measuring the 
normal  flow value in all directions of  the set and by 
solving an overdetermined system of  linear equations 
by minimizing the least square error. 

8 E x p e r i m e n t a l  r e s u l t s  

We tested the method on synthetic imagery 'by using 
the graphics package Swivel. This way we were able to 
simulate object mot ion as well as camera rotation. In 
order to analyze the robustness of  the method, we 

Fig. 9. First image in the sequence used for tracking 

evaluated the accuracy of  the normal flow values in 
the center of  the images. At every point we determined 
/)act, the projection of the known optical flow value on 
the gradient direction computed there. The error (err) 
in the normal flow values was defined as standardized 
difference between/)act and the normal flow value, v . . . .  

(err = (Vact- Vmca~)/Vact %). This way we computed an 
average error of  76.14% and a standard deviation of  
179.64% for the motion sequence at the beginning 
of  the tracking process. This constitutes a large error 
and is comparable to errors appearing in noisy real 
imagery. 

The object displayed in Fig. 9 moves in the direc- 
tion U/W = 4 and V/W = 2, with an image motion at 
the center of  u = 0.004 and v = 0.002 focal units, and 
we tracked it over a sequence of 100 images. Concern- 
ing the implementational details, we computed normal 
flow measurements in 10 directions in an area of  9 x 9 
pixels at the center of  the image. When testing the first 
module, with which parallel translation is estimated, 
we used a threshold of 0.0002 focal units. The method 
converges very quickly, usually after 2 to 3 iterations. 
We added rotation of  growing magnitude to the object 
motion, and it turned out that the algorithm converges 
for this set-up even for relatively large rotations. (The 
object was 25 units away from the camera and moved 
with translational velocity of  U = 0.1, V = 0.05, 
W = 0.025 units per time and the method converges 
for rotations of up to 0.3 ~ per time unit around the x- 
y-  and z-axis.) Some graphical representations are 
given: Figure 10 shows for the case of  no rotation the 
three normal flow fields that were computed in the 
9 x 9 pixels large area, before convergence was 
achieved. In Figure 11 two maximum normal flow 
vector sequences are displayed (a: for no rotation, b: 
for rotation co x = 0.1 ~ o9 z = 0.1~ Using the estimates 
of  parallel translation from this module and con- 
tinuing with tracking over 100 steps resulted in FOE 
values of  less than 15% error (e.g., for the case of  
no rotation we computed an FOE of  U/W=4.21 
and V/W= 1.79). With these experiments we de- 
monstrated that our technique can tolerate a large 
amount  of  noise in the input (normal flow) and still be 
successful. 
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Fig. 10. Normal flow fields for a tracking sequence 
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Fig. 11. Maximum normal flow vectors for 
a no rotation and b for rotation 
e9 x = O.l~ co~ = O.l~ 

9 Conclusions 

It  has been argued before by psychologists that biolog- 
ical organisms use tracking in the motion estimation 
process. In this paper  we have exploited the advantages 
of  the tracking activity to solve for a monocular  ob- 
server the problem of  computing a moving object's 
translational direction and its time-to-collision. We 
have presented a complete solution to this task by 
showing how tracking can be pursued when only nor- 
mal flow measurements are used and how these 
parameters  are of  use in the 3-D motion parameter  
decoding strategy. The presented technique consists of  
three subtasks. First tracking is used in combination 
with fixation to estimate the motion components  paral- 
lel to the image plane, and second tracking serves to 
compute the perpendicular translational components 
and to estimate the FOE. The output  of  these modules 
is employed then to estimate the time-to-collision. 

A theoretical analysis of  the tracking algorithm of  
the first module has been pursued and the convergence 
of  the method has been proved. Furthermore the exact 
computat ion of the tracking parameters,  under consid- 
eration of the change of  local coordinate systems is 
given. Experimental studies have been conducted on 
synthetic imagery and we achieved very good results. 
The method was developed mainly for cases, where the 
translational components  perpendicular to the image 
plane are not much larger than the ones parallel to the 
plane. Otherwise the flow pattern in the object's image 
will consist of  vectors emanating f rom a point. This 
point, the FOE, can then be estimated with a qual- 
itative technique (Aloimonos and Brown 1984; 
Aloimonos 1990). 

continuing with tracking, we have to consider that 
through the rotation of  the image plane the local 
coordinate system attached to it changes also. At 
each tracking step, in the current local coordinate 
system an optical flow emerges that  is due to the 
change in the Z-distance. The rotation necessary to 
compensate for this value has to be computed and is 
added to the old rotation. The summation of  rotational 
vectors is justified, since we are adding a very small 
vector. 

The computat ion of  the rotat ion vector from nor- 
mal  flow is done in the following way: We compute in 
the new system the normal flow vectors in different 
directions and take the maximum value. This vector 
spans f rom (0, 0) to (u,, v,). In order to compensate for 
this vector by rotation around the fixed X- and Y-axes, 
the point (0, 0) and the point (Un, V,) are transformed 
back to the old system through (1) 

(r 1Xne w q- r2Ynew -k- r x f ) f  

X ~  = (r7Xnew q- ray,ew + r9 f )  

and 

(r4Xnew "[- rsYnew + r j ) f  (1) 
Yotd = (r7Xne w -F rsy,~w + r9 f )  

The same formula can be applied to compute from the 
coordinates the necessary rotation to t ransform one 
point into the other. 
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Appendix A. Computation of tracking parameters 

In this section we describe the computat ion of the 
tracking parameters for the second module. Unlike 
Sect. 5, where a "simplified model"  was used, we take 
here the change of the local coordinate system into 
account and show the necessary parameter  transforma- 
tions between the coordinate systems. 

In the first module the projection of parallel transla- 
tion at the beginning of  the tracking process has been 
computed as described in Sect. 5. F rom these measure- 
ments we derived the rotational parameters  ~b 1, nl, 1 and 
n2.1 necessary to track for one time interval. When 
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