Skip to main content
Log in

Analytic determination of the depth effect in stereokinetic phenomena without a rigidity assumption

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

When a circular disk with an eccentric dot is set in slow rotary motion a compelling impression of a three-dimensional cone is observed. Similarly a line segment of constant length, a bar, rotating on the frontal plane appears slanted in depth. The two stereokinetic phenomena cannot be explained on the basis of Ullman's method of extracting depth from 2-D moving stimuli i.e. the rigidity assumption. A new analytic model is here presented based on the hypothesis that the visual system minimizes the relative velocity differences among all the points of the moving pattern. Two different methods of calculating the depth displacement are described: the velocity field method and the trajectories method. Both lead to the same results. A comparison of the theoretical results with the experimental ones supports the validity of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beghi L, Vicario G, Zanforlin M (1983) The perceptual centre of visual configurations. Accademia Patavina di Scienze, Lettere ed Arti 95:133–148

    Google Scholar 

  • Bennet BM, Hoffman DD (1985) The computation of structure from fixed-axis motion: nonrigid structures. Biol Cybern 51:295–300

    Google Scholar 

  • Braunstein ML, Anderson GJ (1984) A counterexample to the rigidity assumption in the visual perception of structure from motion. Perception 13:213–217

    Google Scholar 

  • Cutting JE (1987) Perception and information. Ann Rev Psychol 38:61–90

    Google Scholar 

  • Duncker K (1929) Ueber induzierte Bewegung. Ein Beitrag zur Theorie optischer wahrgenommener Bewegung. Psychol Forsch 12:159–180

    Google Scholar 

  • Fischer GT (1956) Factors affecting estimation of depth with variation of the stereokinetic effect. Am J Psychol 69:252–257

    Google Scholar 

  • Johansson G (1974) Vector analysis in visual perception of rolling motion: a quantitative approach. Psychol Forsch 36:311–319

    Google Scholar 

  • Longuet-Higgins HC (1986) Visual motion ambiguity. Vision Res 26:181–183

    Google Scholar 

  • Mefferd RB Jr (1968) Perception of depth in rotating objects: 7. Influence of attributes of depth on stereokinetic percepts. Percept Motor Skills 27:1179–1193

    Google Scholar 

  • Metelli F (1940) Ricerche sperimentali sulla percezione del movimento. Riv Psicol 36:319–370

    Google Scholar 

  • Metelli F (1964) Repos apparent et phenomenes de “totalisation cyclique” dans la perception visuelle. J Pyschol Norm Pathol 51:1–38

    Google Scholar 

  • Musatti CL (1924) Sui fenomeni stereocinetici. Arch Ital Psicol 3:105–120

    Google Scholar 

  • Musatti CL (1955) La stereocinesi e il problema delia struttura dello spazio visibile. Riv Psicol 49:3–57

    Google Scholar 

  • Nakayama K (1980) Biological image motion processing: a review. Vision Res 25:625–660

    Google Scholar 

  • Reichardt W, Egelhaaf M (1988) Movement detectors provide sufficient information for local computation of 2-D velocity field. Naturwissenschaften 75:313–315

    Google Scholar 

  • Renwall P (1929) Zur Theorie des. stereokinetischen Phenomenes. Ann Univ Aboensis, Ser. B, Tom. X:13–75

    Google Scholar 

  • Robinson JO, Piggins JD, Wilson JA (1985) Shape, height and angular movement in stereokinesis. Perception 14:677–683

    Google Scholar 

  • Rubin E (1927) Visuell wahrgenommene wirkliche Bewegungen. Z Physiol 103:284–392

    Google Scholar 

  • Todd JT (1985) Perception of structure from motion: is projective correspondence of moving elements a necessary condition? J Exp Psychol Hum Percept Perf 11:689–710

    Google Scholar 

  • Ullman S (1979) The interpretation of visual motion. MIT Press, Cambridge, Mass

    Google Scholar 

  • Ullman S (1984a) Maximizing rigidity. The incremental recovery of 3-D structure from rigid and non-rigid motion. Perception 13:255–274

    Google Scholar 

  • Ullman S (1984b) Rigidity and misperceived motion. Perception 13:218–219

    Google Scholar 

  • Wallach H, Weiss A, Adams PA (1956) Circles and derived figures in rotation. Am J Psychol 69:48–59

    Google Scholar 

  • Zanforlin M (1988a) The height of a stereokinetic cone: a quantitative determination of a 3-D effect from a 2-D moving pattern without a “rigidity assumption”. Psychol Res 50:162–172

    Google Scholar 

  • Zanforlin M (1988b) Stereokinetic phenomena as good Gestalts. The minimum principle applied to circles and ellipses in rotation: a quantitative analysis and a theoretical discussion. Gestalt Theory 10:187–214

    Google Scholar 

  • Zanforlin M (1989) Gestalt theory and perception of a three-dimensional world of objects through motion. In: Gestalt Psychology: its origin, foundations and influence, International Workshop, Firenze (in press)

  • Zanforlin M, Vallortigara G (1988) Depth effect from a rotating line of constant length. Percept Psychophys 44:493–499

    Google Scholar 

  • Zanforlin M, Vallortigara G (1990) The magic wand: a new stereokinetic anomalous surface. Perception 19:447–457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghi, L., Xausa, E. & Zanforlin, M. Analytic determination of the depth effect in stereokinetic phenomena without a rigidity assumption. Biol. Cybern. 65, 425–432 (1991). https://doi.org/10.1007/BF00204655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204655

Keywords

Navigation