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Abstract. Saccadic reaction times (SRTs) were analyzed 
in the context of stochastic models of information pro- 
cessing (e.g., Townsend and Ashby 1983) to reveal the 
processing architecture(s) underlying integrative inter- 
actions between visual and auditory inputs and the 
mechanisms of express saccades. The results support the 
following conclusions. Bimodal (visual + auditory) tar- 
gets are processed in parallel, and facilitate SRT to an 
extent that exceeds levels attainable by probability sum- 
mation. This strongly implies neural summation between 
elements responding to spatially aligned visual and audi- 
tory inputs in the human oculomotor system. Second, 
express saccades are produced within a separable pro- 
cessing stage that is organized in series with that respon- 
sible for intersensory integration. A model is developed 
that implements this combination of parallel and serial 
processing. The activity in parallel input channels is 
summed within a sensory stage which is organized in 
series with a pre-motor and motor stage. The time course 
of each subprocess is considered a random variable, and 
different experimental manipulations can selectively in- 
fluence different stages. Parallels between the model and 
physiological data are explored. 

1 Introduction 

1.1 Identification of serial and parallel processes 

Since the pioneering work of Donders (1869), attempts 
have been made to study the time course and organiza- 
tion of elementary mental processes using reaction times 
(RTs) as a dependent measure. Following Donder's as- 
sumption of serially organized component processing 
stages, Sternberg (1969) developed what is known as 
additive factors logic. This method examines the effects of 
the factorial combination {(AL, By), (An, BE), (AL, BH), 
(AH, BH)) of tWO levels (L{Iow} and n{high}) of two 
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experimental factors (A and B) on the mean RT. Additive 
factors logic assumes that (1) the component processes 
are serially organized and (2) each factor influences the 
duration of different processing stages (the assumption of 
selective influence, see Sternberg 1969; Townsend and 
Ashby 1983). Given these assumptions, we may conclude 
that A and B influence different, serially organized opera- 
tions if factors A and B exert additive effects on the mean 
RT (RT). An illustration of such additivity is shown in 
Fig. 1A. 

The results can be evaluated by analysis of variance 
(ANOVA), in which case additivity is indicated by signifi- 
cant main effects for factors A and B, but no interaction. 
The interaction is equivalently expressed by the mean 
contrast, where the mean contrast is defined as follows: 

A~,BRT(A, B) = RT(Ar, Br) - RT(Ar, BH) 

-- RT(AH, By) 

+ RT(AH, B.) (1) 

The mean contrast is often referred to as the interaction 
contrast in statistics. In the case of additivity, 
A2 BRT(A, B) = 0. 

While additivity at the level of the mean RT provides 
strong evidence of serial processing (Sternberg 1969), an 
important issue arises when additivity is not obtained 
[i.e., there is a significant interaction term in the analysis 

z RT(A, B) # 0]. According to addi- of variance, or AA,B 
tire factors logic, nonadditivity is generally taken to 
indicate failure of a selective influence (that at least one 
component process is influenced by both experimental 
factors). However, recent work by Townsend and collab- 
orators (e.g., Nozawa 1989, 1992; Townsend and Piot- 
rowski 1981; Townsend and Ashby 1983; Townsend 
1984; Townsend and Nozawa, 1994, manuscript submit- 
ted) has shown that such interactions are also diagnostic 
of parallel processing. 

Indeed, the sign of the mean contrast specifies the 
'stopping rule' (the rule by which processing is termin- 
ated) in a parallel system. Consider the parallel architec- 
ture portrayed in Fig. 2A. Townsend and Ashby (1983) 
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Fig. 1. A Schematic representation of a serial processing architecture. 
B Illustration of additivity implied by this serial information processing 
system, For this pattern of results, the mean contrast = 0. See text for 
details 

have shown that if a task requires complete processing in 
both parallel channels (exhaustive parallel processing), 
then the mean contrast in a factorial experiment will be 
less than 0 ('subadditive' interaction). Conversely, Town- 
send and Nozawa (1994, manuscript submitted) have 
shown that if a task can be performed on the basis of the 
first channel to complete its processing (parallel process- 
ing in the minimum completion mode, as is the case for 
the OR operator in Fig. 2A), then the mean contrast is 
positive ('superadditive' interaction). 

Here we shall only be concerned with the minimum 
completion mode of parallel processing. To illustrate the 
logic that underlies these concepts, duplication of the 
proof that parallel processing in the minimum comple- 
tion mode produces a superadditive mean contrast is 
provided in Appendix 1. More complete treatments are 
found in Townsend and Nozawa (1994, manuscript sub- 
mitted). 

1.2 Parallel processing in the mimmum completion mode: 
race versus summation models 

Parallel processing in the minimum completion mode is 
well-suited to perform tasks in which the same response 
can be initiated upon detecting any one of several differ- 
ent signals. A specific case of this type of experiment is 
often termed the redundant targets paradigm, in which 
subjects must respond to the presentation of target A, 
target B or target [A and B]. If A and B are processed in 
parallel, the stimulus-response mapping can be likened to 
the logical operation of a boolean OR gate (Fig. 2A) since 
a response can be initiated as soon as processing of either 
target is completed. Such a system is expected to show 
a benefit from the presentation of multiple targets over 
the level of performance obtained from single-target 
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Fig. 2. A Schematic representation of a parallel processing architec- 
ture. B Illustration of superadditivity implied by both parallel process- 
ing in the the minimum completion mode (OR) and neural summation 
(S). For this pattern of results, the mean contrast > 0. See text for 
details 

presentations, and redundancy gains are frequently ob- 
served (e.g., Miller 1982, 1986; Raab 1962; Westendorf 
and Blake 1988). 

Redundancy gains need not imply facilitatory inter- 
actions between parallel channels, however. Consider 
a parallel system operating in the minimum completion 
mode. We assume that the time course associated with 
the processing in each channel is a random variable (TA 
and TB). We also assume that the processes associated 
with response execution are relatively constant, such that 
in any given trial, the observed RT is determined by the 
minimum of T A and T8 (min [TA, TB]). Redundancy 
gains are expected since 

E(min[Ta ,  TB]) ~< min[E(TA), E(TB)] (2) 

The above expression is known as Jensen's inequality 
(see p. 197 of Dudewicz 1976). Thus, redundancy gains 
can be a simple consequence of a minimum operator 
applied to the probability densities of Ta and TB. Such 
models of redundant target effects are often called race 
models. 

1.2.1 Predicted performance according to the race model. 
I f ( l )  the processing times associated with each input are 
stochastically independent and (2) are not influenced by 
target processing on other channels (i.e., selective influ- 
ence holds), then we can express the probability that 



either channel has completed its processing by a given 
time t as 

P(min[TA, TB] ~< t) = P(TA <~ twTB <% t) 

= P(TA <~ t) + P( TB <~ t) 

- P(TA ~ t ~ T ~  <. t) 

= PiTA <% t) + P(TB <~ t) 

- (P(TA <~ t) x P(TB <~ t)) (3) 

If we rewrite the above expression in terms of overall 
reaction times, we have an estimate of the level of perfor- 
mance predicted by the independent race model: 

pt'DTPredicted ~,---A~B ~< t) = P(RTA ~< t) + P(RTB ~< t) 

- (P(RTA ~< t) x P(RT~ ~< t)) (4) 

where P(RTA ~< t) is the cumulative distribution function 
(CDF) of the RTs to target A, P(RTB ~< t) is the CDF to 
target B, and r,~DwPrediCtod ~t----AaB ~ t) is the predicted CDF of 
RTs to the redundant targets. 

Notice that P(TA <~ tc~ TB <~ t) = P(TA <~ t) 
x P(TB <~ t) if and only if TA and TB are stochastically 
independent. If TA and T8 are positively dependent, then 
P(TA <~ tc~ TB <~ t) > P(TA <. t) xP(TB <<. t); if they are 
negatively dependent, then P(TA <<, troT8 ~ t) < 
P(TA <~ t) x P(TR <~ t). Thus, stochastic dependencies be- 
tween the processing times for each target alter the level 
of performance predicted by probability summation in 
a redundant target task; relative to an independent race 
(4), negative dependencies will reduce RTs, and positive 
dependencies will increase them. 

1.2.2 Predicting perJbrmance of neural summation mod- 
els. Neural summation (or coactivation) models suggest 
a fundamentally different architecture. Neural summa- 
tion models posit that the activities (i.e., the neural activ- 
ities) associated with the processing in each channel are 
summed prior to a single decision stage. Both race 
models and neural summation models invoke parallel 
processing, both predict superadditivity of the mean con- 
trast, and both predict redundancy gains. How then can 
they be distinguished? In general, the answer lies in the 
fact that neural summation models predict larger re- 
dundancy gains than race models. 

Miller (1982) pointed out that all race models can 
be rejected if the obtained redundant target CDF at 
any point exceeds the sum of the single target CDFs. 
The logic is as follows. Regardless of the dependent 
structure between TA and Ts, the joint probability, 
P(TA <~ tc~ T~ ~ t) lies in the interval between 0 and 1. 
The most conservative estimate of redundant target per- 
formance according to a race model assumes that 
P ( T  a ~< tc~ TB 4%< t) = 0. Thus, all race models predict that 

P(RTAa~ -%< t) ~< P(RTA ~< t) + P(RTB -%< t) (5) 

We refer to (5) as the race inequality, and violations of 
this equality provide strong evidence against race models 
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(and by default, evidence favoring neural summation; e.g., 
Miller 1982; Colonius 1990). We now describe applica- 
tion of these methods to an analysis of latencies of 
saccadic eye movements. 

1.3 Applications of factorial methods to human 
oculomotor performance 

1.3.1 A case of serial processing: express saccades. As 
with other sensorimotor systems, SRTs decrease mono- 
tonically with increasing target intensity (e.g., Wheeless 
et al. 1967; Hughes and Kelsey 1984). In addition, how- 
ever, SRTs are dramatically reduced simply by extin- 
guishing the fixation stimulus prior to the presentation of 
the target (e.g., Boch and Fischer 1983; Fischer and 
Ramsperger 1984, 1986; Saslow 1967). This 'gap para- 
digm' has established that humans can generate accurate, 
visually guided saccades with latencies as short as 100 ms 
(Fischer and Ramsperger 1984; Fischer and Boch 1983; 
Reuter-Lorenz et al. 1991; Saslow 1967). Boch and Fis- 
cher (1983) have termed these 100-ms responses express 
saccades; they are probably the fastest visually guided 
movements humans are capable of producing. 

Reuter-Lorenz et al. (1991) sought to determine 
whether target luminance and the facilitatory effects of 
the gap paradigm would exert interactive or additive 
effects on saccade latency. In contrast to predictions of an 
earlier model of express saccades (Reulen 1984a, b), 
Reuter-Lorenz et al. (1991) found clear evidence of ad- 
ditivity; the implication is that target luminance and 
fixation point offsets selectively influence separable, ser- 
ially organized processing stages. 

Additional evidence that the gap effect has little to do 
with enhanced visual processing per se was provided by 
Fendrich et al. (1991), who showed that fixation point 
offsets facilitate saccades to acoustic as well as visual 
targets. Further, Reuter-Lorenz et al. (1991) found that 
the gap effect was specific for saccades to an eccentric 
target; fixation point offsets did not facilitate manual 
responses or saccades directed away from an eccentric 
target (anti-saccades, see Hallet 1978). Similar findings 
were obtained in a subsequent experiment (Reuter- 
Lorenz et al. 1995). Although Iwasaki (1990) reported 
a modest gap effect using choice manual RTs, these 
effects were accompanied by substantial reductions in 
accuracy (whereas the more substantial facilitatory 
effects on saccades were not). 

These findings of response specificity suggest that 
fixation point offsets preferentially influence a subprocess 
that is specific to the generation of goal-directed sac- 
cades, and this process probably follows sensory encod- 
ing of the target (serial architecture). Noting that the 
thresholds for eliciting a saccade by electrical stimulation 
are reduced following fixation point offsets (Goldberg 
et al. 1986), Reuter-Lorenz et al. (1991) suggested that 
removal of the fixation stimulus facilitated a transition 
within the oculomotor system from a fixation mode to 
a saccadic mode. We refer to this facilitatory effect as 
'fixation release'. Fischer (1987) also considered the fact 
that active, fixation-related processes must be terminated 
before a saccade can be initiated. The position we 
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Fig. 3. Schematic representation of a two-stage model designed to 
account for bimodal interactions and express saccades 

describe here is in some ways similar, but differs in that 
no special role of central attentive mechanisms is in- 
voked. Various positions on the relationship between 
attentive states and express saccades can be found in 
a recent article by Fischer and Weber (1993) and related 
commentary. 

1.3.2 A case of parallel processing: bimodal integra- 
tion. Motivated by the electrophysiological findings of 
multimodal convergence within the oculomotor path- 
ways (Jay and Sparks 1987; Meredith and Stein 1983; 
Peck 1987), Hughes et al. (1994) sought to determine the 
nature of auditory-visual interactions in human saccadic 
performance. Using a version of the redundant targets 
paradigm, Hughes et al. (1994) observed consistent viola- 
tions of the race model inequality (5), suggesting neural 
summation between parallel auditory and visual inputs 
prior to the generation of saccades. 

1.3.3 Test of the serial-parallel hypothesis. Taken to- 
gether, these results suggest the hypothesis illustrated in 
Fig. 3. Parallel auditory and visual channels provide 
inputs to a summation stage, whose output is transmitted 
to a pre-motor stage. The time course of the pre-motor 
stage is influenced by a fixation signal. Active fixation 
lengthens the time course of this pre-motor processing. 
The time course of this stage is reduced following the 
removal of the fixation point. 

Since superadditivity is a signature of parallel pro- 
cessing in the models currently under consideration, the 
model predicts that variations in the intensity of auditory 
and visual components of bimodal signals should pro- 
duce superadditive interactions on saccade latency. Fur- 
ther, if fixation offsets influence a subsequent stage, the 
effect of the fixation condition should be additive with all 
of these sensory effects. 

The present experiment tests these predictions by 
combining the gap paradigm with an expanded version 
of the factorial paradigm. 

2 Methods 

2.1 General methods" 

A centrally located green light-emitting diode (LED) 
served as the fixation point, Red LEDs served as the 

visual targets. The acoustic targets were brief (100 ms) 
bursts of white noise delivered through 4-cm speakers 
located directly beneath the target LEDs. Targets were 
located to the left and right of fixation at an eccentricity 
of 20 ~ (104 cm viewing distance). The entire apparatus 
was housed in a large (1.54 m x 1.54 m x 0.9 m) enclosure 
lined with a sound-absorbing foam material (Sonex). Eye 
position was digitized at 250 Hz using an infrared scleral 
reflection device. Data collection followed 5 rain of dark 
adaptation, during which time the eye tracker was calib- 
rated, Head movements were minimized using a bite- 
plate. All subjects were emmetropic and had normal 
hearing. Saccades were identified using a velocity cri- 
terion (generally 50 deg. s-1). Data analysis was per- 
formed off-line. 

2.2 Procedures 

Each observer was given extensive practice on the sac- 
cade task. During these practice sessions, the intensities 
of the auditory and visual targets were varied in order to 
obtain a reliable intensity effect in each modality for all 
six observers (recall that the predictions of superadditiv- 
ity rely on robust ordering of the survivor functions; 
Appendix 1). Auditory intensities ranged from 39 to 
84 dBspl. Visual intensities ranged from 0.003 to 8.66 
c d ' m  -2. The subjects then participated in four experi- 
mental sessions consisting of 5 blocks of 80 trials (400 
trials/session). Auditory, visual, and bimodal targets were 
presented with equal frequency and randomized with 
respect to both order and location. In half of the trials, 
the fixation stimulus was extinguished 200 ms prior to 
the onset of the target (gap condition); the fixation stimu- 
lus remained illuminated in the other half(overlap condi- 
tion). Gap and overlap trials were randomly intermixed 
within each trial block. Acoustic warning signals 
(1000Hz, 100ms duration) were presented through 
a center speaker 300 ms before target onset. Thus, the 
offset of the warning signal was synchronous with the 
offset of the fixation point in gap trials. Twenty percent of 
the trials involved catch trials. 

3 Results 

3.1 False alarm rates 

The probability of a saccade occurring on catch trials is 
given in Table 1. False alarm rates were analyzed using 
a test for the differelace between the proportions of false 
alarms in each condition (Wolpole and Myers 1972 
p. 261). This test indicated that the false alarm rates were 
significantly higher in the gap condition than the overlap 
condition (z = - 7.148, ~ < 0.001). This effect might be 
interpreted as indicating that a state of disengaged fix- 
ation increases the likelihood that a saccade will occur, 
even in the absence of a target. The magnitude of the gap 
effect was negatively correlated with the false alarm rate 
(Spearman rank correlation coefficient, rranks = - -  0.657), 
but the strength of the correlation was not significant 
(critical rra,ks for n = 6 is +_ 0.8). 



Table l. False alarm rates 

Condition Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Mean 

Gap 0. l 8 0.09 0.075 0.05 0.031 0.056 0.080 
Overlap 0.04 0.13 0.00 0.00 0.013 0.013 0.013 

Mean 0.11 0.11 0.038 0.025 0.022 0.035 0.047 
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Table 2. Visual intensity by fixation additivity on mean saccadic reac- 
tion time (SRT) 

Fixation condition Low intensity (ms) High intensity (ms) 

Overlap 264.65 190.3 
Gap 228 149.35 

Mean contrast: - 4.3 

Table 3. Auditory intensity by fixation (superadditive) interaction on 
mean SRT 

Fixation condition Low intensity (ms) High intensity (ms) 

Overlap 253 181 
Gap 221 163 

Mean contrast: 14 

Table 4. Bimodal superadditivity: SRTs for overlap condition 

Low auditory High auditory 
intensity (ms )  intensity (ms) 

Low visual intensity 209.7 167.25 
High visual intensity 174.45 153.8 

Mean contrast: 21.8 

Table 5. Bimodal superadditivity: SRTs for gap condition 

Low auditory High auditory 
intensity (ms)  intensity (ms) 

Low visual intensity 176.15 150.9 
High visual intensity 141.55 133.45 

Mean contrast: 17.15 

3.2 Analyses of the means 

ANOVAs were performed in the three parts: the uni- 
modal  visual target • fixation condition, the unimodal 
auditory target x fixation condition, and the bimodal 
target • fixation condition. Mean SRTs for each condi- 
tion are summarized in Tables 2-5. 

The visual ANOVA revealed significant effects of 
both target intensity (F~ ,5 )=  18.18, P < . 0 1 )  and 
fixation condition (F~I, 5) = 55.87, P < .01), but the inter- 
action was not significant (F(1,5)=0.19, NS). This 
additivity between target luminance and fixation offsets 
supports the hypothesis that target luminance and fix- 
ation point offsets selectively influence serially organized 
processes. 

The auditory ANOVA also revealed significant ef- 
fects of target intensity (F(1.5) -- 22.6, P < .01) and fix- 
ation condition (F(1,5) = 12.28, P < .01). These results 
confirm a previous finding that fixation point offsets 
facilitate saccades to acoustic as well as visual targets 
(Fendrich et al. 1991). There is also the suggestion of 
a weak interaction between auditory target intensity and 
fixation condition (FI1 ' 5) = 7.59, P < .05). 

The results of the bimodal target • fixation condition 
ANOVA confirm significant effects of both visual 
and auditory intensity (F(1.5) = 9.9, P < .03; 
F~.5) = 10.17, P < .03, respectively). Moreover, the in- 
teraction between visual and auditory intensity was 
superadditive (F~I. 5) = 5.85, P < .06), suggesting that the 
auditory and visual inputs are indeed processed in paral- 
lel. Although the statistical magnitude of this superad- 
ditivity is modest, the conclusion of parallel processing is 
also manifest in the distributional analyses presented in 
Sect. 3.3.1. 

A reliable gap effect was observed for the bimodal 
targets (F(~,5) = 17.11, P < .01). As the serial stage model 
predicts, the two-way interaction between fixation offsets 
and visual intensity was not significant (F(1,5)= 0.34, 
NS), but the two-way interaction between fixation offsets 
and auditory intensity was (F~,5)= 6.23, P < .06). Fi- 
nally, the triple interaction between auditory intensity, 
visual intensity and gap condition was not significant 
( F , , 5 ) =  3.07; P > . 1 3 ) .  Although this nonsignificant 
triple interaction is consistent with a serial stage model 
of bimodal convergence followed by pre-motor  facilita- 
tion, the general tendency towards auditory inten- 
sity • fixation interactions is problematic for the simple 
processing architecture illustrated in Fig. 3. We consider 
this issue in more detail during our description of the 
model. 

3.3 Distribution analyses 

3.3.1 Violations of the race inequality. If the CDFs 
obtained from bimodal targets exceed the sum of 
the unimodal CDFs, then the redundant targets 
effect exceeds that predicted by any race model. It 
is convenient to evaluate race inequality by simply 
subtracting the CDF obtained from the predicted CDF. 
Referring to (5), this simply states that, if the results 
conform to the race model, the following inequality 
must hold: 

IRlI(t) = P(RTA~v ~< t) 

- (P(RTA ~< t) + P(RTv ~< t)) ~< 0 (6) 
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Fig. 5. Selected distributions of saccade latencies under the various 
experimental conditions 

Stated verbally, the redundant target CDF minus the 
sum of the unimodal CDFs must be equal to or less than 
zero for all points in time t. We shall refer to this quantity 
as IRlI(t) (race inequality as a function of time). This 
comparison can be made for each particular instance of 
redundant targets trial (e.g., RTae~v to high intensity 
targets, presented at the left location in the overlap con- 
dition). 

There are 96 possible comparisons in the present 
experiment (16 different redundant target conditions 
with 6 observers). We therefore present averaged values 
of (6) in both the gap and overlap conditions. Figure 
4 illustrates the low auditory intensity/low visual inten- 
sity conditions (AL, Vc) and the high auditory inten- 
sity/high visual intensity conditions (AH, Vn). Equivalent 
effects were seen in the other conditions (AL, VH and 
AH, VL). All six observers showed consistent and 
robust violations in both the gap and overlap conditions; 
of the 96 possible, there were 89 violations. We conclude 
that the results provide evidence for neural summation 
between auditory and visual afferent activities within 
the human oculomotor system. Further, this conclusion 
extends to saccades generated in the gap condition. 
We interpret these violations of race inequality as 
a behavioral manifestation of the electrophysiological 
evidence of bimodal convergence within the saccadic 
control system (e.g., Jay and Sparks 1987, 1990; 
Meredith and Stein 1983; Peck 1987; Stein and Meredith 
1990). 

3. 4 Latency distributions in the gap and overlap conditions 

A number of previous investigations have observed 
that the distribution of saccade latencies obtained in 
paradigms similar to the present one tend to reveal more 
than one mode. Fischer and colleagues (e.g., Fischer and 
Boch 1983) regard the presence of an early mode occur- 
ring around 100 ms as the defining feature of express 
saccades. Previous work in our laboratory failed to pro- 
duce reliable evidence of bimodal latency distributions 
(e.g., Fendrich et al. 1991; Reuter-Lorenz et al. 1991), 
although isolated cases were observed. The issue of bi- 
modality in these distributions has thus become a point 
of some controversy (e.g., Wenban-Smith and Findlay 
1991; Fischer and Weber 1993; Kingstone and Klein 
1993a, b; Reuter-Lorenz and Hughes 1993). 

We examined each of the 192 latency distributions 
produced in this data set (16 stimulus conditions x 6 ob- 
servers x2  fixation conditions). Twenty-three percent 
(44/192) clearly had multiple modes. Many others did not 
have clearly defined modes but could still have come from 
a mixture of two distributions. For example, in the normal 
distribution case with equal mixing weights, the mixture 
distribution will not exhibit multiple modes unless the 
following criteria are met (Titterington et al. 1985, p. 48): 

IE(t',l) -- E(v2)I/SD > 2 (7) 

Examples are illustrated in Fig. 5. They were selected to 
include some of the clearest examples of multiple modes 



as well as one clear example of a single mode. They also 
represent a variety of experimental conditions. Most of 
the clear cases of unimodal distributions came from the 
gap condition (32/44, 73%). All six subjects produced at 
least one bimodal latency distribution, although 70% 
(31/44) of the total came from two observers (GW and 
JZ). Thus, we think the status of multimodal latency 
distributions as a defining characteristic of express sac- 
cades remains problematic. However, it also seems clear 
that SRT distributions can represent mixture distribu- 
tions. The similarities between these SRT distributions 
and those reported by Fischer and colleagues seem quite 
compelling, and we interpret them as replications of their 
earlier work (e.g., Boch and Fischer 1983; Fischer and 
Boch 1983; Fischer and Weber 1993). We regard the 
occurrence of bimodal latency distributions as a prob- 
abilistic aspect of performance in these tasks and incor- 
porate this probabilistic feature into the model presented 
in Sect. 5. 

4 Discussion 

These results provide robust evidence for neural summa- 
tion between auditory and visual inputs within the hu- 
man oculomotor pathways. Given the importance of the 
superior colliculus (SC) in generating saccades, the 
convergence of visual and auditory inputs within the SC 
(e.g., Jay and Sparks 1987, 1990; Peck 1987; Stein and 
Meredith 1990) provides a likely substrate for the bi- 
modal summation effects observed here. 

Additivity between the fixation offsets and sensory 
factors (Reuter-Lorenz et al. 1991; Kingstone and Klein 
1993b; present results) suggests that a separable stage, 
arranged in series with this sensory stage, is responsible 
for express saccades (Fig. 3). Evidence that the gap effect 
is particularly robust for saccades (Iwasaki 1990; 
Reuter-Lorenz et al. 1991, 1995) is consistent with the 
suggestion that the gap effect is more closely associated 
with generating saccades than with the afferent proccess- 
ing of the target per se. We therefore refer to the facili- 
tatory effects of fixation point offsets as 'fixation release'. 
It is noteworthy that the threshold current needed to 
elicit saccadic eye movements by electrical microstimula- 
tion is reduced if the fixation point is removed prior to 
the delivery of the stimulation (Goldberg et al. 1986), 
a finding we view as being compatible with the idea of 
fixation release. The observations of Goldberg et al. 
(1986) may also relate to an increased incidence of false 
alarms observed in the gap condition. 

The serial stage hypothesis is consistent with the 
pattern of activity displayed by collicular neurons in gap 
and overlap conditions. In a study of sensory-motor 
burst cells in the primate SC, Rohrer and Sparks (1986) 
report that neither the magnitude of the sensory dis- 
charge nor that of the presaccadic discharge is altered by 
express saccades. It is a reduction in the temporal inter- 
val between these discharges that accounts for the facili- 
tation of SRTs in the gap paradigm. We interpret this 
important finding as support for the idea that fixation 
release (and the occurrence of express saccades) may be 
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viewed in terms of a facilitated transition from sensory 
processing to motor commands within the oculomotor 
system. 

5 A parallel-serial model of bimodal summation and 
express saccades 

Analysis of SRTs by factorial methods leads to the fol- 
lowing conclusions concerning the functional architec- 
ture of the human oculomotor system: (1) auditory and 
visual inputs are conveyed over parallel pathways and 
summed within the saccadic control system, and (2) the 
mechanism(s) responsible for express saccades is (are) 
arranged in series with those responsible for this audi- 
tory-visual integration. These points, in addition to the 
evidence that the distributions of saccade latencies ob- 
tained using this paradigm can produce multiple modes 
in the SRT histograms, are the major empirical con- 
clusions of the present work. 

We now develop a model of this processing architec- 
ture. The model shares certain similarities with previous 
models of express saccades (e.g., Reulen 1984 a, b; Fischer 
and Rogal 1986 a, b; Fischer 1987) and in some ways may 
be viewed as an elaboration of them. Perhaps the most 
notable similarity is that each of these models assumes 
serially organized processing stages. An important im- 
plication of the present model is a prediction (developed 
below) that the joint effects of signal strength and fixation 
relese should actually vary with gap duration. 

5.1 Description of the model 

We begin with the simple two-stage model illustrated in 
Fig. 3. The serially organized stages lead to the assertion 
that the saccadic RT in a given experimental condition is 
the sum of a sensory processing time, a pre-motor pro- 
cessing time, and a motor execution time. Thus, the mean 
RT in the gap condition is given by 

RTsc.),~ = Tsr + TFtD ) + TM. (8) 

Similarly, the mean RT in the overlap condition is 

RTs(.),o = Ts(.) + TF(E) -~- TM" (9) 

The subscript S(.) represents the factor specifying the 
saccade target (either auditory, visual, or bimodal), and 
the dot within the parentheses represents a particular, 
but unspecified, intensity level. The additional subscript 
(G or O) indicates that the mean comes from either the 
gap (G) or overlap (O) trials. Ts is a random variable 
representing the time course of sensory processing. Ts is 
the expected value of Ts, is inversely related to stimulus 
intensity (e.g., Teichner and Krebs 1972), and is also 
reduced by bimodal stimulation (e.g., Meredith and Stein 
1983). Given the results of Hughes et al. (1994) and the 
present results, we represent the convergence between the 
visual and auditory channels with a summation operator 
(S). 

TM represents the motor time. Following Fischer and 
Rogal (1986 a, b), we estimate the duration of this stage 
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from the latency of saccades elicited by electrical stimula- 
tion of the SC (Robinson 1972) and the lead time of 
presaccadic burst neurons (e.g., Wurtz and Albano 1980). 
By these criteria, the mean of TM (Tu) is approximately 
30 ms. We assume that the duration of Tu is independent 
of both the sensory time (Ts(.)) and the premotor  time 
(TF). Support  for this assumption comes from the work 
of Rohrer and Sparks (1986). 

The premotor  stage has two states, which are termed 
states of engaged fixation and disengaged fixation.a The 
model assumes that the duration of the pre-motor  stage 
is shorter in the disengged state (F(D)) than in the en- 
gaged state (F(E)), and that extinguishing the fixation 
point produces the disengaged state. Define the average 
time course of the disengaged state to be Tv~o), and the 
average time course of the engaged state to be q'F~E). 

Since Tv(i)) < Tv(E), RTG < RTo. Thus, according to the 
model, RT's  in the gap condition are reduced because 
removal of the fixation point produces a state of disen- 
gaged fixation, which reduces the average duration of the 
premotor  stage from Tv(E) to TF(D). Given evidence that 
fixation offsets selectively influence a postsensory stage 
(Reuter-Lorenz et al. 1991; Rohrer and Sparks 198_6; 
present results), the serial organization of Ts and Tr  
produces additivity between target parameters (intensity, 
bimodal summation) and fixation offsets, as is required 
by the results. 

According to the model, express saccades are sac- 
cades generated in the disengaged state. It is not possible 
to assign an arbitrary latency to them because the latency 
of a saccade also depends on the sensory time Ts, which 
is independent of the fixational state. 

5.2 Demonstration of the model's behavior 

5.2.1 Effects of base time on the magnitude of observed 
violations of race inequality. This model makes some 
additional predictions that can be evaluated against the 
results. For example, the inference that visual and audi- 
tory afferent activities are summed within the ocu- 
lomotor  system is based on the overall latency of the 
saccades. Of  course, it is not possible to directly measure 
the 'detection time' of a stimulus, and RT experiments 
can only measure the total time elapsed between a stimu- 
lus input and motor  output. Stages that follow sensory 
processing can contaminate analyses of Ts. We refer to 
the duration of all processing stages that follow sensory 
t2rocessing as the 'base time' (e.g., Tv(o)+ TM, or 
TV(E) + TM). As the base time increases, the magnitude 

i Fischer and colleagues have suggested that the reduction of saccade 
latencies in the gap paradigm is mediated by a state of disengaged 
attention rather disengaged fixation. These two concepts may have 
features in common, but may also be very different in connotation. We 
regard the role of attentive mechanisms as far from being established, 
and so prefer the more neutral term "disengaged fixation". It is impor- 
tant to note however, that the essential feature of the current model, and 
that suggested by Fischer and Boch (1983), is that the gap effect is 
mediated by shortening the duration of a processing stage that is 
arranged in series with both sensory processes and motor execution. 

of race inequality violations will be reduced (see 
Appendix 2). 

Since the model assumes that the longer RTs in the 
overlap condition result from the slower time course of 
premotor  processing in the state of engaged fixation, we 
are in essence assuming a longer base time in the overlap 
condition relative to the gap condition. This implies that 
the violations should be smaller in the overlap condition. 
The data are inconsistent with this prediction (Fig. 4). 

The model in Fig. 3 will not produce bimodal latency 
distributions unless we assume that the engaged and 
disengaged states are probabilistically controlled by fix- 
ation point offsets. We feel that the present results, in 
conjunction with the earlier findings of Fischer and col- 
leagues (e.g., Fischer and Boch 1983; Fischer and Weber 
1993), compel us to adopt the view that models of the 
saccadic control system should be able to account for 
observations of bimodal latency distributions. A model 
proposed by Fischer and Rogal (1986 a, b) was specifi- 
cally designed to produce multiple modes in SRT distri- 
butions using (implied) probabilistic control processes. 
The basic components of the Fischer-Rogal model are (1) 
Z~: an afferent processing stage, (2) IF: a process which is 
responsible for releasing the eyes from current attentive 
fixation before the next saccade occurs, (3) ID: a decision 
process, (4) C: a computation process, and (5) IE: the 
efferent processing stage. The Fischer-Rogal model is 
also a serial process model. Thus, SRTs in the gap condi- 
tion can be expressed as follows: 

Express: SRT -- ,~ + 117 + IE (8) 

and 

Regular: SRT = A + ID + II? + IE (9) 

For the overlap condition, the SRT is given by: 

Express: SRT = Z~ + (I; + IE (8) 

and 

Regular: SRT = Z~ + IF + ID + (U + IE (10) 

Since there are two states of both the gap and overlap 
conditions, the predicted histograms can reveal at least 
two modes. The mixture probabilities for the two states 
were left unspecified in the description of Fischer and 
Rogal (1986a, b), however. These mixture probabilities 
must be specified in order to generate actual predictions. 
Let P~cx be the probability that the observer is in the 
express (disengaged) state in the gap condition, P~reg be 
the probability that the observer is in the regular (en- 
gaged) state in the gap condition. The corresponding 
probabilities in the overlap condition are poex and POreg. 
If PGex = POex and PGreg - - - -  POreg, then the Fischer-Rogal 
model is able to predict additivity between sensory fac- 
tors and the gap effect. Notice however that, as with the 
present model, the Fischer-Rogal model assumes that the 
base time is longer in the overlap than in the gap condi- 
tion. Thus, it also incorrectly predicts that the magnitude 
of the race inequality violations is greater in the gap than 
the overlap conditions. In addition, notice that, given the 



probabilities needed to produce additivity between 
sensory factors and fixation release, the Fischer and 
Rogal (1986) model predicts an equal frequency of 
'express saccades' in the gap and overlap conditions. 
That is, if PGex = POex and PGreg = POreg, the only differ- 
ence between SRT distributions from gap and overlap 
trials is the addition of the 'IF' stage. However, fixation 
point offsets are thought to increase the incidence of 
express saccades. 

It is therefore necessary to modify this general class of 
serial stage model to account for (1) mixture distributions 
and (2) the proper ordering of race inequality violations 
in the gap and overlap conditions. 

5.2.2 Producing bimodal latency distributions: probabilis- 
tic mixtures of  the engaged and the disengaged states. 
Mixture distributions suggest that the states of engaged 
and disengaged fixation are generated probabilistically in 
both the gap and overlap trials. Thus, we wish to create 
a model in which the probability of being in the engaged 
state during overlap trials is not necessarily 1.0 (although 
it can be, and if the latency distributions are truly unim- 
odal, then it must be). We define the probability of being 
in the engaged state, given a low target intensity (S(1)) on 
an overlap trial (O) as P(EIS(1)&O). The probability of 
being in the disengaged state on overlap trials is thus 
P(DIS(1)&O) = 1 - P(EIS(1)&O). Similarly, we define 
the probability of being in the engaged state, given a low 
target intensity (S(1)) on a gap trial (G) as P(EI S(1)&G), 
and the probability of being in the disengaged state is 
therefore P(DIS(1)&G)= 1 -P (EIS(1)&G) .  The mean 
RT for a given fixation condition is then the sum of the 
average time course of each component process, and the 
average time course of the premotor process is given by 
the sum of the engaged and the disengaged states, 
weighted by the appropriate probabilities. 

Juttner and Wolf (1994) have taken a similar ap- 
proach in a model designed to account for the sequential 
effects of catch trials on express saccades. Their model 
uses a Markov chain to determine the transition prob- 
abilities between the engaged and disengaged states, 
which they term the E state (express saccade preparation 
state) and the R state (regular saccade preparation state). 
Although Juttner and Wolf found that the conditions of 
the present experiment did not produce robust sequential 
effects, similar Markov processes could readily be incorp- 
orated into the present model if needed. 

5.2.3 Producing the correct ordering of  race inequality 
violations." decomposition of  the premotor time into a ran- 
dom and a deterministic component. The model must also 
be modified to account for the finding that the magnitude 
of race inequality violations is greater in the overlap than 
in the gap condition. Referring back to (6), let us denote 
this ordering as lRlI(t[O) - 1RlI(tlG) > 0, where lRlI(t[O) 
is the magnitude of the race inequality violation at time 
t in the overlap condition, and IRII(tIG) is the corres- 
ponding quantity in the gap condition. As indicated in 
Appendix 2, if lengthening of the saccadic latencies 
in the overlap condition is attributed to an increase 
in the premotor component of the base time, and the 
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base time is a random variable, then the expected 
result is lRlI (tl O) - IRII (t] G) < 0. In contrast, if the dura- 
tion of the premotor stage is deterministic, then 
IRII( t IO)-  IRII(tlG)= 0, even if the delays associated 
with the engaged state are longer than those of the 
disengaged state. 

However, if the premotor processing time is a mixed 
variable with a deterministic as well as a random com- 
ponent, then the overall duration of the engaged state can 
be longer than the disengaged state, and the condition 
that IRlI(tIO) - IRII(tIG) > 0 can still be met. This con- 
dition requires (1) a longer deterministic component in 
the engaged than the disengaged state, (2) the CDF of the 
random component to be greater in the gap than the 
overlap condition for all times t, and (3) ordering the sum 
of the two components so that the CDF of the disen- 
gaged state is larger (i.e., faster processing time) than the 
CDF for the engaged state. 

The idea that there is both a random and a determin- 
istic component for fixation durations was proposed by 
Harris et al. (1988), who showed that a delayed exponen- 
tial distribution fits the distribution of fixation durations 
obtained from both children and adults. The delay can be 
considered as a deterministic dead time, which is added 
to a random delay that is exponentially distributed. Har- 
ris et al. (1988) observed that the fixation durations of 
children were shorter than those of adults and that, at the 
minimum, fixation durations were similar to express sac- 
cade latencies. Since the processes that occur during 
fixation must surely include those associated with the 
generation of the next saccade, we regard the current 
suggestion that saccadic premotor processing includes 
a deterministic and a random component as similar to 
the formulation of Harris et al. (1988). 

We assign the following premotor time variables to 
the above defined states, E and D: 

Case (1) in the E state, the premotor time is selected to be 
TEl + TE2, where TEl is a deterministic dead time and 
TE2 is a random variable. 

Case (2) in the D state, the premotor time is selected to be 
Tm + To2, where To1 is a deterministic dead time and 
TD2 is a random variable. 

We define q'F(E) = TEl + TE2 and TF(D) = TD1 + "FD2, 
and require that TF~E) > TF(D). 

As before, the mean reaction times for the various 
conditions are the sum of the sensory time, the motor 
time, and a mixture of the average time course of 
premotor processing in the engaged and the disengaged 
states. Thus, mean RTs for the overlap condition and the 
gap condition for low-intensity targets are written as 

RTs(1),o = Ts(1)-+- P(EIS(1)&O)x TFtE) 

+ P(DIS(1)&O) XTFID) + TM 

- -  m 

= Tsll) + P(EIS(1)&O) x (TEl + TE2) 

+ P(DIS(1)&O) • (Tin + TD2) + TM (11) 
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and 
- -  m 

RTs(u,~ = Tsll) + P(EIS(1)&G)x Tv(E) 

+ P(DIS(1)&G)x  TV(D) + TM 

= Tsm + P(EIS(1)&G)•  (TEl + TE2) 

+ P(DIS(1)&G) • (Tin + TDZ) + TM 

The corresponding means for the high-intensity 
are 

(12) 

targets 

RTs(hl,O = Ts(h) + P(EIS(h)&O)x TF(E) 

+ P(DIS(h)&O) X T F ( D )  -i t- T M 

= TS{h) + P(EIS(h)&O) x (TE~ + TEz) 

+ P(DIS(h)&O) • (Tin + To2) + TM 

and 

(13) 

RTs(h),G = Ts(h) + P(EIS(h)&G) x TF(EI 

+ P(DIS(h)&G) x Trio) + TM 

= TSlhl + P(EJS(h)&G) x(TE1 + TE2) 

+ P(DIS(h)&G) x (TD1 + TO2) + TM (14) 

If we assume that P(DIS( . )&G) > P(DI S(.)&O), then we 

have RTs(.).o > RTsI.I.~. That  is, if the probability of 
being in the disengaged state is greater in the gap than in 
the overlap condition, then the mean RT in the gap 
condition will be less than in the overlap condition. 

In order to reconcile the observation that 
I R I I ( t I O ) -  lRlI ( t lO)> 0 with the assumption that the 
premotor  component  of the base time is longer in the 
overlap than in the gap condition, we decompose the 
total premotor  time into a deterministic and a random 
component.  To predict I R l I ( t l O ) - I R l I ( t l G ) > 0 ,  we 
need a cumulative distribution ordering of the random 
times, TE2 and To2, that is FE2(t) > Fo2(t). However, this 
alone will predict an opposite effect on the gap condition: 
the speed of processing becomes slower in the gap condi- 
tion. If we assume FE2(t) > FDz(t), but with the deter- 
ministic delays, FE2(t--TEl ) <FD2(t--TD1), we can 
predict the proper ordering of both the magnitudes of 
race inequality violations and the average latencies of 
saccades in the gap and overlap conditions. That  is to 
say, the mean of the random component  of the premotor  
time is larger in the gap trials, but the deterministic 
component  in the overlap trials is sufficiently long such 
that the total duration of premotor  processing is longer 
in the overlap trials. Such a situation might arise, for 
example, if premotor  processes in the engaged state in- 
volve a number of long-length pathways (producing 
a long deterministic delay) whereas processing in the 
disengaged state involves multisynaptic local circuit 
pathways (producing shorter deterministic delays, but 
a larger variable component). 

5.2.4 A numerical implementation of  the model's behavior. 
We now describe a numerical implementation which 
shows that the model (1) generates multimodal latency 
distributions, (2) implements neural summation between 
visual and auditory afferents and correctly captures the 
magnitude of the race inequality violations in the gap 
and overlap conditions, and (3) produces additivity be- 
tween fixation release and visual target intensity (mean 
contrast = 0). For the purposes of simplicity and clarity, 
the motor  time is left out of the simulation (so long as 
TM is not influenced by the duration of the remaining 

component  processes, TM makes no contribution to the 
pattern of results). The implementation of the model is as 
follows: 

For the gap condition, 

RTsI.),G = Tsl.) + q l ( T m  + TD2) + q2(TE1 + TE2), 

w h e r e q l + q 2 = l  (15) 

For the overlap condition, 

RTsl.),o = Ts~.) + p l ( T m  + To2) + p2(TEI + TE2), 

w h e r e p l + p 2 = l  (16) 

Thus, two basis components are mixed probabilistically 
in both the gap condition and the overlap condition. We 
use the two-stage Erlang 2 distribution to model the sens- 
ory time (Ts~.)) and the exponential distribution to model 
the various TDZ and T E 2  distributions. The deterministic 
delays are Tm and TEl. 

The simulation was performed using Mathematica, 
and some results are illustrated in Figs. 6 and 7. The 
model produces bimodal latency distributions in any 
desired mixture (examples in Fig. 6) and fulfills the re- 
quirement that IRlI(tlO) - IRII(tlG) > 0 (Fig. 7). 

5.2.5 Implementing probabilistic selection between states 
of  engaged and disengaged fixation. It is useful to con- 
sider potential mechanism(s) that would generate mix- 
tures between the engaged and disengaged fixation states. 

2 Survivor function of the two-stage Erlang distribution is written 

Fro(t) = L ((2A + 2v)t)kexp[ _ (2A + 2v)t], 
k-o k! 

where ZA is the rate of the auditory channels-activity and Zv is the rate 
of the visual channels' activity. The activity level of both auditory and 
visual channels are modeled by a Poisson process. Since the sensory 
processing time is summed with an exponential premotor time and 
a deterministic delay ~, we have a convolution of the two-stage Erlang 
density function with the exponential density function. The exponential 
density function is written as 

J)-,,,,(t) - ~exp[ -- ~(t -- r)] 
The survivor function of the convolution of these two density functions 
is written as 

Fr~+r~(t)=2_ ~ ( -a~ Z ~ exp(-c~[t-r ] )  

(2 ~ + 1 + It - r])exp(- ).[t - r])~ 
) 

where 2 = 2A + 2v 
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Fig. 6. Simulated latency distributions using the model described in 
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parameters and are therefore arbitrary and easily modified 
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Fig. 7. Simulations of neural summation and resulting magnitudes of 
race model inequality [IRX(t)] using the model described in the text 

One possible implementation runs as follows. During 
active fixation, we suppose that fixation-disengagement 
neurons discharge at a relatively low frequency. Upon 
removal of the fixation point, there is a transient increase 
in this rate of discharge (the sign of these changes are 
arbitrary). We assume that this fixation-related activity 
acts as the input to a neural system that operates like 
a set-reset flip-flop (Fig. 8). If afferent activity associated 
with the presentation of the saccade target serves as the 
clock pulse, then the output is high only when pulses 
from the fixation signal and the sensory signal are coinci- 
dent. In this way, the flip-flop's output is determined by 
the frequency (or perhaps the duty cycle) of the fixation 
signal activity. The engaged and disengaged states are 
determined by the flip-flop (high output produces disen- 
gaged fixation, low output produces engaged fixation). 
Thus, the probability that the system is in the disengaged 
state (i.e., proportion of time occupied by the black rec- 
tangles in Fig. 8) is determined by the frequency of pulses 
occurring on the fixation release signal. 
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Fig. 8. Hypothetical system for implementing probabilistic switching 
between the states of engaged and disengaged fixation 

For convenience, we define the D state as a transient 
increase in the probability of being in the disengaged 
state following the offset of the fixation point. The E state 
refers to periods of time in which the probability of being 
in the engaged state is high (Fig. 8). 

Another way to implement probability mixtures is to 
utilize interactive renewal models (e.g., Bishop et al. 1964; 
Ten Hoopen and Reuver 1965; Coleman and Gastwirth 
1969; Pool and Lee 1975) that were constructed to ex- 
plain multimodal distributions of interspike intervals in 
lateral geniculate neurons. These models assume dy- 
namic interactions between an excitatory process and an 
inhibitory process. In the current context, the excitatory 
process (initiated by fixation point offsets) could lead to 
the disengaged state, while the inhibitory process (active 
fixation) maintains premotor processes in the engaged 
state. Excitatory events are accumulated over time, and 
a response (fixation disengagement) occurs if the accumu- 
lated number of excitatory events exceeds a threshold 
value. However, an inhibitory event resets the accumula- 
tor (engaged fixation). In addition, there is a delay follow- 
ing the arrival of an inhibitory event. The delay could be 
deterministic or stochastic. 

This interactive renewal model can be viewed as 
a specific elaboration of the mixture model described 
above. That is, the interactive renewal process is able to 
specify the actual proportions of each state underlying 
the mixture distributions by way of a race between the 
excitatory and inhibitory processes. If these are Poisson 
processes with the rates 2E and 2~, respectively, the prob- 
ability that the accumulated excitatory process exceeds 

the threshold 0 without being reset is / ( 2E \ f - -  . Let us 
\2E + 21/ 

call this event a 'success'. The average interval between 
0 

'successes' is 7-. Given appropriate parameter values, the 
AE 

interval between 'successes' can produce modes in 
a latency distribution. Therefore, the model can make 
numerical and in some cases analytical formulations that 
in future work may contribute to more detailed models of 
latency distributions. 
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Fig. 9. Magnitude of facilitation in the gap paradigm as a function of 
gap duration [adapted from Saslow (1967) and lwasaki (1990)] 

5.2.6 Temporal dynamics oJifixation release. The gap ef- 
fect first develops and then diminishes over time (Saslow 
1967; Fischer and Ramsperger 1984; Mayfrank et al. 
1986; Iwasaki 1990; see Fig. 9). Consideration of the 
relative latency of target detection and fixation release 
can account for the growth of gap facilitation. Both 
fixation offsets and peripheral targets are presumably 
processed in parallel, so we assume these processes race 
one another at very short gap durations. If the target is 
detected before the arrival of the fixation release signal, 
then the system has a high probability of being in the 
engaged state. If, however, the fixation release signal 
arrives at the premotor stage before the afferent signal 
that initiates the saccade, then the likelihood that the 
saccade occurs in the disengaged state is increased. 

We assume the decreases in facilitation at long gap 
durations result from purely endogenous processes as 
they presumably depend solely upon the passage of time. 
In the present context, one might assume that the ocu- 
lomotor system can only remain in the D state for a lim- 
ited period of time. We might suppose that the discharge 
frequency of the fixation signal begins to wane as the gap 
duration increasingly exceeds the optimal interval (tran- 
sient response). This would serve to increase the prob- 
ability that the system is in the engaged state at the 
moment when the target is detected. Thus, the probabil- 
ity of being in the disengaged state is low for very short 
gap durations (system still in the E state), increases until 
the optimal duration is reached (system switches to the 
D state), and then decreases again because of the limited 
duration for the D state. 

Figure 10 illustrates these concepts. We define ~1 as 
the latency of the onset of the D state relative to the offset 
of the fixation point. We define 272 as the duration of the 
D state. Thus, upon extinguishing the fixation point, the 
system remains in the E state for rl ms, then switches to 
the D state for 272 ms. r,  + 272 ms following the offset of 
the fixation point, the system settles back into the E state. 
Selection between the E and D states is determined by the 
temporal order between the sensory time (Ts) and the 
timing of fixation release (zl). If the target's detection 
time is greater than 271, but less than 271 + rz, then the 
system is in the D state. In the D state, the probability of 
disengaged fixation is PD, and the probability of being in 
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Fig. 10. Illustration of predicted relationship between the relative tim- 
ing of target detection densities and the onset of the state of disengaged 
fixation for different gap durations. Panels at right show qualitative 
predictions of the mean contrasts from a factorial experiment 

a state of engaged fixation is PE = 1 -  PD- Similarly, 
when the system is in the E state, the probability of 
disengaged fixation is qD, and the probability that fix- 
ation is in the engaged state is qD = 1 -- qz- If the target is 
detected before rl (as is likely when the gap duration is 
brief) or after 271 + % (likely if the gap duration is long), 
then the system is in the E state. We assume that qE > PE, 
and that TV(E)> TV(DI, SO that the relative timing of 
fixation release and target detection are important deter- 
minants of the average RT. In the overlap condition, the 
system is in the E state. 

5.3 The mean contrast Jor the model 

The mean contrast for the gap-by-sensory interaction 
involves two levels of target intensity (the sensory factor), 
and two levels of the fixation factor (gap versus overlap). 
The expression for the mean RT for the low-intensity 
signals in the overlap condition can be written as follows: 

RTs(~),o = Ys{~) + P(EIS(1)&O) x (TE~ + TE2) 

+ P(DIS(1)&O) x (Tin + TD2) + TM (17) 

Similarly, the mean RT for low-intensity signals in the 
gap condition is: 

RTs(1),c = Ts(1) + P(EIS(1)&G)x (TEl + TE2) 

+ P(DIS(1)&G) x (To1 +TD2) +TM (18) 



The corresponding means for high intensity signals are 
written as: 

RTs(h),O = Ts(h) + P(EIS(h)&O) x (TEl + TE2) 

+ P(DIS(h)&O) x (TDa +TD2)+TM (19) 

and: 

RTs(h),O = Ts(h) + P(EI S(h)&G) x (TEl + TE2) 

+ P(DIS(h)&a) x (7'ol + TD2) + TM (20) 

The gap-by-sensory interaction mean contrast is ex- 
pressed as follows: 

AZ, FRTs.F = RTs(i),o - RTso).o -- RTs(h).O + RTs(h),G, 
which by substitution yields 

= P(EIS(1)&O)x(TE~ + TE2) 

+ P(DIS(1)&O) x(Tm + TD2) 

-- P(E]S(1)&G) x (TH + T~2) 

- P(DIS(1)&G) x(Tm + Tt,2) 

- P(EIS(h)&O) x (TE~ + TE2) 

-- P(D]S(h)&O) x (7"ol + TD2) 

+ P(E]S(h)&G) x(TEa + TE2) 

+ P(DIS(h)&G) x (TDa + TD2) (21) 

The mean contrast is 0 if P(E] S(1)&O) = P(E]S(h)&O), 
P(DIS(1)&O) = P(D[S(h)&O), P(D[S(1)&G) = 
P(D]S(h)&G), and P(EIS(1)&G)= P(E]S(h)&G). Note 
that additivity indicates that the probabilities associated 
with the engaged and disengaged states are conditional 
on the fixation condition, but not on target intensity. 
Note also that P(DIS(.)&G) can be 1.0 and additivity 
still be obtained. Thus, the model can account for either 
unimodal or bimodal SRT distributions by an appropri- 
ate selection of the probabilities associated with the en- 
gaged and disengaged states. 

5.4 Temporal dynamics lead to predictions 
of  superadditivity and subadditivity 

Although the effects of visual target intensity were addi- 
tive with the gap effect, the auditory intensity x fixation 
condition produced a small but statistically significant 
superadditive interaction. Additive results will only be 
obtained in the present model if the density function for 
target detection times (f0 falls entirely within the period 
in which the system is in the D state, which was defined 
above as a temporal interval extending from zl to rx + "c2 
following the offset of the fixation point (see Fig. 10). If 
a portion of the density function representing the laten- 
cies for target detection falls outside of this interval, 
then additivity is no longer predicted, since the condition 
that P(D[S(1)&G) = P(DIS(h)&G) and P(EIS(1)&G) = 
P(E]S(h)&G) no longer holds. 
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Figure 10 illustrates several possible variations in 
the relative timing between the completion times for 
sensory processing (fs) and the time-course of the 
D state. If the gap duration is brief, the early portion of 
the high-intensity density function precedes the onset of 
the D state. This creates a superadditive interaction 
(Fig. 10, 2nd row). In contrast, if the gap duration is 
long, target detection times are delayed relative to the 
timing of the D state. In this case, it is the weak signals 
that are less likely to be detected in the D state, and 
subadditive interactions are expected (Fig. 10, 4th 
row). Thus, the model suggests that, besides additivity 
of the mean contrast, both superadditive and subaddi- 
tive interactions are possible: it depends upon the 
relationship between the latency distribution of the 
D state, the latency distribution for detection of the 
target, and the interval between the offset of the fixation 
point and the onset of the target. We note here that 
while statistically significant, the actual magnitude of 
the observed interaction between auditory intensity and 
fixation release is quite modest, which in this context 
may be taken to indicate that most of the density func- 
tion for the auditory detection times does fall within the 
D state. 

We are left with the interesting conclusion that, while 
the present results provide strong evidence of additivity 
(and thus seriality) between sensory processing and fix- 
ation release, the model predicts interactions when the 
gap duration varies. The predicted pattern moves from 
'degeneraive' cases of additivity (with gap durations that 
are completely ineffective), through superadditivity 
(when the parallel processes associated with target detec- 
tion and those associated with initiating fixation release 
'race' one another), to additivity (at the optimal gap 
duration), followed at longer gap durations by sub- 
additivity (as a greater proportion of low-intensity tar- 
gets are detected after the system switches back to the 
E state). Finally, at very long (ineffective) gap durations, 
we once again expect a 'degenerative' case of additivity 
(since at very long gap durations, the system has always 
settled back into the engaged state). This set of predic- 
tions represents a powerful test of the general concepts 
embodied within the present model, and we are currently 
evaluating their accuracy. 

6 Conclusion 

Early sensory pathways are massively parallel networks, 
and the present results indicate how parallel auditory 
and visual afferent channels interact in the saccadic con- 
trol system. This behavioral evidence of auditory-visual 
summation has a clear counterpart in the neurobiology 
of the superior colliculus. 

It is equally clear that serial processing occurs widely 
in central neural systems, and we have shown how factors 
that promote the occurrence of express saccades operate 
at a stage of processing that is organized in series with 
the processes mediating bimodal summation. This con- 
clusion of serial processing also appears to have a neu- 
robiological counterpart. 
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The factorial approach does more than provide 
a strong basis for relating theory and data in human 
performance. It also has the potential to provide concep- 
tual links between human performance and the neural 
control systems that mediate it. 
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function ordering on the random times T~ and T2. The 
survivor function ordering means that F~ ioj(t) > F~l l ( t )  
for T1, and Fz~ol(t) > F2(1)(t) for T2. Intuitively and with 
less rigor, the ordering of survivor functions with respect 
to intensity can be interpreted as higher intensity giving 
rise to a reduction in processing time. 

Appendix 

P r o o f  o f  the superaddit ivi ty  o f  the mean contrast  
j b r  models  o f  para l le l  process ing  in the min imum 
complet ion mode (race models)  

Here we present the derivation of the predicted super- 
additive mean contrast for the minimum completion time 
parallel processing model. We begin by defining X1 and 
X2 as experimental factors influencing the random times 
T1 and T2. The derivation makes no assumptions con- 
cerning the distribution of T1 and T2 and requires only 
that the levels of factors X1 and X2 produce reliable 
ordering with respect to the distribution of T1 and T2. In 
the present case, factors X1 and )(2 represent the signal 
intensities of the visual and auditory targets, so we only 
assume a reliable intensity effect on the latency distribu- 
tions. More formally, we assume that differentiating the 
survivor function of TI with respect to X~ and differenti- 
ating the survivor function of T 2 with respect to X2 yields 
negative values. 

The survivor function simply tells us the proportion 
of trials in which the subject has not responded by time 
t ( t : ( t )  = P ( T  > t)). Since the mean of a positive random 
variable can be calculated by integrating its survivor 
function from 0 to oc, we can express the mean contrast 
in terms of survivor functions as follows: 

RT(0, 0) - RT(0, 1) - RT(1, 0) + RT(1, 1) 

= S F~o,o,(t)  - P~o,l~(t) - P . , o ~ ( t )  + P , , ~ ( t )  dt  
0 

Given the minimum completion time parallel processing 
model, we can write the above survivor functions as 
being composed of two random times T~ and T2. That is, 

for example, we can write F~o,o)(t)= Fl~o)(t)• 
because of the independence assumption in the minimum 
completion time parallel processing model. The symbol 
Fl(o)(t) denotes the survivor function of the random 
variable T1 when the experimental factor X1 is at the 
level 0, and F2~o~(t) represents the survivor function of the 
random variable Tz when the experimental factor X2 is 
at the level 0. Therefore, the above can be expressed as 

= ~ F l ( o ) ( t )  • F 2 ( o ) ( t )  - F l ( o ) ( t )  • F2 (1 ) ( t )  
0 

- -  F l ( 1 ) ( t )  • F 2 ( o ) ( t )  + F l ( 1 ) ( t )  • F 2 ( 1 ) ( t ) d t  

- ~ '  - x - {F,~o~(t) P,.~(t)} {F~o~(t)-P~l~(t)}dt  
o 

The above quantity is greater than zero, that is the 
interaction is superadditive, if we have the survivor 

Appendix 2 

P r o o f  that the magni tude o f  violations o f  the race 
inequali ty are inversely  related to base time 

First, let us define lRlI(tlO) as the magnitude of the 
violation of race inequality in the overlap condition at 
time t, and lRII(tIG) as the magnitude of the violation of 
race inequality in the gap condition at time t. We write 
the race inequality violation as follows: 

lR]l(t) = Fn&v(t ) -- FA(t) -- Fv(t) 

where FAav(t ) is the empirical cumulative distribution 
function (CDF) of the bimodal condition, FA(t) is the 
empirical CDF of the auditory condition, and Fv(t) is the 
empirical CDF of the visual condition. 

Let us define two base time random variables, 
TB1 and TB2, and the corresponding CDFs as Fro(t)  and 
FB2(t). The density functions for the two base time ran- 
dom variables are fm (t) and fB2 (t). Then we can write the 
bias of the race inequality violation given the base time 
random variable TB1 as 

FA~vI~I(t) -- FAim(t) -- FvL~l(t) 

= FT, , , ( t )*fv . , ( t )  -- FT,,(t)*fT.,,(t) -- FTv( t )*fv . , ( t )  

- -  FTA,,(t ) - -  FTA(t ) - -  FT,(t)  

where '* '  denotes the convolution operation. The cumu- 
lative distribution of the convolution of two random 
variables, for example, TAV and Tin, can be represented 
by FxAv(t)*fv, l(t)  or equivalently fTAv(t)* FT,~(t). 

We next write the bias of the race inequality violation 
given a different base time random variable (TB2) as 

FA, .v l~: ( t )  - F A l ~ 2 ( t  ) - Fvl, ,2(t)  

= FT.,,(t)*fT.2(t) -- FTA(t)*fr,2(t)  -- FT~(t)*Jr,,~(t) 

- FTAv(t) -- FwA(t) -- FTv(t) 

Since we wish to compare the size of the violations given 
Tm and TB2, we subtract 

FA~.vl.:(t)-- F ~ l . 2 ( t  ) -  FvL.:(t) from FA~vI,,I(t)-- 
FAI.I(t) -- Fri l l ( t ) ,  which yields 

F A & V I . I ( t )  - -  F A I m ( t )  - -  Fvl . l ( t )  

-- FA&Vl.2(t) + VAl*2(t) + Fvl*2(t) 

= Fr~v(t)* (fT.~(t) -- JT-~(t)) -- FT~(t)*(fT.I  (t) 

-- f r ,~( t ) )  -- Fr , , ( t )* ( fT . , ( t )  -- JW~(t)) 

= JrA,(t)* (FT,,~(t) -- FT,,~(t)) - - f r . , ( t )* (FT, , , ( t )  

-- Fr.~(t))  - - fT~( t )*(Fw. , ( t )  -- Fr.~(t))  

= ( fV~v( t )  - - . f T . ( t )  - -  Jr, (t))* (FT.~ ( t )  - -  FT, ,~( t ) )  



Neural summation between the auditory and visual 
channels implies (FTAv(t)  - -  ETA(t)  - -  F T v ( t ) )  > 0 for some 
t (Townsend and Nozawa, 1994 unpublished data). Since 
( F r A , ( t )  - -  FrA(t) - F r v ( t ) )  > 0, there exists an interval 
(0, t) such that (fr,v(t) - f ro ( t )  - f ry ( t ) )  > 0 is true. 

If we have F r . ~ ( t )  > Ft.2(0 (base time 1 is faster than 
base time 2), then we have a positive value for 
(frA,,(t)--Jv,(t)--fr ,(t))*(Fr. l(t)--Fr.2(t)) .  That is, if 
base time 1 is faster than base time 2, then the difference 
in the magnitude of the race inequality violation is posit- 
ive. This positive difference means that the violations are 
smaller with longer base times. 
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