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Abstract. We investigate authentication codes, using the model described by
Simmons. We review and generalize bounds on the probability that an opponent
can deceive the transmitter/receiver by means of impersonation or substitution.
Also, we give several constructions for authentication codes that meet one or more
of these bounds with equality. These constructions use combinatorial designs, such
as transversal designs, group-divisible designs, and BIBDs (balanced incomplete
block designs).
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1. Introduction

We shall use the model of authentication theory as described by Simmons [4]-[6].
In this model there are three participants: a transmitter, a receiver, and an opponent.
The transmitter wants to communicate some information to the receiver, whereas
the opponent wants to deceive the receiver. The opponent can either impersonate
the receiver, making him accept a fradulent message as authentic, or modify a
message which has been sent by the transmitter.

More formally, we have a set of source states S, a set of messages M, and a set
of encoding rules E. A source state s € S is the information that the transmitter
wishes to communicate to the receiver. The transmitter and receiver will have
secretly chosen an encoding rule e € E beforehand. An encoding rule e will be used
to determine the message e(s) to be sent to communicate any source state s. It is
possible that more than one message can be used to determine a particular source
state (this is called splitting). However, in order for the receiver to be able to uniquely
determine the source state from the message sent, there can be at most one source
state which is encoded by any given message m € M.

We assume that the opponent will play either impersonation or substitution. When
the opponent plays impersonation, he sends a message to the receiver, attempting
to have the receiver accept the message as authentic. When the opponent plays
substitution, he waits until a message m has been sent, and then replaces m with
another message m'’ so that the receiver is misled as to the state of the source.

There will be a probability distribution on the set of source states S. Given the
probability distribution on S, the receiver and transmitter will determine a probabi-
lity distribution on E, called an encoding strategy. If splitting occurs, then they will
also determine a splitting strategy to determine m e M, given s € S, and e € E. The
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transmitter/receiver will choose the encoding and splitting strategies to minimize
the chance that the opponent can deceive them.

This defines two possible games, which we refer to as the impersonation game
and the substitution game. Each game has a value, which is the possibility that the
opponent can deceive the transmitter/receiver, given that they are using the optimal
encoding and spltting strategies. We denote the values of these games by v; (for
impersonation) and vy (for substitution).

Many of these bounds depend on entropies of the various probability distribu-
tions. For a probability distribution on a set X, we define the entropy of X, H(X),
as follows:

H(X) = — Zx p(x)-log p(x).
As well, the conditional entropy H(X|Y) is defined to be
HX|Y) = — ZY ZX p(y)" p(x|y)-log p(x|y).
¥y xe

An authentication code is said to be Cartesian if every message uniquely deter-
mines the source state, independent of the particular encoding rule being used. In
terms of entropy, this is expressed by the equation H(S|M) = 0. Note that in a
Cartesian authentication code, there can be no secrecy.

In this paper we primarily consider authentication systems without splitting. We
use the following notation. Denote the number of source states by k, and let S =
{s;: 1 <i < k}. Denote the number of messages by v, and let M = {m;: 1 < j < v}.
Denote by b the number of encoding rules, and write any encoding rule e € E as
e =(e;: 1 < i< k), where ¢; is the message used to communicate source state s;, for
1 < i < k. Then, the authentication system can be represented by the b x k matrix
A, where row e of A consists of the entries ey, ..., ¢,. Given an encoding rule ¢ e E,
we define M(e) = {e;: 1 < i < k}, where e = (¢;: 1 < i < k). Also, for each encoding
rule e, define f,(m) = s if and only if ¢, = m (if message m does not occur in encoding
rule e, then f,(m) is undefined).

2. Bounds on the Values of the Impersonation and Substitution Games

Several bounds have been proven on the values of the games v, and vg. In this section
we review the known bounds, and prove some new results. We also determine some
necessary conditions for the various bounds to be met with equality.

Theorem 2.1 [5, Theorem 1].  In an authentication system without splitting, v; = k/v.

Proof. Suppose the opponent sends message m. We denote the probability that
the message m is accepted by the receiver by payoff(m). Then we have that
payoff(m) = > pl
{eeE:meM(e)}
It follows that

Y. payoff(m) = k.

meM
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Hence, there must be some m such that payoff(m) > k/v. That is, we have an
impersonation strategy in which the transmitter/receiver can be deceived with
probability at least k/v. a

It is clear from the above proof that v, = k/vif and only if Z{ee E:mem(e) P(€) = kfv
forallme ML

Theorem 2.2 [5, Theorem 0].  In any authentication system, v, > 2HMES)-HE)-HM) _

QHMES)+HS)-HM) 1y an gqythentication system without splitting, HMI|ES) = 0, so
oy > 2HOHO,

An authentication system which satisfies the bound of Theorem 2.2 with equality
is said to be perfect. It is also possible to determine some properties of perfect
authentication codes (see Theorem 1 of [1]). In the case of authentication codes
without splitting, we must have the following:

Lemma 2.3. In a perfect authentication code without splitting, the following proper-
ties hold:

(i) For all messages m, v; = Z{eeE:me M) P(€) = k/v.
(ii) For any message m, p(s) is a constant for all s such that there is an e such that
e, =m,

Let us next turn our attention to bounds on vg. The following bound is for
substitution with secrecy.

Theorem 2.4[ 1, Theorem 3]. g > 2 HEM _ HHM)-HE-HS)+HMES) 1y a4 gythen-
tication system without splitting, HMM|ES) = 0, s0 vg > 2HM-HE-HS)

Brickell has also given the conditions under which equality is attained in Theorem
2.4, We state these conditions in the case of codes without splitting.

Lemma 2.5. If equality is attained in Theorem 2.4 for an authentication code without
splitting, then the following properties are satisfied:

(i) For all e, and for all m such that m € M(e), p(m)-vg = p(e): p(S = f.(m)).
(i1) For any m and m', m # m’ there is at most one e such that m, m’ € M(e).

The first thing we do is give a generalization of this bound, which will include
cases where condition (ii) does not hold. We prove the bound in the case of
authentication systems without splitting; the same bound holds for systems with
splitting.

We require some notation. Given any encoding rule ¢’, and given any m, m’ €
M(e’), define

o(e’, m,m’) = )y . p(e)-p(S = f(m)/(p(e'): p(S = fo(m))).

{eeE:m,m'eM(e
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Then, let § = min{d(e’,m, m’): m,m’ € M(e’), m # m’}. Observe that § > 1, and
6 = 1 if and only if condition (ii) of Lemma 2.5 is satisfied.

Theorem 2.6. In an authentication system without splitting, vg > 6+ 2 HEM) yhere
¢ is defined as above.

Proof. The proof is essentially the same as that of Theorem 3 of [1]. O

Suppose the opponent substitutes message m with message m’ (m # m'). We
denote the probability that the message m’ is then accepted by the receiver by
payoff(m,m’). Then we have that

payoff(m,m’) = ) ple)-p(S = f.(m)) / Y p(e)p(S = flm)

{ecE:m,m" e M(e)} {ecE:me M(e)}

= 2 ple): p(S = f.(m))/p(m).

{e eE:m,m’'e M(e)}

If we define vg(m) = max{payoff(m, m’): m" # m}, then
Ug = Z p(m)- vg(m).
meM

For any m, m’, and ¢’, such that m # m’ and m, m’ € M(e'), observe that we have
vs(m) > payoff(m, m') = &(¢’,m,m’)- p(e’)- p(S = f.(m))/p(m)
> 6-p(e') p(S = f..(m))/p(m)
and, hence,
p(e)p(S = fo(m))/p(m) < vs(m)/d.
Let us calculate H(E|M). By definition we have
H(E|M) = —m;M e:Z,E p(m)- p(elm)-log p(e|m)

=-Y Y. p(e)-p(mle)-log p(e|m)
meM {eeE:me M(e)}

- ) }P(e)'p(S = fe(m))-log(p(e)- p(S = f.(m))/p(m))

meM {eecE:me M(e)

li

> - Y. p(e) p(S = fo(m))-log(vs(m)/S)
meM {eeE:meM(e)}

= — ), log(us(m)/d)- 3 ple) p(S = f(m))
meM {eeE:meM(e)}

= - ZM log(vs(m)/d)- p(m)

> —log< 2 vs(m)'p(m)/5>

i

—log(vg/6).
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Lemma 2.7. In an authentication system without splitting, where vy = 6 2~ HEM)

the following properties must be satisfied:

(i) 6 = d(e, m, m’) for any m, m’, and e such that m # m’ and m, m’ € M(e).
(ii) For any m and e withm € M(e), vg = vg(m) = 6- p(e)- p(S = f.(m))/p(m).

Using this information we can calculate é and vg in the case of equality. We do
this as follows. From the definition of § we have

6= > p(e) p(S = f.(m)/(p(e') p(S = f..(m)))

{eeE:m,m" e M(e)}
for any m, m’ € M(e’). It follows that p(e)- p(S = f.(m)) is a constant (0} for all e
such that m, m’ € M(e). Denote this common value by X. Then, we have
6 X =Amm) X, where A(m,m’) =|{ee E:m, m’' € M(e)}|.
Hence,
0 = Mm,m"),

where m and m’ are any two messages which occur in at least one encoding rule
together.
Now, we calculate vg. Recall that we have the relation

vs = vs(m) = - p(e)- p(S = £.(m))/p(m)

for any m and any e such that m € M(e). Define r,, = |{e € E: m € M(e)}| for any m.
Now, fix any m, and sum this equation over all e such that m € M(e). We have

vs= 3 &-p(e)p(S = f(m))/p(m),
{eeE:me M(e)} {ecE:me M(e)}
rm ° Us = (S
Hence, r,, is a constant for any m. Hence, r,, = r = b~ k/v for all m. Then, vg = J/r.
Summarizing, we have

Theorem 2.8. In an authentication code without splitting, where vg = & 2 HEM)

the following properties are satisfied:
(iy For every message m,r,,=|{ecE:mee}|=r=Db-k/v.
(i) For every pair of messages m and m’, either A(m,m’) = |{e€ E:m,m' e e}| =0
or A, where A is a constant.
(iii) For every m, m’, and e such that m, m’ € e, we have 6(e’, m,m’) = A.
(iv) vg = d/r.

The value of vg proved in (iv) is always a lower bound on vg. We have the following:

Theorem 2.9. In an authentication system without splitting, vg > é/r, where r =
max{r,: me M}.

Proof. Recall that, for any m € M(e'), we have

pm)-vs(m) = - p(e’) p(S = f..(m)).
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1t then follows that
vs= ) p(m)-vs(m)

meM
26" ) (Ifrm) Y ple)p(S=fm)
meM {eeE:msM(e)}
240- ) (/M Y ple)p(S = flm)
meM {ecE:me M{e)}

= (d/r) ZE ple)- EA;( )p(S = f.(m))

= (d/r): ZE ple)
= d/r. O

Now, we prove a variation on the bound of Theorem 2.8. Given any encoding
rule ¢’, and given any m, m’ € M(e’), define

(e, mm') = ) } p(e) p(S = f.(m))/p(e’).

{eeE:m,m’eM(e)

Then, let y = min{y(e’, m, m’): m,m’ € M(e'), m # m'}.

Theorem 2.10. In an authentication system without splitting, vg > y-28M~HE)
where v is defined as above.

Proof. We use the same notation as before. For any m, m’, and e’ such that m # m’
and m, m’ € M(e’), observe that we have

vs(m) = payoff(m, m’) = y(e’, m, m)- p(¢’)/p(m) = y - p(e’)/p(m)
and, hence,
p(e’)/p(m) < vg(m)/y.
Calculating H(E|M), we have
HEM) = - ) 2. P p(S = fo(m)-log(p(e)- p(S = f.(m))/p(m))

meM {eeE:me M(e)}

> - ) Y. P p(S = fkm))-log(vs(m)- p(S = f.(m)/)

meM {ecE:me M(e)}

-2 Y. p(e) p(S = fm)- (log(vs(m)/y) + log(p(S = f.(m))))

meM {esE:meM(e)}

- ZM log(us(m)fy): Y, ple)-p(S = f(m))

{ecE:me M(e)}

- Y ple)-p(S = f.(m))-log(p(S = f.(m)))

- meM {eeE:meM(e)}

= _ ZM log(vs(m)/y)- p(m)

- X p@ X P =f(m) log(p(S = f.(m))

ecE {me M(e)}

—10g< ) vs('")‘P("l)/?) + ZE ple)-HS)

meM

v

—log(vs/y) + H(S).
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Using the entropy identity H(E|M) = H(S) + H(E) — HM) + H(M|E, S) (see
Theorem 2 of [1]), we obtain

log(vs/y) = —H(E|M) + H(S) + HM|E, S) = HM) — H(E) + HM|E, S).
In an authentication system without splitting, HM|E, S) = 0, so we get
log(vs/y) = H(M) — H(E).

Hence, vg > y- 20M-HE) O
We have the following consequences of equality in this bound.

Lemma 2.11.  In an authentication system without splitting, where vg = y- 2HM~H®E)
the following properties are satisfied:

(i) For all ¢’, m, and m’, where m, m’ € M(e’), we have y = y(e', m, m’).
(ii) For any e and any m € M(e), vg = vg(m) = y- p(e)/p(m).

Property (ii) says that given an encoding rule e, p(m) is constant for all messages
m € M(e), and given a message m, then p(e) is constant for all encoding rules e with
m € M(e). Suppose we construct a graph with vertex set E, and join two vertices
e and ¢’ by an edge if and only if there is an m € M(e) » M(¢’). If this graph has
more than one connected component, then the authentication system can be con-
sidered to be the “union” of the authentication codes corresponding to each com-
ponent. We will only consider authentication codes where this graph has one
connected component; such codes will be called connected. Hence, we have the
following.

Theorem 2.12. In a connected authentication system without splitting, where vg =
7+ 2HO-HE) 0 myst have H(M) = log v, H(E) = log b, and v5 = - v/b.

Proof. All encoding rules must have the same probability, so p(e) = 1/b for every
e € E. It then follows that p(m) = 1/v for every m € M. Hence, vg = y.v/b. O

We can now determine some relations between y and probabilities of source
states.

Lemma 2.13. In a connected authentication system without splitting, where vg =
Y s
y- 2HM-HE 1ho following properties are satisfied:

(1) For every e¢’,m, and m’ withm,m' € M(€'), 7 = ) (o cEom,m e (e} P(S = fo(m)).

(2) For every m, Z{eeE:meM(e)} p(S = fe(m)) = b/v

(3) For every m, there are precisely X messages m' with which m occurs in at least
one encoding rule, where X = b-(k — 1)/(v-y).

Proof. By property (i) of Lemma 2.11, for every e’, m, and m’ with m, m’ e M(¢’'),
we must have
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Y= y(el, m, m’)

= ) p(e)- p(S = f,(m))/p(e’)

{ee E:m,m’ € M(e)}

= ) p(S = fo(m)),

{ecE:m,m’' e M(e)}

proving (1). Also, we can calculate

1/v = p(m)
= Y plpS=Lfim)

{eeE:meM(e)}

=(1/p) Y p(S=fm),

{eeE:me M(e)}

so, for every m, we have
p(S = f.(m)) = b/v.
{eeE:msM(e)}

This proves (2).
Finally, pick any m, and let M’ = {m’ € M there exists an e with m, m’ € M(e)}.
Then, we calculate

M|y = p(S = fo(m))
meM’ {ecE:m,m’ e M(e)}
=k-1- p(S = f.(m))
{esE:meM(e)}
=b-(k — ).
The result (3) follows. O

Next, we prove another new bound on the value of the substitution game in an
authentication code without splitting.

Theorem 2.14. In an authentication system without splitting, vg > (k — 1)/(v — 1).

Proof. Suppose the opponent substitutes message m with message m’ (m # m').
We denote the probability that the message m' is then accepted by the receiver by
payoff(m, m’). As before, we have that

payoff(m, m’) = D }P(e)'P(S = fe(m)) / { ) ) p(e)-p(S = f.(m)).

{eeE:m,m’eM(e) eeE:msM(e}

It follows that

Y payoff(m,m’) =k — 1.
m#m

Hence, there must be some m, such that payoff(m, my) > (k — 1)/(v — 1). For every
m, determine such an m,. This defines a substitution strategy in which the trans-
mitter/receiver can be deceived with probability at least (k — 1)/(v — 1). O
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3. Constructions for Authentication Systems

Our interest in this section is in constructing authentication systems which meet

one or more of the bounds of the previous section with equality. We are interested

in the existence of authentication codes with a specified number of source states,

and specified upper bounds on the number of encoding rules, messages, vy, and vg.

Therefore, we define an AC(k, v, b, a, ) to be an authentication code with k source

states, at most v messages, and at most b encoding rules, and where v; < aandvg < B.
Then, we define

&(k, o, B) = min{b: there exists an AC(k, v, b, &, f)}
and
v(k, o, ) = min{v: there exists an AC(k, v, b, a, B)}.

That is, we are attempting to minimize the number of encoding rules (or messages)
required in an authentication code for k source states, with upper bounds « and
on the impersonation and substitution games, respectively.

First, observe that we have an easy lower bound on v(k, 2, p).

Theorem 3.1. v(k, o, f) > max{k/a, 1 + (k — 1)/8}.
Proof. This is an immediate corollary of Theorems 2.1 and 2.14. O
Next, we mention a lower bound on ¢(k, «, §) due to Brickell [1, Theorem 4].
Theorem 3.2. &(k, o, ) = 1/(a" B).
This bound can be strengthened, using the quantity & defined in Section 2.
Theorem 3.3. If an AC(k, v, b, o, B) exists, then b > d/(a" B).

Proof. We have « > p > 20®-EM 554 4> §-27HEM) _ 5. oHM-HE)-HS)
Hence, we have a- f > §-27#® Since H(E) < log b, the result follows. O

In the remainder of this paper we describe constructions for authentication codes,
which will enable us to put upper bounds on ¢ and v. For our first construction we
require the following definition. A transversal design TD(k, A; n)is a triple (X, G, A),
which satisfies the following properties:

(1) X is a set of k- n elements called points.

(2) G is a partition of X into k subsets of n points, called groups.

(3) A is a set of A-n? subsets of X (called blocks) such that a group and a block
contain at most one common point.

(4) Every pair of points from distinct groups occurs in exactly 4 blocks.

We usually denote a TD(k, 1; n) by TD(k, n). It is well known that a TD(k, n) is
equivalent to k — 2 mutually orthogonal Latin squares of order n.
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Theorem 3.4 [1, Theorems 5 and 6]. If there is a transversal design TD(k, n)
then there is a Cartesian authentication system with vg=2"HEM — 1/ 4 =
QHS)-HM) _ (/4 |S| = k, M| = k-n, and |E| = n?, with no splitting. (Hence, if there
exists a TD(k, n), then there is an AC(k, k- n, n2, 1/n, 1/n), and we have e(k, 1/n, 1/n) <
n? and v(k, 1/n, 1/n) < k- n.) Conversely, if there is a Cartesian authentication system
with no splitting withvg = 2 HEM — o o = JHO-HM _ 5 404 |S| = k, thenn = 1/a
is an integer and there exists a transversal design TD(k, n).

We can prove a generalization of this result, using transversal designs with 1 > 1.

Theorem 3.5. If there is a transversal design TD(k, A; n), then there is a Cartesian
authentication system with vg = A-2"HEM — 1/ o — 2HO-HEM _ 1/ (S| =k,
IM| = k-n, and |E| = 1-n? with no splitting. (Hence, if there exists a TD(k, 4; n),
then there exists an authentication code AC(k, k-n, A-n?, 1/n, 1/n), e(k, 1/n, 1/n) <
A-n?, and v(k, 1/n, 1/n) < k-n.) Conversely, if there is a Cartesian authentication
system with no splitting with vg = 8- 2"HEM — oy = 2HO-HM _ 5 gnd |S| =k,
then n = 1/u is an integer and there exists a transversal design TD(k, ; n).

Proof. The proof is essentially the same as the proof of Theorems 5 and 6 of [1].
First, it is not difficult to see that the TD(k, 4; n) gives rise to the desired authentica-
tion code, by associating each group of the transversal design with a particular
source state, and using each encoding rule with probability 1/(4-n?), as in [1]. Let
us prove the converse assertion.

Since we have assumed that we have a Cartesian authentication code, each
message m determines a unique source state s,,. Thus, the probability that message
m is sent is

pM=m)=pS=s, Y  pl

{eeE:meM(e)}

=p(S =s,)" 1 {from Lemma 2.3(i))
=p(S = 5,)

On the other hand, given any m and e with m € M(e), we have, from Lemma 2.7(ii),
that
a = vg = 0d-p(e) p(S = s,)/p(m)
= 0-p(e)/a,
from above. So, p(e) is independent of e, and p(e) = 1/b = a?/$ for every e. Hence,
b = §/a’.
Since the system is Cartesian, and every message occurs in r = b-k/v en-

coding rules (Theorem 2.8(i)), we can partition the message space into k subsets M,
(1 < i < k), each of size v/k. However,

v/k = bjr
= (6/0*)/(5/e) (since r = §/a, by Theorem 2.8(iv))
= 1/o

is an integer, so « = 1/n, where n = v/k. Then, b =6 -n?andr = 5-n.
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Now, using Theorem 2.8(ii) and (iii), it is easy to see that any two messages from
different M;’s occur together in precisely 6 encoding rules (see Theorem 2.6 of [1]).
Hence, we can construct the desired transversal design. O

Suppose our desire is to construct an authentication code AC(k, k-n, b, 1/n, 1/n).
We can construct such a code if a TD(k, 4; n) exists, for b = A-n% (Note that
this satisfies the bound b > 8/(«- f) with equality, where « = f = 1/n and 6 = 4)
Thus, given k and n, we are interested in the smallest A such that a TD(k, 4; n)
exists. First, we observe that there is a simple numerical bound on k in terms of A
and n.

Theorem 3.6 [3]. If a TD(k, A; n) exists, then k < (A-n? — 1)/(n — 1).

Consequently, if we use a TD(k, 4; n), then we have a lower bound on b, namely
b=in*zkn—k+1.

We present an infinite example of transversal designs which meet this bound with
equality.

Theorem 3.7. For all prime powers n > 2, and for any d > 1, there is an AC(k, k- n,
n, 1/n, 1/n), where k = (n® — 1)/(n — 1); hence &((n® — 1)/(n — 1), 1/n, 1/n) < n* and
vW(n?— Din—1), 1/n,1/n) < k-n.

Proof. In [3] Hanani shows that for any prime power n, and for any d > 1, there
exists a TD((n¢ — 1)/(n — 1), n*"2; n). |

Corollary 3.8. For any a > 0, e(k, a, &) is O(k/a?) and v(k, a, o) is O(k/a).

Proof. Letn = 2/, where 2/ > 1/a > 2/, Then n is O(1/x). Now, choose d so that
n®>k(n—1)+1>n*" Since k < (n? — 1)/(n — 1), we have &(k, a, @) < n’. But,
n? < k(n? — n) + n = O(k-n?). Since n is O(1/a), therefore e(k, a, &) is O(k/a?). Also,
k-n is O(k/). 0

As another example of the use of transversal designs with 4 > 1, let us consider
codes with parameters AC(k, v, b, £, ). For k = 4, we cannot construct such a code
from a TD(4, 6), since this TD does not exist (this is the famous 36 officers problem
of Euler, i.e., a (nonexistent) pair of orthogonal Latin squares of order 6). In [1]
Brickell constructs an example of an AC(4, 30, 36, £, 1) with splitting. However,
we can employ a TD(7, 2, 6), which is constructed in [3, p. 49], to obtain an
AC(7,42,72, L, L.

More generally, we have the following class of authentication codes with seven
source states.

Theorem 3.9. Foralln > 2, thereisan AC(7,7-n, 2n2, 1/n, 1/n); hence &(7, 1/n, 1/n) <
2n2.
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Proof. For these n, there is a TD(7, 2; n) (see [3]). O

The authentication codes obtained from Theorem 3.5 are Cartesian. Hence,
the opponent, on seeing a message being sent, knows the source state. Therefore,
no secrecy is possible in such an authentication system. We also want to be able
to construct good authentication codes with secrecy. Ideally, we would like to
have H(S|M) = H(S); i.c., the message gives absolutely no clue as to the state of
the source. If this happens, then we say that the authentication code is perfectly
non-Cartesian.

Our main construction for perfectly non-Cartesian authentication codes uses
group-divisible designs, which are a generalization of transversal designs. A group-
divisible design GD(k, A, n; v) is a triple (X, G, A) which satisfies the following four
properties:

(1) X is a set of v elements called points.

(2) G is a partition of X into v/n subsets of n points, called groups.

(3) A is a set of subsets of X (called blocks), each of size k, such that a group and
a block contain at most one common point.

(4) Every pair of points from distinct groups occurs in exactly 4 blocks.

Note that a TD(k, 4; n) is equivalent to a GD(k, A, n; k-n). Also, a (v, b, r, k, A)-
BIBD (balanced incomplete block design) is equivalent to a GD(k, 4, 1; v).
We have the following construction:

Theorem 3.10. Suppose there exists a GD(k, A; n; v). Then there is a perfectly
non-Cartesian AC(k, v, 4-v-(v — n)/(k — 1), k/v, (k — 1)/{(v — n)).

Proof. Let (X, G, A) be a GD(k, 4, n; v). By simple counting, each point occurs
in r = 4-(v — n)/(k — 1) blocks, and the total number of blocks is 4-v-(v — n)/
(k-(k — 1)). What we do is construct k encoding rules from every block of the
group-divisible design: for each block A = {x, ..., x,} of the group-divisible design,
and for each i, 0 < i < k — 1, we define an encoding rule e(4,i) = (¢;; 1 < j < k),
where €; = X(j+y modutok-

There are b = A-v- (v — n)/(k — 1) encoding rules in the resulting authentication
code. We shall use each encoding rule with probability (k — 1)/(1-v- (v — n)).

Let us first verify that v; = k/v. Let m be any message. There are r = A-k-
(v — m)/(k — 1) blocks A containing m. For each such A, m € M(e(A, i)) for every i,
1 <i < k. We calculate

payoff(m) = r/b = k/v,

as desired.

Next, we verify that vg = (k — 1)/(v — n). Let m and m’ be two distinct messages.
If m and m’ are in different groups, then there are no encoding rules that contain m
and m’, so payoff(m, m’) = 0. If m and m’ are in the same group, then there are A
blocks A for which m, m’ € A. For each such block A, and for each source state j,
there is exactly one encoding rule e(A4, i) where m, m’ € M(e(A, i)) and f, 4 ;,(m) = j.
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Then,
payoff(m, m’) = ) p(e): p(S = fo(m)) / Y. p(e)p(S = fi(m)
{ecE:m,m’ € M(e)} {esE:meM(e)}
= Y p(S = f.(m) / Y, p(S=fm)
{eeE:m,m’eM(e)} {eeE:msM(e)}
= Ar
=4 (A-(v — n)fk — 1))
= (k — /(v — n),
as desired.
Finally, the authentication code is perfectly non-Cartesian since p(sfm) = p(s) for
every s € S and every me M. O

It is interesting to note that this code has
HM)=logv, H(E)=log(i-v-(v—n)k - 1)),

and vg = y- 2HM~H®) where y = A (in Theorem 2.10).

Corollary 3.11.  Suppose there exists a (v, b, r, k, A)-BIBD. Then there is a perfectly
non-Cartesian AC(k, v, k- b, k/v, (k — 1)/(v — 1)).

Proof. This is the case where every group of the group-divisible design has size 1.
Note that here we have vg = (k — 1)/(v — 1), so the bound of Theorem 2.14 is tight.

Corollary 3.12. Suppose there is a TD(k, A; n). Then there is a perfectly non-Cartesian
AC(k,n-k, A-k-n? 1/n, 1/n).

Consequently, £(k, «, o) is O(k*/a?) and v(k, &, ) is O(k?/a), even if we restrict
ourselves to perfectly non-Cartesian codes.

These constructions of Theorems 3.5 and 3.10 both have two very nice properties
which we have not yet emphasized. First, the encoding strategy in each case is
uniform: each encoding rule is used with equal probability 1/b. Second, this encoding
strategy yields the stated game values for any source distribution.

The final topic we consider is the construction of authentication codes for uniform
source distributions (p(s) = 1/k for any source state s). This topic was first investi-
gated in [ 1], where some constructions were given using balanced incomplete block
designs. As before, we consider only codes without splitting. The best we could hope
for is to attain the bounds vy, = k/v and vg = (k — 1)/(v — 1). So, we shall study
AC(k, v, b, k/v, (k — 1)/(v — 1)); such authentication codes will be called optimal.

We have the following characterization of authentication codes which are optimal
with respect to the uniform probability distribution on the source states.

Lemma 3.13.  An authentication system is optimal with respect to the uniform proba-
bility distribution on the source states if and only if the following properties are
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satisfied:

(i) For everymeM, Y ¢, k... g} Pl€) = k/v.
(11) For every m # m,’ Z{eeE:m,m'ee} p(e) = (k2 - k)/(l)2 - U)'

Proof. (i) is given in Theorem 2.1. From Theorem 2.14, vs = (k — 1)/(v — 1) if and
only if, for every m # m, we have

) p(e): p(S = fo(m)) / Y. ple)pS = fum)=(k— /v -1

{e€E:m,m’ e M(e)} {et—:E:meM(e)}

Since the source distribution is uniform, this is equivalent to

Y p@=(k-1Av—1).

e)
{ecE:m,m’ e M(e)} /{eeE:meM(e)}

Using (i), we obtain
ple) = (k* — k)/(v* — v),

{eeE:m,m’ € M(e)}

as desired. |

In many authentication codes, the optimal encoding strategy is to choose every
encoding rule with probability 1/b. If we assume that this encoding strategy is in
fact optimal, then the properties above are of a purely combinatorial nature. We
have the following:

Theorem 3.14. An authentication system is optimal with respect to a uniform
encoding strategy and a uniform probability distribution on the source states if and
only the following properties are satisfied:

(i) ForeverymeM, |{eeE:mee}| =k b/v.
(i) For everym # m',|{ec E:m, m’' € e}| = b-(k* — k)/(v* — v).

This says that the rows of E, considered as unordered sets, form a balanced
incomplete block design with parameters (v, b, r, k, 1), where r = k-b/v and A =
b-(k* — k)/(v* — v). So, we can produce optimal authentication codes from BIBDs
when the source states are equiprobable.

Using known families of BIBDs, we can obtain many authentication codes for
uniform source distributions. For example, using projective geometries, we have the
following:

Theorem 3.15. For any prime power n, and any integer d > 2, there is an optimal
authentication code for the uniform source distribution on n + 1 source states, for
v=m"~1)/(n—1)and 1= 1.
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