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Abstract. We investigate authentication codes, using the model described by 
Simmons. We review and generalize bounds on the probability that an opponent 
can deceive the transmitter/receiver by means of impersonation or substitution. 
Also, we give several constructions for authentication codes that meet one or more 
of these bounds with equality. These constructions use combinatorial designs, such 
as transversal designs, group-divisible designs, and BIBDs (balanced incomplete 
block designs). 
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1. Introduction 

We shall  use the mode l  of  au then t i ca t ion  theory  as descr ibed by  S immons  [ 4 ] - [ 6 ] .  
In  this m o d e l  there  are  three  par t ic ipants :  a t ransmi t te r ,  a receiver, and  an  opponen t .  
The  transmitter wants  to communica t e  some in fo rmat ion  to the receiver, whereas  
the opponent wants  to deceive t h e  receiver. The  o p p o n e n t  can  ei ther  impersona te  
the receiver, m a k i n g  him accept  a f radulent  message as authent ic ,  or  modi fy  a 
message which has been sent by  the  t ransmi t te r .  

M o r e  formally ,  we have  a set of  source states S, a set of  messages  M,  and  a set 
of encoding  rules E. A source state s ~ S is the in format ion  tha t  the t r ansmi t t e r  
wishes to c o m m u n i c a t e  to the receiver. The  t ransmi t t e r  and  receiver will have 
secretly chosen  an  encoding rule e e E beforehand.  An  encoding  rule e will be used 
to de te rmine  the message e(s) to  be sent  to communica t e  any  source s tate  s. I t  is 
poss ible  tha t  more  than  one message can be used to  de te rmine  a pa r t i cu la r  source 
state (this is cal led splitting). However ,  in o rde r  for the receiver to be able  to uniquely  
de te rmine  the source state f rom the message  sent, there  can be at  mos t  one source 
state which is encoded  by  any  given message m ~ M. 

We assume tha t  the o p p o n e n t  will p lay  ei ther  impersonation or  substitution. W h e n  
the o p p o n e n t  p lays  impersona t ion ,  he sends a message to the receiver, a t t empt ing  
to have the receiver  accept  the message as authent ic .  W h e n  the o p p o n e n t  p lays  
subst i tu t ion,  he wai ts  unti l  a message m has  been sent, and  then  replaces m with  
ano the r  message m' so tha t  the receiver  is mis led  as to the s ta te  of  the source. 

There  will be a p robab i l i t y  d i s t r ibu t ion  on the set of  source  states S. Given  the 
p robab i l i t y  d i s t r ibu t ion  on S, the receiver and  t r ansmi t t e r  will de te rmine  a p r o b a b i -  
l i ty d i s t r ibu t ion  on E, cal led an  encoding strategy. If  spl i t t ing occurs,  then they will 
a lso de te rmine  a splitting strategy to de te rmine  m ~ M, given s ~ S, and  e E E. The  
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transmitter/receiver will choose the encoding and splitting strategies to minimize 
the chance that the opponent  can deceive them. 

This defines two possible games, which we refer to as the impersonation game 
and the substitution game. Each game has a value, which is the possibility that the 
opponent  can deceive the transmitter/receiver, given that they are using the optimal 
encoding and spitting strategies. We denote the values of these games by v~ (for 
impersonation) and Vs (for substitution). 

Many  of these bounds depend on entropies of the various probability distribu- 
tions. For  a probabili ty distribution on a set X, we define the entropy of X, H(X), 
as follows: 

H(X) = -- ~ p(x) ' log  p(x). 
x e X  

As well, the conditional entropy H(XIY) is defined to be 

H(XIY) = - ~ ~ p ( y ) ' p ( x l y ) ' l o g  p(xly) .  
y~Y x~X 

An authentication code is said to be Cartesian if every message uniquely deter- 
mines the source state, independent of the particular encoding rule being used. In 
terms of entropy, this is expressed by the equation H ( S [ M ) =  0. Note that in a 
Cartesian authentication code, there can be no secrecy. 

In this paper we primarily consider authentication systems without splitting. We 
use the following notation. Denote the number of source states by k, and let S = 
{si: 1 < i < k}. Denote the number  of messages by v, and let M = {mj: 1 < j _< v}. 
Denote by b the number  of encoding rules, and write any encoding rule e ~ E as 
e --- (el: 1 < i < k), where ei is the message used to communicate source state si, for 
1 < i < k. Then, the authentication system can be represented by the b x k matrix 
A, where row e of A consists of the entries el . . . . .  ek. Given an encoding rule e ~ E, 
we define M(e)  = {el: 1 < i < k}, where e = (ei: 1 < i < k). Also, for each encoding 
rule e, define fe(m) = s if and only if es = m (if message m does not occur in encoding 
rule e, then fe(m) is undefined). 

2. Bounds on the Values of the Impersonation and Substitution Games 

Several bounds have been proven on the values of the games v~ and v s. In this section 
we review the known bounds, and prove some new results. We also determine some 
necessary conditions for the various bounds to be met with equality. 

Theorem 2.1 [5, Theorem 1]. In  an authenticat ion system wi thout  splitting, vl >- k/v. 

Proof. Suppose the opponent  sends message m. We denote the probability that 
the message m is accepted by the receiver by payoff(m). Then we have that 

payoff(m) = ~, p(e). 
{e~E:meM(e)} 

It  follows that 
payoff(m) = k. 

m e M  
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Hence, there must be some m such that payoff(m)> k/v. That is, we have an 
impersonation strategy in which the transmitter/receiver can be deceived with 
probability at least k/v. [] 

It is clear from the above proof that v~ = k/v if and only if Z { ~  v.:m~ut~)} p(e) = k/v 
for all m ~ M. 

Theorem 2.2 I-5, Theorem 0-1. In any authentication system, v] >_ 2 H(MES)-HtE)~H(M) = 

2 t~(MlgsJ+ms)-HtM). In an authentication system without splitting, H(MIES) = 0, so 
V[ _ 2 H(S)-H(M). 

An authentication system which satisfies the bound of Theorem 2.2 with equality 
is said to be perfect. It is also possible to determine some properties of perfect 
authentication codes (see Theorem 1 of i-1-1). In the case of authentication codes 
without splitting, we must have the following: 

Lemma 2.3. In a perfect authentication code without splitting, the following proper- 
ties hold: 

(i) For all messages m, vl = ~{e~E:m~Mte)} p(e) = k/v. 
(ii) For any message m, p(s) is a constant for  all s such that there is an e such that 

e s = m .  

Let us next turn our attention to bounds on Vs. The following bound is for 
substitution with secrecy. 

Theorem 2.41-1, Theorem 3-1. v s ~ 2 -H(EIM) ----- 2 H(M)-It(E)-H(S)+H(MIES). In an authen- 
tication system without splitting, H(MIES) = O, so v s >_ 2 HtM)-It(E)-It(s). 

Brickell has also given the conditions under which equality is attained in Theorem 
2.4. We state these conditions in the case of codes without splitting. 

Lemma 2.5. I f  equality is attained in Theorem 2.4 for  an authentication code without 
splitting, then the following properties are satisfied: 

(i) For all e, and for  all m such that m ~ M(e), p(m) 'vs  = p(e) .p(S  = fe(m)). 
(ii) For any m and m', m ~ m' there is at most one e such that m, m' ~ M(e). 

The first thing we do is give a generalization of this bound, which will include 
cases where condition (ii) does not hold. We prove the bound in the case of 
authentication systems without splitting; the same bound holds for systems with 
splitting. 

We require some notation. Given any encoding rule e', and given any m, m' 
M (e'), define 

5(e', m, m') = ~ p(e) .p(S  = f~(m))/(p(e') 'p(S = f~,(m))). 
{e e E: m, ra' E M(e)} 
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Then, let 6 = min{6(e', m, m'): m, m' e M(e'), m # m'}. Observe that 6 > 1, and 
6 = 1 if and only if condition (ii) of Lemma 2.5 is satisfied. 

Theorem 2.6. In an authentication system without splitting, Vs >- 6.2 -H(EIM), where 
6 is defined as above. 

Proof. The proof is essentially the same as that of Theorem 3 of [1]. []  

Suppose the opponent substitutes message m with message m' (m # m'). We 
denote the probability that the message m' is then accepted by the receiver by 
payoff(m, m'). Then we have that 

payoff(m, m') ---- 
{e ~ E: ra, m'  ~ M(e)} 

= 2 
{e e E:m,  m' E M(e)} 

/ 
p(e)'p(S = f~(m))/ ~ p(e)" p(S = f~(m)) 

/ { e e E :  m e  M(e)} 

p(e)" p(S = fe(m))/p(m). 

If we define vs(m) = max{payoff(m, m'): m' # m}, then 

Vs = ~ p(m)" vs(m). 
raeM 

For  any m, m', and e', such that m # m' and m, m' ~ M(e'), observe that we have 

vs(m) > payoff(m, m') = 6(e', m, m')" p(e'), p(S = f~,(m))/p(m) 

> 6. p(e'), p(S = f~,(m))/p(m) 

and, hence, 

p(e')" p(S = fe,(m))/p(m) < vs(m)/6. 

Let us calculate H(EIM). By definition we have 

H(EIM) = - ~ ~ p(m)'p(elm)' logp(elm) 
mEM e~E 

= - ~ ~ p(e)'p(mle)' log p(eLm) 
mr {eEE:meM(e)} 

= - ~ ~ p(e).p(S = f~(m)), log(p(e)'p(S = fe(m))/p(m)) 
mEM {eEE:mEM(e)} 

> -- ~ ~. p(e)'p(S = fe(m)).log(vs(m)/6) 
roaM {e~E:meM(e)} 

= -  ~ log(vs(m)/6). ~ p (e ) .p (S= f~(m)) 
meM {eeE:meMte)} 

= _  ~ log(vs(m)/6)" P(m) 
ra~M 

> -lOg(m~vIvs(m) 'p(m,/6 ) 

= --log(vs/6). 
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Lemma 2.7. In  an authent icat ion sys tem without  splitting, where v s = c$'2 -ntEIM), 
the fo l lowing  properties must  be satisfied: 

(i) ~ = iS(e, m, m')  f o r  any  m, m', and e such that  m ~ m' and m, m' �9 M(e).  

(ii) For  any m and e with m �9 M(e) ,  v s = vs(m ) = ~ .p(e) .  p(S  = fe(m))/p(m). 

Using this informat ion we can calculate ~ and v s in the case of  equality. We do 
this as follows. F r o m  the definition of  6 we have 

6 = ~' p ( e ) ' p (S  = fe(m))/(p(e ') ,  p(S = fe,(m))) 
{e ~ E: m,m' ~ M(e)} 

for any m, m' �9 M(e ' ) .  It follows that  p(e). p(S  = fe(m)) is a constant  ( #  0) for all e 
such that  m, m' �9 M(e).  Denote  this c o m m o n  value by X. Then, we have 

3" X = 2(m, m')" X, where 2(m, m') = I{e �9 E: m, m' �9 M(e)} l- 

Hence, 
= 2(m, m'), 

where m and m' are any two messages which occur  in at least one encoding rule 
together. 

Now,  we calculate Vs. Recall that  we have the relation 

Vs = vs(m) = 6 "p(e) 'p (S  = f~(m))/p(m) 

for any m and any e such that  m �9 M(e).  Define r m = I{e �9 E: m �9 M(e)}l for any m. 
Now,  fix any m, and sum this equat ion over all e such that  m �9 M(e).  We have 

v s = ~, 6 . p ( e ) . p ( S  = fe(m))/p(m), 
{e~E:mEM(e)} {eEE:m~M(e)} 

rm'Vs =- ~. 

Hence, r m is a constant  for any m. Hence, rm = r = b ' k / v  for all m. Then, v s = 6/r. 

Summarizing,  we have 

Theorem 2.8. In  an authent icat ion code wi thout  splitting, where v s = 6"2 -Hr 
the fo l lowing properties are satisfied: 

(i) For  every message m, r m = I{e �9 E: m �9 e}l = r = b.  k/v. 

(ii) For  every pair o f  messages m and m', either 2(m, m')  = I{e �9 E: m, m' �9 e}l = 0 
or 2, where 2 is a constant.  

(iii) For  every m, m', and e such that  m, m'  �9 e, we have 6(e', m, m')  = 2. 

(iv) Vs = 6/r. 

The value of  v s proved in (iv) is always a lower bound  on v s. We have the following: 

Theorem 2.9. In  an authent icat ion sys tem wi thout  splitting, v s >_ ~5/r, where r = 

max{rm: m �9 M}. 

Proof.  Recall that, for any m �9 M(e') ,  we have 

p(m).  vs(m) _> 3. p ( e ' ) . p ( S  = f~,(m)). 
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It then follows that 

Vs = ~, p(m)" vs(m) 
meM 

> 6" ~ (1/rm)" ~. p(e)'p(S =f~(m)) 
mr {e6E:m~M(e)} 

> 6" ~ (l/r)" ~ p(e) 'p(S=f~(m))  
m~M {eeE:m~M(e)} 

= (6/r)" ~ p(e). ~ p(S = fe(m)) 
e e E  m~M(e) 

= (f/r). ~ p(e) 
eeE 

= ~ l r .  [] 

Now, we prove a variation on the bound of Theorem 2.8. Given any encoding 
rule e', and given any m, m' ~ M(e'), define 

~(e', m, m') = ~ p(e). p(S = f~(m))/p(e'). 
{e ~ E: m, m' ~ M(e)} 

Then, let 7 = min{~(e', m, m'): m, m' ~ M(e'), m # m'}. 

Theorem 2.10. In an authentication system without splitting, v s >_ ? .2  ntM)-rt(E), 

where 7 is defined as above. 

Proof. We use the same notation as before. For any m, m', and e' such that m # m' 
and m, m' ~ M(e'), observe that we have 

vs(m ) > payoff(m, m') = ?(e', m, m'). p(e')/p(m) >_ 7" p(e')/p(m) 

and, hence, 
p(e')/p(m) < Vs(m)/~. 

Calculating H(EI M), we have 

H(EIM) = -  ,~, ,~, 
m~M {e~E:meM(e)} 

>--E E 
mEM {eeE:m~M(e)} 

= - 2  2 
m s M  {e e E:mE M(e)} 

= -  2 log(vs(m)/?)" 2 p (e ) .p (S= f~(m)) 
meM {e~E:m~ M(e)} 

-- ~_~ ~ p(e).p(S = fe(m))'log(p(S = fe(m))) 
meM {eeE:m~M(e)} 

= -  5" log(vs(m)/7)" p(m) 
mEM 

- ~ p(e)" ~_, p(S = f~(m))'log(p(S = fe(m))) 
e~E {m~M(e)} 

>--lOg(m~MVS(m)'p(m)/~) + ~p(e)'H(S)e~E 

p(e). p(S = fe(m))'log(p(e)" p(S = fe(m))/p(m)) 

p(e).p(S = f~(m)), log(vs(m)" p(S = f~(m))/7) 

p(e).p(S = fe(m)).(log(vs(m)/7) + log(p(S = f~(m)))) 

= --log(vs/?) + H(S). 
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Using the entropy identity H(EIM) = H(S) + H(E) - H(M) + H(MIE,  S) (see 
Theorem 2 of 11]), we obtain 

log(vs/7) _>_ - H ( E I M )  + n ( s )  + H(MI E, S) = H(M) - H(E) + H(MIE,  S). 

In an authentication system without splitting, H(MIE,  S) = 0, so we get 

log(vs/7) _> H(M) -- H(E). 

Hence, Vs > 7" 2mM)-n(E). [] 

We have the following consequences of equality in this bound. 

Lemma 2.11. In an authentication system without splitting, where Vs = 7" 2H(M)-H(E), 
the following properties are satisfied: 

(i) For all e', m, and m', where m, m' ~ M(e'), we have 7 = 7( e', m, m'). 
(ii) For any e and any m ~ M(e), v s = Vs(m) = ? . p(e)/p(m). 

Property (ii) says that given an encoding rule e, p(m) is constant for all messages 
m ~ M(e), and given a message m, then p(e) is constant for all encoding rules e with 
m ~ M(e). Suppose we construct a graph with vertex set E, and join two vertices 
e and e' by an edge if and only if there is an m ~ M(e) c~ M(e') .  If this graph has 
more than one connected component,  then the authentication system can be con- 
sidered to be the "union" of the authentication codes corresponding to each com- 
ponent. We will only consider authentication codes where this graph has one 
connected component;  such codes will be called connected. Hence, we have the 
following. 

Theorem 2.12. I n  a connected authentication system without splitting, where v s = 

7" 2mM)-mw~, we must have H(M) = log v, H(E) = log b, and Vs = 7" v/b. 

Proof. All encoding rules must have the same probability, so p(e) = lib for every 
e ~ E. It  then follows that p(m) = 1/v for every m ~ M. Hence, Vs = 7. v/b. [] 

We can now determine some relations between 7 and probabilities of source 
states. 

Lemma 2.13. In a connected authentication system without splitting, where v s = 
7" 2mM)-mE), the following properties are satisfied: 

(1) For every e', m, and m' with m, m' ~ M(e'), 7 = ~{e~E:m,m" ~M(e)} P(S = fe(m)). 
(2) For every m, ~{~E:m~Mte)} p(S = fe(m)) = b/v. 
(3) For every m, there are precisely X messages m' with which m occurs in at least 

one encoding rule, where X = b. (k - 1)/(v. 7). 

Proof. By property (i) of Lemma 2.11, for every e', m, and m' with m, m' ~ M(e'), 
we must have 
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2~ = y(e', m, m') 

= ~ p ( e ) ' p ( S  = fe(m)) /p(e ' )  
{e e E: ra, at' ~ M(e)} 

= ~ p(S  = f~(m)), 
{e r E :m,m '  e M(e)} 

proving (1). Also, we can calculate 

1/v = p(m) 

= ~ p(e).  p (S  = f~(m)) 
{e�9 

= (l/b). ~ p(S = fe(m)), 
{e�9149 

so, for every m, we have 

~_, p(S = fe(m)) = b/v. 
{ecE:raeM(e)} 

This proves (2). 
Finally, pick any m, and let M '  = {m' E M: there exists an e with m, m'  ~ M(e)} .  

Then, we calculate 

IM'I "~ = 

The result (3) follows, 

Y'. p(S  = f~(m)) 
m" �9 {eeE:ra, m" �9 

= (k - 1)- ~ p(S  = f~(m)) 
{eeE:meM(e)} 

= b.  (k - 1)/v. 

[ ]  

Next, we prove another  new bound  on the value of  the substitution game in an 
authent icat ion code without  splitting. 

Theorem 2.14. In  an authent icat ion sys t em wi thout  splittin9, Vs >__ (k - 1)/(v - 1). 

payoff(m, m') = 

It  follows that  

Proof.  Suppose the opponen t  substitutes message m with message m' (m ~ m'). 
We denote the probabil i ty that  the message m' is then accepted by the receiver by 
payoff(m, m'). As before, we have that  

p ( e ) ' p ( S  = f e ( m ) ) /  ~, p(e)" p(S = f~(m)). 
{e �9 E: m, rn" �9 M(e)} I {e  �9 E: m e Mte)} 

payoff(m, m') = k - 1. 
ra" ~ m  

Hence, there must  be some mo such that  payoff(m, too) > (k - 1)/(v - 1). For  every 
m, determine such an mo. This defines a substitution strategy in which the trans- 
mitter/receiver can be deceived with probabil i ty at least (k - 1)/(v - 1). [ ]  
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3. Constructions for Authentication Systems 

Our interest in this section is in constructing authentication systems which meet 
one or more of the bounds of the previous section with equality. We are interested 
in the existence of authentication codes with a specified number of source states, 
and specified upper bounds on the number of encoding rules, messages, vx, and Vs. 
Therefore, we define an AC(k, v, b, a, fl) to be an authentication code with k source 
states, at most v messages, and at most b encoding rules, and where v~ _< a and v s < ft. 

Then, we define 

~(k, a, fl) = min{b: there exists an AC(k, v, b, a, fl)} 

and 

o(k, a, fl) = rain{v: there exists an AC(k, v, b, 0t, fl)}. 

That is, we are attempting to minimize the number of encoding rules (or messages) 
required in an authentication code for k source states, with upper bounds a and fl 
on the impersonation and substitution games, respectively. 

First, observe that we have an easy lower bound on o(k, a, fl). 

Theorem 3.1. o(k, a, fl) > max{k/a, 1 + (k - 1)/fl}. 

Proof. This is an immediate corollary of Theorems 2.1 and 2.14. []  

Next, we mention a lower bound on e(k, a, fl) due to Brickell [1, Theorem 41. 

Theorem 3.2. e(k, a, fl) > 1/(a. fl). 

This bound can be strengthened, using the quantity 5 defined in Section 2. 

Theorem 3.3. I f  an AC(k, v, b, a, fl) exists, then b >_ 5/(a. fl). 

Proof. We have a > v~ _> 2 HtS)-HtM) and v s > 5" 2 -HtEIM) = 6 .2  ntM)-~tE)-utS). 

Hence, we have a" fl > 5- 2 -mE). Since H(E) < log b, the result follows. []  

In the remainder of this paper we describe constructions for authentication codes, 
which will enable us to put upper bounds on e and o. For  our first construction we 
require the following definition. A transversal design TD(k, 2; n) is a triple (X, G, A), 
which satisfies the following properties: 

(1) X is a set of k. n elements called points. 
(2) G is a partition of X into k subsets of n points, called groups. 
(3) A is a set of 2- n 2 subsets of X (called blocks) such that a group and a block 

contain at most one common point. 
(4) Every pair of points from distinct groups occurs in exactly 2 blocks. 

We usually denote a TD(k, 1; n) by TD(k, n). It is well known that a TD(k, n) is 
equivalent to k - 2 mutually orthogonal Latin squares of order n. 
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Theorem 3.4 [1, Theorems 5 and 6]. I f  there is a transversal design TD(k, n) 
then there is a Cartesian authentication system with Vs = 2 -HtEIM) = 1/n, v I = 
2 ms~-ntM) = 1/n, ISl = k, IMI = k 'n ,  and I t l  = n 2, with no splitting. (Hence, i f  there 
exists a TD(k, n), then there is an AC(k, k.  n, n 2, 1/n, 1/n), and we have e(k, 1/n, 1/n) < 
n 2 and v(k, i/n, 1/n) < k .  n.) Conversely, i f  there is a Cartesian authentication system 
with no splitting with v s = 2 -mEfM) = ~, v~ = 2 ms)-ntM) = ~, and ISl = k,  then n = 1/~ 
is an integer and there exists a transversal design TD(k, n). 

We can prove a generalization of  this result, using transversal designs with 2 > 1. 

Theorem 3.5. I f  there is a transversal design TD(k, 2; n), then there is a Cartesian 
authentication system with Vs = 2"2 -gtEIM) = 1/n, v I = 2ms)-ntM)= 1/n, ISl = k,  

IMI = k.  n, and IEI = 2. n 2, with no splitting. (Hence, i f  there exists a TD(k, 2; n), 
then there exists an authentication code AC(k, k .n ,  2. n 2, 1/n, 1/n), e(k, 1/n, 1/n) < 
2. n 2, and o(k, 1/n, 1/n) <_ k 'n . )  Conversely, i f  there is a Cartesian authentication 
system with no splitting with Vs = 3 . 2  - H ( E [ M )  = Ct, V I : 2 H t S ) - H ( M )  = ~, and IS[ = k, 
then n = 1/:t is an integer and there exists a transversal design TD(k, 3; n). 

Proof. The proof  is essentially the same as the p roof  of  Theorems 5 and 6 of  [1]. 
First, it is not  difficult to see that  the TD(k, 2; n) gives rise to the desired authentica- 
tion code, by associating each group  of  the transversal design with a particular 
source state, and using each encoding rule with probabil i ty 1/(2. n2), as in [1]. Let 
us prove the converse assertion. 

Since we have assumed that  we have a Cartesian authent icat ion code, each 
message m determines a unique source state s~,. Thus, the probabil i ty that  message 
m is sent is 

p ( M  = m) = p(S = Sm)" ~ p(e) 
{eEE:meM(e)} 

= p(S : Sm)'V l (from Lemma 2.3(i)) 

= p ( S  = s . ) . ~ .  

On the other  hand, given any m and e with m e M(e), we have, from Lemma 2.7(ii), 
that  

= v s = 3" p(e) .p(S -- Sm)/p(m ) 

= 6 "p(e)/e, 

from above. So, p(e) is independent  of  e, and p(e) = 1/b = e2/6 for every e. Hence, 
b = 6/~ 2. 

Since the system is Cartesian, and every message occurs in r = b . k / v  en- 
coding rules (Theorem 2.8(i)), we can part i t ion the message space into k subsets Ms 
(1 _ i _< k), each of  size v/k. However,  

v/k = b/r 

= (6/~t2)/(J/e) (since r = 6/ct, by Theorem 2.8(iv)) 

= 1 / ~  

is an integer, so ~ = 1/n, where n = v/k. Then, b = 3. n 2 and r = 6" n. 
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Now, using Theorem 2.8(ii) and (iii), it is easy to see that  any two messages from 
different Mi's occur together  in precisely 6 encoding rules (see Theorem 2.6 of [1]). 
Hence, we can construct  the desired transversal design. [ ]  

Suppose our  desire is to construct  an authent icat ion code AC(k, k .  n, b, l /n ,  l /n).  
We can construct  such a code if a TD(k, 2; n) exists, for b = 2. n 2. (Note that  
this satisfies the bound  b > fi/(~t-fl) with equality, where ~t = fl = 1/n and t5 = 2.) 
Thus, given k and n, we are interested in the smallest 2 such that  a TD(k, 2; n) 
exists. First, we observe that  there is a simple numerical bound  on k in terms of  2 
and n. 

Theorem 3.6 [3]. I f  a TD(k,  2; n) exis ts ,  then k < (2. n 2 - 1)/(n - 1). 

Consequently,  if we use a TD(k, 2; n), then we have a lower bound  on b, namely 

b = ~..n2 > k n -  k + l.  

We present an infinite example of transversal designs which meet this bound  with 
equality. 

Theorem 3.7. For  all pr ime powers  n >_ 2, and f o r  any  d > 1, there is an AC(k, k- n, 
n d, 1/n, 1/n), where  k = (n d - 1)/(n - 1); hence e((n ~ - 1)/(n - 1), 1/n, 1/n) <_ n d and 

v((n d - 1)/(n - 1), 1/n, l /n)  < k . n .  

Proof. In [3] Hanani  shows that  for any prime power  n, and for any d > 1, there 
exists a TD((n a - 1)/(n - 1), na-2; n). [ ]  

Corollary 3.8. F o r  any  ~ > O, e(k, ~t, ct) is O(k/~ 2) and v(k, ~, ~) is O(k/~). 

Proof.  Let  n = 2 ~, where 2 j > 1/~ > 2 j-1. Then n is O(1/~). Now, choose d so that 
n d > k(n - 1) + 1 > n d-1. Since k < (n a - 1)/(n - 1), we have e(k, ~, ~) < n d. But, 
n d < k(n 2 - n) + n = O(k .  n2). Since n is O(1/~), therefore e(k, ct, ~) is O(k/ct2). Also, 
k" n is O(k/~). [] 

As another  example of the use of transversal designs with 2 > 1, let us consider 
codes with parameters  AC(k, v, 1 , b, g, g). Fo r  k = 4, we cannot  construct  such a code 
from a TD(4, 6), since this T D  does not  exist (this is the famous 36 officers problem 
of Euler, i.e., a (nonexistent) pair  of  or thogonal  Latin squares of order  6). In [1] 
Brickell constructs an example of an AC(4, 30, 36, I ,  61-) with splitting. However,  
we can employ a TD(7,  2, 6), which is constructed in [3, p. 49], to obtain an 
AC(7, 42, 72, I ,  1)- 

More  generally, we have the following class of authent icat ion codes with seven 
source states. 

Theorem 3.9. For  all n >_ 2, there is an AC(7, 7. n, 2n 2, l /n ,  l/n); hence e(7, l /n ,  1/n) < 
2n 2. 
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Proof.  Fo r  these n, there is a TD(7,  2; n) (see [3]). [ ]  

The  authent icat ion codes obta ined f rom Theo rem 3.5 are Cartesian.  Hence, 
the opponent ,  on seeing a message being sent, knows  the source state. Therefore,  
no secrecy is possible in such an authent icat ion system. We also want  to be able 
to construct  good  authent ica t ion codes with secrecy. Ideally, we would like to 
have H(SlM)  = H(S); i.e., the message gives absolutely no clue as to the state of  
the source. If  this happens,  then we say that  the authent ica t ion code is perfec t ly  

non-Cartesian.  
O u r  ma in  const ruct ion for perfectly non-Car tes ian  authent icat ion codes uses 

group-divisible designs, which are a general izat ion of t ransversal  designs. A group- 
divisible design GD(k ,  2, n; v) is a triple (X, G, A) which satisfies the following four 
properties:  

(1) X is a set of  v elements called points.  
(2) G is a par t i t ion of X into v/n subsets of  n points,  called groups. 

(3) A is a set of  subsets of  X (called blocks), each of size k, such tha t  a g roup  and 
a block contain  at  mos t  one c o m m o n  point. 

(4) Every pair  of  points  f rom distinct groups occurs in exactly 2 blocks. 

No te  that  a TD(k,  2; n) is equivalent  to a GD(k ,  2, n; k" n). Also, a (v, b, r, k, 2)- 
B IBD (balanced incomplete  block design) is equivalent  to a GD(k ,  2, 1; v). 

We have the following construction:  

Theorem 3.10. Suppose  there ex i s t s  a GD(k ,  2; n; v). Then  there is a per fec t ly  
non-Cartes ian AC(k, v, 2" v ' ( v  - n)/(k - 1), k/v,  (k - 1)/(v - n)). 

Proof.  Let  (X, G, A) be a GD(k ,  2, n; v). By simple counting, each point  occurs 
in r = 2 . (v  - n)/(k - 1) blocks, and the total  numbe r  of  blocks is 2 . v . ( v  - n)/ 

(k" (k - 1)). W h a t  we do is construct  k encoding rules f rom every block of the 
group-divisible design: for each block A = {xl . . . . .  Xk} of the group-divisible design, 
and  for each i, 0 < i < k - 1, we define an encoding rule e(A,  i) = (ej: 1 _< j < k), 

where e~ = X(j+ijmodulok- 
There  are b = 2 .  v" (v - n)/(k - 1) encoding rules in the resulting authent icat ion 

code. We shall use each encoding rule with probabi l i ty  (k - 1)/(2. v. (v - n)). 
Let  us first verify that  v~ = k/v.  Let m be any message. There  are r = 2. k" 

(v - n)/(k - 1) blocks A containing m. Fo r  each such A, m e M ( e ( A ,  i)) for every i, 
1 <_ i < k. We calculate 

payoff(m) = r/b = k/v,  

as desired. 
Next,  we verify that  Vs = (k - 1)/(v - n). Let  m and m' be two distinct messages. 

If  m and m'  are in different groups,  then there are no encoding rules that  contain  m 
and m', so payoff(m, m') = 0. I f  m and m'  are in the same group,  then there are 2 
blocks A for which m, m'  ~ A. Fo r  each such block A, and  for each source state j, 
there is exactly one encoding rule e(A,  i) where m, m'  ~ M ( e ( A ,  i)) and feta.i~(m) = J. 
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Then, 

payoff(m, m')  = 
/ 

p(e) .p(S = fe(m)) /  ~, p(e) .  p(S = fe(m)) 
{eeE:m,m" ~ M(e)} [ {e~E:rae M(e)} 

1 

= ~ p(S = fe(m)) /  E p(S = f,(m)) 
{e~E:m,ra' ~M(e)} /{e~E:m~M(e)} 

= 21r 

= 2/(2-(v - n)/(k - 1)) 

= (k - 1)/(v - n), 

as desired. 
Finally, the authent ica t ion code is perfectly non-Car tes ian  since p(stm) = p(s) for 

every s e S and every m e M. [ ]  

It  is interesting to note  that  this code has 

H ( M )  = log v, H(E)  = log(2" v "(v - n)/(k - 1)), 

and v s = V" 2 mM~-m~'}, where V = 2 (in Theo rem 2.10). 

Corollary 3.11. Suppose there exists a (v, b, r, k, 2)-BIBD. Then there is a perfectly 
non-Cartesian AC(k, v, k" b, k/v, (k - 1)/(v - 1)). 

Proof.  This is the case where every g roup  of the group-divisible design has size 1. 
No te  that  here we have v s = (k - 1)/(o - 1), so the bound  of Theorem 2.14 is tight. 

Corollary 3.12. Suppose there is a TD(k,  2; n). Then there is a perfectly non-Cartesian 
AC(k, n. k, 2. k .  n 2, 1/n, 1/n). 

Consequent ly,  e(k, ct, ~) is O(k2/~ 2) and v(k, ~, ct) is O(k2/~), even if we restrict 
ourselves to perfectly non-Car tes ian  codes. 

These construct ions of  Theorems  3.5 and  3.10 bo th  have two very nice propert ies  
which we have not  yet emphasized.  First, the encoding strategy in each case is 
uniform: each encoding rule is used with equal  probabi l i ty  1/b. Second, this encoding 
strategy yields the stated game  values for any source distribution. 

The  final topic we consider is the construct ion of authent ica t ion codes for uniform 
source distr ibutions (p(s) = 1/k for any  source state s). This topic was first investi- 
gated in 1-1], where some construct ions were given using balanced incomplete  block 
designs. As before, we consider only codes wi thout  splitting. The  best we could hope  
for is to a t ta in the bounds  v~ = k/v and v s = (k - 1)/(v - 1). So, we shall s tudy 
AC(k, v, b, k/v, (k - 1)/(v - 1)); such authent ica t ion codes will be called optimal. 

We have the following character izat ion of authent ica t ion codes which are opt imal  
with respect to the uniform probabi l i ty  distr ibution on the source states. 

L e m m a  3.13. An authentication system is optimal with respect to the uniform proba- 
bility distribution on the source states if  and only if  the following properties are 
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satisfied: 

(i) For  every  m e M ,  ~{eEE:eee} p(e) = k/v.  

(ii) For  every  m # m',  ~{e~Z . . . .  , ~e} p(e) = (k 2 - k)/(v 2 - v). 

Proof. (i) is given in Theorem 2.1. F r o m  Theorem 2.14, Vs = (k - 1)/(v - 1) if and 
only if, for every m # m, we have 

p ( e ) . p ( S  = f e ( m ) ) /  ~.  p ( e ) ' p ( S  = f~(m)) = (k - 1)/(v - 1). 
{eeE:ra, ra" eM(e)} /{eEE:m~M(e)} 

Since the source distribution is uniform, this is equivalent to 

p(e) --- (k - 1)/(v -- 1). 
{e~E:m,m" EM(e)} {e~E: 

Using (i), we obtain 

p(e) = (k 2 - k)/(v 2 - v), 
{eEE:m,m' eM(e)} 

as desired. [ ]  

In many  authent icat ion codes, the optimal encoding strategy is to choose every 
encoding rule with probabil i ty 1/b. If  we assume that  this encoding strategy is in 
fact optimal, then the properties above are of  a purely combinator ia l  nature. We 
have the following: 

Theorem 3.14. A n  authent icat ion sys tem is opt imal  with respect  to a uniform 

encoding s t ra tegy  and a uni form probabi l i ty  distr ibution on the source s ta tes  i f  and 

only the fo l lowing  propert ies  are satisfied: 

(i) For  every  m E M, I{e ~ E: m ~ e}l = k .  b/v. 
(ii) For  every  m # m', [{e e E: m, m' ~ e}l = b ' ( k  2 - k)/(v 2 - v). 

This says that  the rows of  E, considered as unordered sets, form a balanced 
incomplete block design with parameters (v, b, r, k, 2), where r = k .  b/v and 2 = 
b.  (k 2 - k)/(v z - v). So, we can produce opt imal  authent icat ion codes from BIBDs 
when the source states are equiprobable.  

Using known  families of BIBDs, we can obtain many  authent icat ion codes for 
uniform source distributions. For  example, using projective geometries, we have the 
following: 

Theorem 3.15. For  any  pr ime power  n, and any  integer d > 2, there is an opt imal  
authent icat ion  code f o r  the uniform source dis tr ibut ion on n + 1 source states,  f o r  
v = (n d+l - 1 ) / ( n -  1) and 2 = 1. 
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