Skip to main content
Log in

A model for simple cells as optimal edge detectors

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Simple cells have often been characterised as edge detectors. This paper proposes a specific neural wiring for simple cells that operate as optimal edge detectors. The proposed simple cell is also selective for the edge contrast. Responses of this model simple cell to edges, bars, sinusoids, and flashed lights are simulated and are similar to real nondirectional simple cell responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atick JJ, Redlich AN (1990) Mathematical models of the simple cells in the visual cortex. Biol Cybern 63:99–110

    Google Scholar 

  • Campbell FW, Cooper GF, Enroth-Cugell C (1969) The spatial selectivity of the visual cells of the cat. J Physiol 203:223–235

    Google Scholar 

  • Canny JF (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Google Scholar 

  • Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240

    Google Scholar 

  • De Valois RL, Albrecht DG, Thorell LG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Res 22:545–559

    Google Scholar 

  • Drasdo N (1989) Receptive field densities of the ganglion cells of the human retina. Vision Res 29:985–988

    Google Scholar 

  • Edelman S, Poggio T (1989) Integrating visual cues for object recognition. Opt News 15:8

    Google Scholar 

  • Ferster D, Koch C (1987) Neuronal connections underlying orientation selectivity in cat visual cortex. Trends Neurosci 10:487–492

    Google Scholar 

  • Gamble EB, Poggio T (1987) Visual integration and detection of discontinuities: the key role of intensity edges. MIT AI Memo 970

  • Glezer VD, Yakovlev VV, Gauzelman VE (1989) Harmonic basis functions for spatial coding in the cat striate cortex. Vis Neurosci 3:351–363

    Google Scholar 

  • Grimson WEL (1981) From images to surfaces. MIT Press, Cambridge Mass

    Google Scholar 

  • Heggelund P (1981) Receptive field organisation of simple cells in cat striate cortex. Exp Brain Res 42:89–98

    Google Scholar 

  • Heggelund P (1985) Receptive field organisation of simple and complex cells. In: Rose D, Dobson VG (eds) Models of the visual cortex. Wiley, New York, pp 358–365

    Google Scholar 

  • Henry GH (1985) Design duplication in streams of the striate cortex. In: Rose D, Dobson VG (eds) Models of the visual cortex. Wiley, New York, pp 351–357

    Google Scholar 

  • Hildreth E (1984) The measurement of visual motion. MIT Press, Cambridge Mass

    Google Scholar 

  • Hubel DH, Weisel T (1962) Receptive fields, binocular interactions, and functional architecture in the cat's visual cortex. J Physiol (Lond) 160:106–154

    Google Scholar 

  • Hubel DH, Weisel T (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol (Lond) 195:215–243

    Google Scholar 

  • James AC (1991) Nonlinear operator network models of processing in the fly lamina. In: Pinter R, Nabel V (eds) Nonlinear vision. CRC Press, New York

    Google Scholar 

  • Koch C, Poggio T (1985) The synaptic veto mechanism: does it underlie direction and orientation selectivity in the visual cortex? In: Rose D, Dobson VG (eds) Models of the visual cortex. Wiley, New York, pp 408–419

    Google Scholar 

  • Kulikowski JJ, Bishop PO (1981) Fourier analysis and spatial representation in the visual cortex. Experientia 37:37–68

    Google Scholar 

  • Luenberger DG (1984) Linear and Nonlinear Programming, 2nd edn. Addison-Wesley, Reading Mass

    Google Scholar 

  • Marcelja S (1980) Mathematical description of the responses of simple cells. J Opt Soc Am 70:1297–1300

    Google Scholar 

  • Marr D (1982) Vision. Freeman, San Fransisco

    Google Scholar 

  • Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond [Biol] 207:187–217

    Google Scholar 

  • Marr D, Ullman S (1981) Directional selectivity and its use in early visual processing. Proc R Soc Lond [Biol] 211:151–180

    Google Scholar 

  • Pollen DA, Ronner SF (1982) Spatial computation performed by simple and complex cells in the visual cortex of the cat. Vision Res 22:101–118

    Google Scholar 

  • Richter J, Ullman S (1982) A model for the temporal organisation of X- and Y-type receptive fields in the primate retina. Biol Cybern 43:127–145

    Google Scholar 

  • Richter J, Ullman S (1986a) Nonlinearities in cortical simple cells and the possible detection of zero-crossings. Biol Cybern 53:195–202

    Google Scholar 

  • Richter J, Ullman S (1986b) Are nondirectional simple cells constructed from directional subunits? Biol Cybern 54:313–317

    Google Scholar 

  • Ruff PI, Rauschecker JP, Palm G (1987) A model of direction-selective “simple” cells in the visual cortex based on inhibition asymmetry. Biol Cybern 57:147–157

    Google Scholar 

  • Sakai HM, Naka K-I, Korneberg MJ (1988) White-noise analysis in visual neuroscience. Vis Neurosci 1:287–296

    Google Scholar 

  • Schiller PH, Findlay BL, Volman SF (1976) Quantitative studies of single cell properties in monkey striate cortex I. Spatiotemporal organisation of receptive fields. J Neurophysiol 39:1288–1319

    Google Scholar 

  • Shapley R, Perry VH (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 95:229–235

    Google Scholar 

  • Sillito AM, Kemp JA, Milson JA, Berardi N (1980) A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res 194:517–520

    Google Scholar 

  • Williams DR (1988) Topography of foveal cone mosaic in the living human eye. Vision Res 28:433–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIlhagga, W. A model for simple cells as optimal edge detectors. Biol. Cybern. 66, 177–183 (1991). https://doi.org/10.1007/BF00243293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243293

Keywords

Navigation