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ABSTRACT

When we learn mathematics, we learn more than definitions and theorems.
We learn techniques of proof. In this paper, we describe a particular way to
express these techniques and incorporate them intro formal theories and into
computer systems used to build such theories. We illustrate the methods as
they were applied in the A-PRL system, essentialy using the ML programming
language from Edinburgh LCF [23] as the formalised metalanguage. We report
our experience with such an approach emphasizing the ideas that go beyond
the LCF work, such as transformation tactics, refinement tactics, and special
purpose reasoners. We also show how the validity of tactics can be guaranteed.
The introduction places the work in historical context and the conclusion briefly
describes plans to carry the methods further. The majority of the paper presents
the A-PRL approach in detail.
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1 Introduction.

Statement of The Problem.

In the time of the Greeks, geometers were already building machines to
help them with derivations. Continuous and sustained interest in providing
mechanical aids to reasoning can be traced to the seventeenth century. Gottfried
Leibniz is popularly believed to have contributed to symbolic logic in striving to
mechanize reasoning, and while his technical contributions in this subject were
minor, his vision and the authority which his stature accorded it are with us
today. His words still kindle an interest little diminished by the naivete of their
details [30].

A term is the subject or predicate of a categorical proposition. ...

Let there be assigned to any term its symbolic number, to be used
in calculation as the term itself is used in reasoning. I chose num-
bers whilst writing; in due course I will adapt other signs ... For the
moment, however, numbers are of the greatest use ... because ev-
erything is certain and determinate in the case of concepts, as it is in
the case of numbers. The one rule for discovering suitable symbolic
numbers is this; that when the concept of a given term is composed
directly of the concept of two or more other terms, then the sym-
bolic number of the given term should be produced by multiplying
together the symbolic numbers of the terms which compose the con-
cept of the given term. In this way we shall be able to discover and
prove by our calculus at any rate all the propositions which can be
proved without the analysis of what has temporarily been assumed
to be prime by means of numbers we can judge immediately whether
propositions presented to us are proved, and that which others could
hardly do with the greatest mental labor and good fortune, we can
produce with the guidance of symbols alone ... As a result of this,
we shall be able to show within a century what many thousands of
years would hardly have granted to mortals otherwise.

The possibility of actually carrying out such a program of analysis for a
substantial body of knowledge, such as mathematics, did not exist until the
appearance of the predicate calculus in G. Frege’s Begriffsschrift [18]. Frege
created a new language for writing precise thought. His reasons for doing so are
exactly those which motivate this work. We defer to Frege’s wording:

In apprehending a scientific truth we pass, as a rule, through vari-
ous degrees of certitude. Perhaps first conjectured on the basis of an
insufficient number of particular cases, a general proposition comes
to be more and more securely established by being connected with
other truths through chains of inferences. ... Hence we can inquire,



on the one hand, how we have gradually arrived at a given proposi-
tion and, on the other, how we can finally provide it with the most
secure foundation. The first question may have to be answered dif-
ferently for different persons; the second is more definite, and the
answer to it is connected with the inner nature of the proposition
considered. The most reliable way of carrying out a proof, obviously,
is to follow pure logic, a way that, disregarding the particular char-
acteristics of objects, depends solely on those laws upon which all
knowledge rests. ... In attempting to comply with this requirement
in the strictest possible way I found the inadequacy of language to
be an obstacle; no matter how unwieldy the expressions I was ready
to accept, I was less and less able, as the relations became more and
more complex, to attain the precision that my purpose required.
This deficiency led me to the idea of the present ideography. Its first
purpose, therefore, is to provide us with the most reliable test of
the validity of a chain of inferences and to point out every presup-
position that tries to sneak in unnoticed, so that its origin can be
investigated.

A monumental effort to apply the logistic methods is the three volume 1,929
page Principia Mathematica by A.N. Whitehead and B. Russell [45]. Its
reception in some quarters was highly favorable as we can see from this review
by C.J. Keyser [28].

Logic it is called and logic it is, the logic of propositions and func-
tions and classes and relations, by far the greatest (not merely the
biggest) logic that our planet has produced. ... Few will read it,
but all will feel its effect, for behind it is the urgence and push of a
magnificent past; two thousand five hundred years of record and yet
longer tradition of human endeavor to think aright.

The logic of this treatise can express all of mathematics yet it is formal 1. It is
thus possible in principle to translate the proof of any mathematical theorem
into a completely formal proof. However, the prospect of actually doing this
is quite daunting because an informal proof of modest length will expand to a
formal one of prodigious size and will require in its production extreme care and
detailed knowledge of the more or less arbitrary conventions of the particular
formalism. These tedious details will in sheer number dominate the interesting
mathematical ideas which are the very raisin d’étre of the proof. This state
of affairs prompted some to greet Principia with far less enthusiasm than C.J.
Keyser. From Henri Poincaré [35] we read “On the contrary, I find nothing in
logistic for the discover but shackles. It does not help us at all in the direction

!Principia Mathematica is not completely formal in the modern sense, but could be made
so.



of conciseness, far from it; and if it requires twenty seven equations to establish
that 1 is a number, how many will it require to demonstrate a real theorem?”

We see now before us the question which motivates this study. Is it in fact
possible to formalize real mathematical argument in a useful way? Will formal
proofs of important theorems always be so long that no one will read them and
so tedious that there will be no point in trying? Will formal proofs ever be
more than museum pieces and curiosities? Or will there be such good systems
for writing and displaying formal proofs that they will become an accepted stan-
dard of rigor and will be treasured like diamonds for their strength? Will they
open a realm of mathematics in which the computer will play a significant role
— in checking proofs, giving advice about details, retrieving relevant facts from
libraries of theorems and performing numerous other chores of a mathemati-
cian’s assistant long before machines can help mankind in general with even the
most menial common sense reasoning?

In this paper we will explore these questions. We begin with a look at
relevant theoretical results. Most of these results arose in the context of studying
the Hilbert program as a means of providing a foundation for mathematics. [26]
This program was not in fact concerned with the issue which is central to us
and was dominant in Frege, namely a plan to build and use an “ideography”.
Hilbert wanted only to study an ideography and he was immensely pleased that
a (nearly) adequate language was at hand with Principia Mathematica.

We will see that because the major theoretical results deal with Hilbert’s
program, they are not as directly relevant to our program as one might naively
expect but they form a background which must be addressed.



2 Theoretical Results.

2.1 Proofs as Expressions.

There is no doubt that we can adequately formalize the concept of a mathe-
matical sentence; the notion of a formula in the predicate calculus does that. So
our attention focuses on the concept of a proof. The simplest definition, used
in the Hilbert program from which the term Hilbert style proof arises, is that a
proof is a sequence of formulas each of which is either an axiom or follows by a
rule of inference from previous formulas in the sequence. A typical axiom would
be presented as P vV ~P and a typical rule of inference would be presented as

A A=B
B

meaning that if A and A = B are previous lines in the proof, then B can be
added as a new proved line.

Although the definition of proof is stated in terms of a sequence in analogy to
the way proofs presented on paper, a somewhat more abstract account arises if
we make the algebraic structure more explicit. To this end we can characterize
a proof as an expression built from constant terms, called axioms, and from
unary and binary operators. For example, if the above rule of modus ponens
is represented by the operator MP, then a proof of B from 4 and A = B
might be written as M P(a,,a.), where a; names A and a; names A = B. In
this account, proofs are treated like algebraic expressions and their individual
structure is tree—like. The class of proofs is still defined inductively.

This concept of proof is simple, and it captures the inductive character of
the concept, but it is not an adequate representation of proofs as they actually
occur in mathematics. This is true for many reasons, and to find an adequate
notion of proof we must unravel the inadequacies one by one and sort out how
to assemble a sufficiently adequate account. That problem will be the principal
concern of the next subsection where we shall examine some new ideas. At this
point we bring into the account the best representation of proofs known from
the early work of logicians, especially of G. Gentzen.

We see in actual mathematics arguments from assumptions. For instance to
prove A = B = A we say “assume A is true, then we will prove B = A....”
Gentzen [19] analyzed such arguments and discovered the Calculus of Natural
Deduction. It is interesting that proofs in this calculus can also be presented as
algebraic expressions (inductively defined) if we take as primitive a slightly more
general concept than that of a formula. We take instead the idea of a sequent
as Gentzen called it, which has the form 4,,..., A, I B in our case, which is
to be read “from the assumptions A,,..., A,, the conclusion B follows”. The
meaning is similar to that of the formula A,&...&A, = B, but the syntax of
sequents favors a class of operations (inference rules) which would be awkward
to state for formulas. The use of sequents moves some of the detail of the



deductive machinery out of the object language, from the concept of formula,
and into the metalanguage.

Here is how the rules of proof are stated in terms of sequents and operations
on them. The analogue of an axiom scheme is a certain kind of sequent, namely
one of the form A,,...,A, F A; for 1 < i < n. These are the primitive or
atomic sequents. The rule of modus ponens can be expressed in several forms.
One form is

L]"A Lg"'AﬁB
LyuL;+B

where L; and L, are lists of formulas and L; U L. is their “union”. Another
form is

Ll,A=>B,L2}'G L3I"A
L,,B,L,, L3 F G

Either of these rules can be represented by an expression of the form MP(a,b)
where a and b denote sequents of the appropriate form and MP as a binary
operator on proofs.

In PRL proofs are defined in terms of sequents, but in addition the inference
rules are presented in a top—down style with the goal first and the subgoals
under it. Thus the PRL rule for modus ponens is in fact written as

i. H,,....nA=>B,....mH,+G by elinn
1. H,....H,F A
2. Hy,...Hp,,m+1Am+2BFG

As a proof expression, we might write an application of this rule as elim(n)(h,, h2)
where h; denotes the first subgoal and h, the second.
Here is an example of a complete PRL proof of the formula A&A = B = B.

F A& (A= B)= B by intro
1. At (A=>B) F B byelin1
1. A 2. A=>B + B by elim 2
1. A, 2. A=>B I A by hyp 1
1. A, 2. A=>B, 3. B+ B byhyp3

An algebraic expression for this proof is intro(elim(1)(elim(2)(hyp 1, hyp 3))).
This expression together with the goal formula completely determines the proof
as we shall see later.



2.2 Formal Versus Informal Proofs.

The idea of a proof in mathematics is exceedingly subtle. Even in a very
rigorous style of mathematics it is quite obvious that what passes for a proof
is not the simple kind of formal algebraic structure outlined in the previous
subsection. In this subsection we want to examine some of the features of
informal proofs that significantly distinguish them from formal proofs as they
are now known.

Certain arguments rely heavily on our intuition, perhaps on geometric or
physical intuition or on a deep understanding of natural phenomena.

We do not attempt to treat such arguments here and we will not call them
proofs. We will rule them out by insisting on the concept of a purely mathe-
matical proof. This is a concept which in some form we owe to the Greeks.

In the realm of purely mathematical proofs we can recognize the step by
step character of the formal proofs defined above, and we agree that the formal
algebraic structure is necessary to understand informal proofs. But it is not
clear that all proof concepts can be reduced to these. Anyone with experience
with real mathematical proofs will recognize other kinds of justification, many
of them signaled by the phrases like “it is obvious”. This justification of a proof
step can hide a great deal of reasoning of various kinds such as:

1. Application of trivial steps of logic, e.g., noticing from (4 = B) = C,
-B = C, and B V -B, that C will follow,

2. application of basic rules in some familiar domain such as arithmetic, e.g.
noticing that 1 <a<b<1meansa=>b=1,

3. recall of some well-known fact and some well-known way to apply that
key fact, e.g. noticing that any number can be uniquely factored into a
product of primes,

4. observation that a proof technique just successfully applied to a formula
will apply with minor modifications to the formula at hand.

We believe that we know how to formalize the methods of reasoning of the
first two kinds. In the first case we use an algorithm which carries out trivial
or immediate reasoning as reported in work on PL/CV [12] or as summarized
in sections 4 and 5 here. In the second case we know of a variety of decision
procedures which appear to capture this style of reasoning.

For categories 3 and 4 we will make proposals in later sections, but unlike
for the first two categories we do not have experimental evidence that we are
on the right track. However, it can be argued that methods in these later two
categories do not constitute rigorous proof but rather informal proof discovery
heuristics. So if we restrict the concept of proof still further to include only
rigorous purely mathematical proof, then there is reason to believe that we
know how to formalize it.



One way to assess the effectiveness of the techniques used to formalize proofs
is to measure the length of the complete and checked formal proof as a function
of the length of a carefully written down rigorous informal proof. It is widely
believed that existing techniques of formalization are ineffective because the
formal proofs are much longer. But what is not appreciated is that the cvidence
thus far accumulated is that there is (at worst) a linear relationship between
the two lengths, say cn where n is the length of the informal proof and c is
a constant. In early proof checking systems such as AUTOMATH [14] the
constant ¢ was rather large, around 50. In systems like PL/CV [12] the constant
was smaller because more elaborate techniques such as decision procedures and
automatic rules were used. We will see here that the method of tactics can
lower the constant even more. Indeed, if our ideas for iormalizing the methods
of categories 3 and 4 succeed, then we can imagine that formal machine checked
proofs will actually be shorter than their informal counter parts.

We will see in subsequent sections which ideas are essential to preserving a
small linear relationship between the size of formal and informal proofs. We
will also see how these empirical discoveries were made and will quote from the
original reports of them to emphasize their significance.

2.3 Metamathematical Results.

Our claim that we can formalize the concept of proof appears to contra-
dict results from metamathematics such as Godel’s incompleteness theorem|21].
How can we discuss the size relationship between formal and informal proofs
in number theory when there are statements of number theory which are not
provable in any fixed formal system yet are provable in the metatheory? The
answer here is that we consider only informal proofs in some fixed axiomatic
theory, such as Peano arithmetic. When we expand the informal theory, say by
including new axioms, then we correspondingly produce a new enlarged formal
theory.

There are other metamathematical results that seem equally discouraging
to our enterprise. For example, Gddel [22] shows that in second—order number
theory there are proofs of first—order statements that are much shorter than any
first—order proof. Hartmanis [25] has considerably elaborated on this theme by
proving that for any formal system F and any recursive function f there are
theorems of length n which we can prove from outside of F in n steps but whose
shortest proofs in F require f(n) steps. Thus Hartmanis [25] concludes:

These results show very clearly that we pay a price for formalizing
mathematics. In every formalization, infinite sets of trivial theorems
will require very long proofs. Thus we have a very dramatic and
quantitative explanation of why we should not and in practice do
not freeze a formation when doing or discussing mathematics.



What are we to make of these results? In the first place, none of them apply
if we are willing to fix an axiomatic theory and compare formal and informal
proofs over it. Nor do they apply if we are willing to add new axioms to the
formal theory if the need arises and the axioms are widely known and accepted.
Either of these positions is acceptable given the nature of our investigation. But
moreoever it should be noted that these negative metamathematical results may
apply only to an infinitesimally small collection of theorems which may not be
of interest in the first place. It may also be the case that by allowing one
simple informal metatheory level mechanism for extending a theory, e.g. adding
axioms asserting consistency, these negative results can be avoided. Whatever
the possibilities, it is important to know what the empirical results are. Do we
in fact see in practice any sign of these limitations?

Another criticism of our approach is suggested by results on decision prob-
lems. For example it is known for any nondeterministic Turing machine recog-
nizing the theorems of Presburger arithmetic that for every n there are theorems
of length n for which the machine will require 22°" steps. Similar results are
known for other extremely basic theories.

Hartmanis [25] interprets these results as “Again the limitations of formal
methods and mechanical proof procedures . .. have been pointed out.” De Millo,
Lipton, and Perlis [16] say:

Outsiders see mathematics as a cold, formal, logical, mechanical,
monolithic process of sheer intellection; we argue that insofar as it is
successful, mathematics is a social, informal, intuitive, organic, hu-
man process, a community project. Within the mathematical com-
munity, the view of mathematics as logical and formal was elabo-
rated by Bertrand Russell and David Hilbert in the first years of this
century. They saw mathematics as proceeding in principle from ax-
ioms or hypotheses to theorems by steps, each step easily justifiable
from its predecessors by a strict rule of transformation, the rules of
transformation being few and fixed. The Principia Mathematica was
the crowning achievement of the formalists. It was also the death-
blow for the formalist view. There is no contradiction here: Russell
did succeed in showing that ordinary working proofs can be reduced
to formal, symbolic deductions. But he failed, in three enormous,
taxing volumes, to get beyond the elementary facts of arithmetic.
He showed what can be done in principle and what cannot be done
in practice. If the mathematical process were really one of strict,
logical progression, we would still be counting on our fingers.

Let us see, in light of these discouraging remarks, what has in fact been
accomplished.

10



3 Empirical Results.

We have seen that the theoretical results concerning the feasibility of ade-
quately formalizing the concept of proof are not definitive. We have also said
that there are empirical studies which appear to show that such formalization
is feasible in the sense that computer systems have been written which help
the user generate and check formal proofs to such an extent that people have
been willing to undertake writing formal mathematics using them; they have
tolerated expansion of the informal text by factors between 5 and 50. In this
section we take a closer look at these empirical results by outlining a brief his-
tory of a topic we call mechanical proof checking. This topic blends at the edges
with the subject of automatic theorem proving and forms part of the topic now
called automated reasoning in the literature. There is a two volume series, Au-
tomation of Reasoning [39], which gives an adequate historical account and a
survey of the empirical evidence in the subject of automatic theorem proving,
so this brief account will focus on proof checking, which is directly related to
our concern with the formalization of proofs, to the near exclusion of automatic
theorem proving.

3.1 Early Work in A.L

Already in 1962 John McCarthy [31] wrote about the possibility of using
computers to check proofs and verify program correctness:

Checking mathematical proofs is potentially one of the most interest-
ing and useful applications of automatic computers. Computers can
check not only the proofs of new mathematical theorems but also
proofs that complex engineering systems and computer programs
meet their specifications. Proofs to be checked by computer may
be briefer and easier to write then the informal proofs acceptable
to mathematicians. This is because the computer can be asked to
do much more work to check each step than a human is willing to
do, and this permits longer and fewer steps. ... The combination of
proof-checking techniques with proof-finding heuristics will permit
mathematicians to try out ideas for proofs that are still quite vague
and may speed up mathematical research.

He went on to examine formal systems that admit brief proofs and outlined a
proof checker to be written in Lisp.

We envisage the use of computer proof-checking in mathematics as
follows: The mathematician already has formalizations of his branch
of mathematics and the computer system has stored in it the the-
orems that have previously been proved. In addition, there are a
number of techniques embodied in programs for generating proofs.
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The mathematician expresses his ideas of how a proof may be found
by combining these techniques into a program. The computer car-
ries out the program which may prove the theorem, may generate
information that will guide another try, may indicate an elementary
misconception, or may be of no help whatsoever.

In 1963 Paul Abrahams [1] wrote a Ph.D. thesis at MIT under Marvin Min-
sky in which he describes a program to check theorems in Principia Mathematica
[45] (about 63 tautologies were actually checked). Abrahams worked out the
notion of macro steps as a way to let the computer build proofs from outlines of
methods. He saw writing formal proofs as equivalent to writing assembly lan-
guage programs and saw his accomplishment as steps toward higher level proof
languages. It is interesting that in the same period, 1960-1963, Hao Wang [43]
wrote a program based on a decision procedure for a fragment of the predi-
cate calculus, that proved all the pure predicate calculus theorems of Principia
Mathematica, (about 400 of them). This achievement drew attention to the
more ambitious project of automatic theorem proving in general.

By 1969 there were two major proof checking projects underway at the Stan-
ford A.L. Lab supported by John McCarthy; one was FOL (First Order Logic)
[44] with Richard Weyhrauch, and the other was Stanford LCF (Logic for Com-
putable Functions) with Robin Milner. Both projects are still active, the latter
now at Edinburgh [23], Cambridge [34], INRIA and to some extent at Cornell
(e.g., this report). We will confine our remarks to LCF since it is directly rel-
evant to this work. The LCF group successfully proved the correctness of a
small compiler [9] and built up the experience needed to define and implement
Edinburgh LCF [23] about which we will have much to say in section 4.

Also at Stanford durring this period work was begun under P. Suppes to
use proof—checkers in computer aided instruction. The EXCHECK system [41]
has been used in teaching set theory to undergraduates at Stanford, and the
relationship between proof theory and proof checking was explored extensively
(C.1., [41] for articles by G. Kreisel for example).

3.2 The AUTOMATH Project.

In 1967-68 at Eindhoven Technical University, N.G. deBruijn began the
AUTOMATH project [15]. “AUTOMATH is a language which we claim to be
suitable for expressing very large parts of mathematics, in such a way that the
correctness of the mathematical contents is guaranteed as long as the rules of
the grammar are obeyed.”

The AUTOMATH effort concentrated on building a very expressive lan-
guage in which any mathematical statement could be stated. L.S. Jutting [27]
transcribed an entire book by Edmund Landau, Grundlagen der Analysis (158
pages), with AUTOMATH (a major five year effort resulting in several volumes
of computer checked mathematics). The lesson learned was that the job was

12



possible; no exponential explosion in proof length appeared. Indeed, it seemed
that there was a linear relationship. Here is how deBruijn [15] describes the
result:

A very important thing that can be concluded from all writing exper-
iments is the constancy of the loss factor. The loss factor expresses
what we lose in shortness when translating very meticulous “ordi-
nary” mathematics into AUTOMATH. This factor may be very big,
something like 10 or 20 (or 50), but it is constant: it does not in-
crease if we go further in the book. It would not be too hard to push
the constant factor down by efficient abbreviations.

3.3 Programming Logics.

In 1976 at Cornell University we began the PL/CV project which was also
concerned with proof checking. The first phase of the effort concentrated on
using fast decision procedures and techniques from the theory of algorithms [2]
and using the techniques of programming language and later synthesizer design
[42] to produce readable proofs in algorithmic mathematics. We were able to
write 1477 lines of formal constructive math fairly easily culminating in the
Fundamental Theorem of Arithmetic. The proofs were algorithmic and could
be efficiently executed. Students also wrote numerous isolated proved-programs
from a first semester programming course.

The PL/CV effort confirmed a kind of linearity hypothesis for elementary
proofs. But because of computer aid in generating these proofs, the loss factor
was more like 10 rather than 50.

8.4 Spectrum of Methods to Automate Reasoning.

One can identify at least three distinct general approaches to automating rea-
soning. At one extreme is pure proof checking, as exemplified by AUTOMATH.
At the other extreme is automatic theorem proving, as exemplified by vari-
ous well-known provers [6,5,40]. In between are those approaches which rely
to some extent on proof checking and on decision procedures. They might be
characterized as nonheuristic theorem proving; a typical example is PL/CV.
Some systems use all three strategies. Let us consider the characteristics of
each method and then see how Edinburgh LCF offers the best of each approach.

Proof Checking:

The pure proof checking methods rely on a very expressive language in which
to capture the abstractions that make rigorous mathematics possible. They
require large libraries of results and use a minimum amount of algorithmic
metamathematics. Such techniques are thus very safe but also very tedious and
unexciting. They tend to use the computer the way that compilers do.

13



Theorem Proving:

The automatic theorem provers rely on Godel’s completeness [20] theorem.
They usually code some complete proof search strategy based on the idea that
to prove A one should look systematically for a model satisfying ~A. Inherent in
these methods is the possibility that the procedure will fail after an investment
of considerable resources. Thus the methods can be very costly, but can discover
unexpected results and can aid in the discovery of a proof. Current methods are
based on an inherently nonconstructive semantics for the first order predicate
calculus.

Decision Procedures:

The decision procedure technique frequently relys on a deep analysis of the-
orems and requires complex algorithms. Algorithms for simple theories such
as equality, natural number arithmetic and rational arithmetic have been quite
successful. These algorithms have good expected computing times. Although
a great deal is known about the asymptotic intractability of many decision
problems such as Presburger arithmetic and real closed fields, it is not known
whether there are useful algorithms for the naturally occurring statements in
these theories. In contrast to the proof checking methods, these decision proce-
dure techniques rely on complex algorithms whose correctness must be a major
factor in judging the reliability of a system using them.

LCF lIdea:

The Edinburgh LCF project took the approach that one should build a
system which allows experimentation with a mix of strategies along the spectrum
from pure proof checking to full theorem proving. They state [23] that one of the
main aims of the projects was “to provide an interactive metalanguage (ML) for
conducting proofs, in which in principle almost any style can be programmed,
but which provides the greatest possible security against faulty proofs.”

Related Ideas:

Inherent in the LCF approach is a formalization of the metatheory to some
extent. The programming language ML of LCF formalizes the syntax and proof
rules of the object theory. Other schemes have been proposed for incorporating
metamathematical reasoning. For example, Davis & Schwartz [13] proposed
completely formalizing the metamathematics and proving that various exten-
sions of the inference rules are correct. These can be added as new rules. Boyer
& Moore [6] and Weyhrauch [44] propose a similar scheme and discuss the other
options. The PL/CV project [12] proposed a scheme whereby the metamathe-
matics of one level of the system can be reflected in the next level.

14



Of all of these methods we have found the LCF idea easiest to use and most
powerful. We have been persuaded to study our technique in the context of the
Edinburgh LCF approach.

The PRL proof generating environment attempts to achieve a low loss factor
by a combination of techniques similar to those envisioned by McCarthy [31]:

a proof editor for ease in generating formulas and entering new notations;
the editor is oriented to a screen with mouse and windows.

a top down logic to support goal oriented proving directly (we call these
refinement logics).

fast decision procedures for key subtheories: equality, lists, restricted
arithmetic.

representation of the logic in the Edinburgh LCF metalanguage, ML,
and use of tactics and tacticals to provide safe user-defined extensions
of the logic along the entire spectrum from decision procedures to heuris-
tic search.

use of functions (called transformation tactics) which convert one proof
into another.
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4 The Object Language and the Metalanguage.
4.1 Introduction.

It is fundamental in the study of logic to differentiate between metatheory
and object theory. The object theory is that formal theory which is the subject
of the metatheory. Typically the metatheory is not altogether formal; if it is,
then it too has a metatheory and various questions arise about the relationship
between the formal metatheory and the formal object theory. In our case the
object theory is the PRL number and list theory, called A-PRL. The metatheory
contains a formal part called the metalanguage; this is the ML programming
language from LCF.

In the formal metalanguage we can write programs which search for proofs
or transform proofs. This section will explain how that is accomplished. We
begin with a brief account of the object theory, PRL, then an account of the
metatheory, ML, and finally an introduction to the concept of a tactic.

4.2 The Object Theory, A\-PRL.

Here we briefly describe the PRL logic to the extent necessary to understand
the detailed structure of proofs. The key novelty here is that PRL is a refinement
logic [4], that is a sequent calculus [19] oriented top down.

Syntax and Proof Rules.

The atomic types of the theory are integer and integer list, which are abbre-
viated int and list respectively.

The terms of the theory are constants, variables, applications of the form
fl(e1,...,€n) or €, Op e; where €,e; are terms, and op is an operator, and
listings ey, ..., x| where the e; are integer terms.

The constants include the natural numbers, the unary function -, the binary
operators: +, -, *, /, and various atomic functions: mod, hd, tl, and - (the last
of these represents cons in PRL). The list constants are | |, [ny,...,n,] for n;
integers.

The function constants have the following types:

mod : int X int — int
hd : list — int
tl: list — list

:int x list — list

The atomic formulas of the theory are equalities and integer inequalities.

Compound formulas are ~A, A&B, AVB, A=B for A and B formulas. The
usual precedence holds among these connectives: -, &, V, =, with = being right
associative. Compound formulas include
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Vzy,...,2,:type. A
3z,,...,2,:type. A

where A is a formula and z; are variables. Quantifiers bind more weakly than
connectives, so they have a wide scope.
A sequent has the form

[e] I.Fl,..., n.F,, FC

where i.F; are numbered formulas, C is a formula and e is an environment
of the form variable list:int, variable list:list. We adopt a less detailed notation
when possible, usually suppressing the environment and writing S+ C for S a
numbered sequence of formulas, or writing S,n.F, S’ I C when we are interested
only in the number of formula F at one occurrence. We also write S,A,B+ C
when we do not care what numbers are assigned to A and B but want to depict
their relative order.

For T a type, either int or list, we use [eU 2:T| to indicate the new environ-
ment formed by adding z to the appropriate variable list, e.g., [n, y:int, A:list U
z:int] = [n, y, z:int, A:list).

A proof is an expression of the form

goal by rule-name
51

Pn
where p; are proofs. The rule names are certain constants such as those listed
below. It is convenient to think of the proof expression in the form f(p1,...,pa)
where f is the rule name and “goal” is the range type of f viewed as a function.

The proof rules fall into five categories: (1) predicate calculus rules, (2)
arithmetic rules (taken from PL/CV2 [9]), (3) list rules, (4) rules to reference
the library and defined objects and, (5) rules to invoke tactics built in the
metalanguage ML.

Here we illustrate some of these. All rules are presented in refinement style;
that is the conclusion is listed first, thought of as a goal, and the hypotheses are
listed under it, as subgoals. The rule name is listed after the goal. Environments
are not shown if they do not change from goal to subgoals. The rule of inference
for \-PRL are sumarized in figures 1 and 2. In addition to the rules given, there
is an induction rule for lists.

The A-PRL proof editor is based upon a window display system. At each
stage in editing a proof, one sequent along with the associated refinement rule
and subgoals (if any) are displayed in a window. To refine a sequent, the user
enters the refinement rule in another window. When finished, the system cal-
culates and displays the subgoals. Figures 3 and 4 show sample proof editing.
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& S F A&B by intro S,n.A&B,S'F C by elim n

1. SFA 1. §,8'A,B+C
2.S+B
\% S+ AV B by intro 1 SnAvB,S'FC byelimn
1. SFA 1. §,8" A+ C
2.8, BF-C
S+ AV B by intro 2
1. SFB
= S+ A = B by intro SnA= B,S'FC byelimn
1. S;A+B 1. SnnA=>B,S'HA
2. Sn.A=B,S' A B+C
v [e]S F Vz:A.B by intro Sn.Vz:A.B,S'} C by elim n,t
1. [eUz:A]SF B 1. 5,Yz:A.B,§',B(t/z) + C
3 S+ 3z:A.B by intro t [e]S,n.3y:4.B, S' + C by elim n
1. S+ B(t/z) 1. [eu y:A]|S,S",B+C

Note: B(t/z) stands for B with ¢ substituted for z.

consequence
SECbyseqT
1. S+T
2. 5\,T+C

hypothesis
SnAS'FAbyhypn

false elimination
S,n.false, S' - C by elim n

Figure 1: The Basic Rules of Inference in A-PRL.
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The induction rule for integers has the following form when specialized to a base
case of 0.

[e]S F all z:int.P by ind
1. [euz:int] S,z <0,P(z+1/z)F P
2. le] S+ P(0/z)
3. ey z:int] S,z>0,P(z—-1/z)F P

The variable z cannot already appear in the environment. If it does, the rule can
be called “ind y” where y is a new variable which will be used in the hypotheses
in place of z. Other forms of the rule allow other base cases to be specified.

Figure 2: The Induction Rule For Integers.

EDIT THM max

EDIT rule of max
# top
(1 intro

> all x,y:int.some m:int.
-m<x & -m<y & (m=xvm=y)

BY <refinement rule>

Figure 3: Sample proof editing: Entering the refinement rule.
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EDIT THM max

# top
(1

>> all x,y:int.some m:int.
-m<x & -n<y & (m=xvm=y)

BY intro
1# [int x,y]

>> some m:int.
-m<x & —\m<y & (m*me'y)

Figure 4: Sample proof editing: the result of the refinement.

4.3 The Metalanguage, ML.

The language in which we write tactics in is the ML programming language
[23]. ML is a functional programming language with three important charac-
teristics which make it a good language for expressing tactics.

e ML has an extensible, polymorphic type discipline with secure types. This
allows type constraints on the arguments and results of functions to be
expressed and enforced For example, the result of a function may be con-
strained to be type proof.

e ML has a mechanism for raising and handling exceptions (in the termi-
nology of ML, throwing and catching failures). This is a convenient way
to incorporate back—tracking into tactics.

e ML is fully higher-order; functions are objects in the language. This allows
tactics (which are functions) to be combined using combining forms called
tacticals, all of which are written in ML.

In order to understand the example tactics presented below, it is not nec-
essary to know many of the details of ML. The following summarizes some of
the more important, and less obvious language constructs. Funtions in ML are
defined as in



let divides x y = ((x/y)*y = x);;

This function has type int—int—bool, i.e., it maps integers to functions from
integers to boolean values. There is also an explicit abstraction operator, A.
The previous function could have been defined as

let divides = A x . Ay . ((x/y)*y = x);;

Exceptions are raised using the expression “fail”, and handled (caught)
using “?”. The result of evaluating expl?exp2 is the result of evaluating expl,
unless a failure is encountered, in which case it is the result of evaluating exp2.
For example, the following function returns false if y = 0.

let divides x y = (if y = O then fail
else (y*(x/y)=x)
) ? false;;

In fact, because dividing by O casus a failure, we could define the same
function with,

let divides x y = (y*(x/y)=x)7?false;;

4.4 Tactics in ML.

The ML concept of tactic is a formalization of the idea of top—down heuristic
problem solving. The method was systematized already by the Greeks, e.g.,
Pappas, and it is a key element in G. Polya’s heuristic [36]. It also formed the
basis for the Logic Theorist of Newell, Shaw and Simon [33]. Let us hear how
tactics were presented in these various settings.

First from the Greeks, Polya [36] quotes Pappas (circa 300 BC) as follows:

The so-called Heuristic is, to put it shortly, a special body of doctrine
for the use of those who, after having studied the ordinary Elements,
are desirous of acquiring the ability to solve mathematical problems
and is useful for this alone. ... If we have a ‘problem to prove’ we
are required to prove or disprove a clearly stated theorem A. We
do not yet know whether A is true or false, but we derive from A
another theorem B, from B another C and so on until we come upon
a last theorem L about which we have definite knowledge.

Polya himself says [36] that
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heuristic, or ars inveniendi was the name of a certain branch of study,
not clearly circumscribed, belonging to logic, or to philosophy, or to
psychology ... The aim of heuristic is to study the methods and
rules of discovery and invention.

The Logic Theorist embodied heuristics, as Minsky put it [32] :

The LT (Logic Theory) program is centered around the idea of ‘work-
ing backward’ to find a proof. ... The heuristic technique of working
backward yields something of a teleological process, and LT is a fore-
runner of more complex systems which construct hierarchies of goals
and subgoals.

Indeed the concept of goal or problem used in LT fits extremely well in this
context. Minsky [32] says: “abstractly a person is given a problem if he is given
a set of possible solutions, and a test for verifying whether a given element of
this set is in fact a solution to this problem.”

Finally here is how the LCF designers put the matter [23]:

To make sense of the notion of tactic, we further postulate a binary
relation of achievement between events and goals. Many problem
solving situations can be understood as instances of these three no-
tions: goal, event and achievement. Further we make general type
definitions:

tactic = goal -> goal list # validation
validation = event list -> event .

The idea is that a tactic decomposes a goal G into a list of subgoals G, ..., Gp.
An event g; achieves a subgoal, say g; achieves G;. A validation v will take g;
and build an event v(gy,...,ga) Which achieves G. In our setting we think of
G as a theorem and g as its proof. The type-theoretic structure of ML makes
it possible to define these concepts precisely. However, the type structure is
not quite rich enough to do this exactly as we would wish. The full PRL type
structure in fact captures exactly the concepts needed for constructive proof,
but we shall not pursue this aspect of the theory in this paper.



5 Tactics in A\-PRL.

In this section, we examine how the general ML tactic mechanism has been
specialized to PRL. Recall that the generic type of tactics is

tactic : goal — goal list # validation,
validation : event list — event.

What should goal and event correspond to in PRL? It would seem reasonable to
associate goal with the PRL sequent (recall that a sequent consists of a variable
environment, a hypothesis list, and a conclusion) and to associate event with the
proof of a sequent. However, we want tactics to operate on partial proofs. This
is a generalization since a sequent may be viewed as a degenerate partial proof.
Because the tactics will be invoked in an interactive environment, it is desirable
to allow them to return (achieve) incomplete proofs. A tactic will complete as
much of a proof as possible, leaving what is left to be supplied by the user.
Thus, for the purpose at hand, it is desirable to associate event with partial
proof. Note that in what follows, the term proof should not be interpreted as
implying that the proof is complete.

A further generalization of tactics is desirable for PRL. Tactics are classified
into two categories: refinement tactics and transformation tactics. These are
each describe below.

5.1 Refinement Tactics.

Refinement tactics are like derived rules of inference. The user invokes a
refinement tactic by typing the name of the tactic where a refinement rule
is requested by the proof editor. If the tactic succeeds, then the name of the
tactic, as it was typed by the user will appear as the refinement rule in the proof.
Any subgoals that are not completely proved by the tactic will be presented as
subgoals of the refinement. As will be described in detail below, the tactic will
have built a refinement proof that connects the original sequent on which the
tactic was invoked, and the subgoals resulting from the tactic. This portion of
the proof is hidden from the user, although it is saved for other uses (such as
extraction of theorems). All that is visible to the user is the name of the tactic
and the unproved subgoals.

When a refinement tactic is invoked, the following steps occur:

1. The variable prlgoal is associated with the current sequent viewed as a
degenerate proof. Note that there may be a refinement rule and subgoals
below the sequent, but that these are ignored as far as refinement tactics
are concerned.

2. The given tactic is applied to prlgoal, resulting in a (possibly empty) list
of unproved subgoals and a validation.
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3. The validation is applied to the subgoals.

4. The tactic name is installed as the name of the refinement rule in the
proof. The refinement tree that was produced by the validation in the
previous step is stored in the proof. Any remaining unproved subgoals
become subgoals of the refinement step.

The above four steps assume that the tactic terminates without producing an
error or throwing a failure that propagates to the top level. If such an event
does occur, then the error or failure message is reported to the user and the
refinement is marked as bad, precisely as if a primitive refinement rule had
failed.

EDIT THM max

# top 1
[int x,y]
>> some m:int.
-m<x & -m<y & (m=xvm=y)

BY cases x<y V -x<y

1# [int x,y]
1. x<y
>> some m:int.
-m<x & -~m<y & (m=xVvm=y)

2# [int x,y]
1. -x<y
>> some m:int.
-m<x & -m<y & (m=xvm=y)

Figure 5: The result of refinement using the cases refinement tactic.

5.2 Transformation Tactics.

Transformation tactics are used to transform one proof into another. The
user invokes a transformation tactic by traversing the proof tree to a node, and
supplying the name of the transformation tactic to be applied. The transforma-
tion tactic is applied to the whole proof below the designated node, including
this node. If the transformation succeeds, then the result of the tactic re-
places the previous subproof. In contrast to refinement tactics, the name of the
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transformation tactic is not included in the proof, and the result of the tactic
explicitly becomes the subproof. Transformation tactics may be used, for ex-
ample, to complete and expand unfinished proofs, to produce new proofs that
are in some way analogous to a given proof, or to perform various analyses and
optimizations to proofs. When a transformation tactic is invoked, the following
occur:

1. The ML variable prlgoal is associated with the proof below, and including
the current sequent.

2. The specified transformation tactic is applied to prlgoal, resulting in a
(possibly empty) list of subgoals and a validation.

3. The validation is applied to the list of subgoals.

4. The proof that is the result of the previous step is grafted into the original
proof below the sequent.

EDIT THM max

# top 1
[int x,y]
>> some m:int.
-m<x & -m<y & (m=xVm=y)

BY seq x<y V -x<y

1+ [int x,y]
> x<0 V - x<0

2# [int x,y]
1. x<0 v -~ x<0
>> some m:int.
~m<x & -m<y & (m=xVm=y)

Figure 6: The result of applying “cases {x<0 V -x<0}” as a transformation.

The key difference between refinement and transformation tactics is that
transformation tactics are allowed to examine the subproof that is below the
current node, whereas refinement tactics are not. The result of a transformation
tactic will, in general, depend upon the result of the examination. Since most
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tactics do not depend on the subproof below the designated node, they may
be used either as a transformation tactic or a refinement tactic. The main
implementation difference between refinement tactics and transformation tactics
is how the result of the tactic is used. In the former, the actual proof constructed
by the tactic is hidden from the user, and only the remaining unproved subgoals
are displayed. In the latter, the result is explicitly placed in the proof. In fact,
since a refinement tactic can not examine the subproof, any refinement tactic
may be used as a transformation tactic. Appendix A contains a summary of the
library tactics in A-PRL. The reader may wish to read this before proceeding.

5.3 The Tactic Library.

When A-PRL is started, a library of predefined tactics is available to the user.
Appendix A contains a summmary of the library tactics. Since this library does
not, and could not, contain all the tactics a user might like, two facilities have
been included in PRL that allow the user to define and experiment with his own
tactics. First, ML may be used interactively within PRL. This allows the user
to experiment with and to debug tactics, and to make (temporary) changes to
the ML state. Second, PRL library objects may be created that can contain
ML expressions._This allows the user to store tactic defintions between A-PRL
sesions.

There is a distinguished refinement tactic defined in the tactic library called
auto_tactic. The auto_tactic is invoked automatically on the result of each
primitive refinement step. This tactic is intended to complete any simple re-
maining subgoals without further effort on the part of the user. There is a
default auto_tactic, but any refinement tactic may be designated by the user
as the auto_tactic.

5.4 Implementing Tactics for PRL.

Tactics are implemented using the dialect of the ML programming language
developed as part of the Cambridge LCF project (Tactics were first implemented
in PRL using the original ML implementation from the University of Edinburgh
and later reimplemented using Cambridge ML.) The ML language was intended
to be the meta-language of “PPLAMBDA", the logic of LCF. One of the first
tasks in implementing tactics for PRL was to change ML so that it is the meta—
language of the A\-PRL logic.

In changing the object language of ML, all references to PPLAMBDA and
operators on objects of the types of PPLAMBDA were removed. In their place
were substituted primitive types of PRL objects and operations on these types
as described below. The base types of PRL that are implemented in ML are
described in figure 7. These types should not be confused with the base types
of the A-PRL logic (integers and lists of integers).
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proof: Type of partial PRL proofs. Proofs consist of proofs nodes. Each node
represents one refinement step. A node consists of a sequent, a refinement
rule, and proofs of the children of the refinement, where the lattter two
will be missing in some leaf nodes of an incomplete proof.

rule: Type of PRL refinement rules.

binding: Type of PRL bindings. A binding associates a variable (in the envi-
ronment of a sequent) with a base type of integer or list of integers.

formula: Logical formulas of the A-PRL.

term: Expressions over the PRL base types.

Figure 7: Summary of the primitive object language types for ML.

For the types of term, formula, rule, and binding, an associated collection
of predicates, constructors, and destructors have been provided. The predicates
on the type formula, for example, allow the kind of a formula to be determined.
An example of a predicate on formulas is is_universal, which returns true if
and only if the formula it is applied to is universally quantified. The constructors
and destructors for each of the types allow new objects of the types to be
synthesized and existing objects of the type to be divided into component parts.
Appendix B contains a complete list of all primitive extensions to ML that have
been made in implementing PRL tactics.

The rule constructors in ML do not correspond precisely to the rules in PRL.
Refinement rules in PRL are usually entered as “intro”, “elim”, “hyp”, etc.
Strictly speaking, the notation “intro” refers not to a single refinement rule,
but to a collection of introduction refinement rules. Normally the context of
the proof is used to disambiguate the intended introduction rule at the time the
rule is applied to a sequent. There is a similar ambiguity with the other names
of the refinement rules. In addition to this ambiguity, the various sorts of the
rules require different additional arguments. For example, to apply an intro
rule to a conjunctive formula, no further information is required, but to apply
intro to a disjunctive formula requires that one of the disjuncts be designated.
Because rules in ML may exist independently of the proof context that allows
the particular kind of rule to be determined, and because functions in ML are
required to have a fixed number of arguments, the rule constructors have been
sub-divided beyond the ambiguous classes of intro, elim, etc., that are normally
visible to the PRL user. For instance, the function intro in ML, which takes
no arguments, constructs an intro rule which will be valid when applied to any
sequent that does not have a conclusion that is a disjunction or is quantified.
For the latter, there are three rule constructors, or_intro, all_intro, and
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some_intro, each of which require additional arguments. There is a similar
complication with the structure of the elimination rules. See Appendix B for
the complete list of ML refinement rule constructors.

For the ML type of proof, a complement of destructors are available that
allow the conclusion, hypotheses, environment, rule and children to be extracted
from a proof. There is only one primitive function in ML that constructs new
proof objects, that is refine. The function refine maps rules into tactics, and
forms the basis of all tactics. When supplied with an argument rule and proof,
refine performs, in effect, one refinement step upon the sequent of the proof
using the given rule. The result of this is the typical tactic result structure
of a list of subgoals paired with a validation. The list of subgoals is the list
of children (logically sequents, but represented as degenerate proofs) resulting
from the refinement of the sequent with the rule.

The function refine is the representation of the actual A-PRL logic in ML.
Every primitive refinement step accomplished by a tactic will be performed by
applying refine. The subgoals are calculated by actually calling the PRL re-
finement routine, deduce_children, with the proof and the rule. Constructing
the validation, an ML function, is more complicated. The purpose of the vali-
dation, given achievements of the subgoals, is to produce an achievement of the
goal. The validation, hence, constructs a new proof node where the sequent is
the sequent of the original goal, the refinement rule is the rule supplied as an
argument to refine, and the children are the events achieving (partial proofs) of
the subgoals. See figure 8 for a possible implementation of refine.

let refine rule = X proof .
let children = deduce_children rule (sequent proof) in
let validation =
A achievement .
make_proof (sequent(proof), rule, achievement) in
(children, validation);;

where sequent extracts the sequent from a proof, and make_proof constructs
a new proof node given a sequent, rule and children.

Figure 8: An abstract implementation of the function refine.

If deduce_children is applied to a sequent that can not legally be refined
with the rule, then deduce_children will fail (in sense of ML failures), including
the text of the reason for the failure as part of the failure.

5.5 Validations.
The validations produced by refine may be thought of as alternative rep-
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resentations of proof nodes where the children have not yet been entered into
the node. Compound validations produced by tacticals from these simple vali-
dations are, in this view, alternative representations of proofs. Validations are a
mechanism whereby the actual construction of proof nodes is delayed until ex-
ecution of the tactic is complete. The tactic works top—down, but the resulting
proof is constructed by the validation bottom-up. This is particularly desirable
in light of the possibility that part or all of a result may be abandoned when
a tactic fails. Since no node that is not actually included in the final result is
constructed until the tactic terminates, there is no need to undo the work of a
failed tactic.

It is of fundamental importance that the resultant proof of a tactic is a cor-
rect proof in the A-PRL logic. In particular, it should be the case that any
theorem proved by a tactic could be proved without the tactic using only the
primitive inference rules of the logic. The strong type structure of the ML
language contributes to the enforcement of this property, as does the fact that
refine is the only constructor for the type proof. Furthermore, the calcu-
lation of subgoals in the function refine by reference to the PRL refinement
function, deduce_children guarantees that the subgoals of a refinement are
correct, assuming the implementation of the logic is.

The only place where new proof nodes are constructed in tactics is in the
validations produced by refine. Guaranteeing that the nodes produced by
validations represent correct usage of the inference rules will therefore guarantee
that the proof resulting from any tactic is logically correct. To know that the
inference step represented by the validations are correct, it is necessary to verify
that the list of achievements supplied to the validation correspond to the children
of the goal under the refinement rule. Figure 9 gives an improved version of
refine that realizes this; the actual implementation of refine differs in that
there is additional bookkeeping information at each proof node that must be
kept up to date. With this modification of refine, one may prove the following.

Theorem 1 The result of a tactic (either transformation or refinement) is a
valid A\-PRL proof. O

Thus a tactic may fail to return a complete result, but can never return a
(logically) incorrect result.

5.6 Equality of the Object Language Types.

In PRL, there is a flexible syntax for denoting terms and formulas; every
term or formula can be represented in any number of ways by using the def
mechanism. This fact complicates the implementation of the equality predicate,
=, for terms and formulas. In A-PRL, terms are considered equal if they denote
the same object, and formulas are considered equal if the formulas they denote
are a—convertible to the same formula. To understand the difficulty that this
presents, it is necessary to understand how equality is implemented in ML.
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let refine rule = A proof .
let children = deduce_children rule (sequent proof) in
let validation =
A achievement .
if (sequents children) = (sequents achievement) then
make_proof (sequent proof, rule, achievement)
else
failwith ‘Wrong achievements for subgoals.‘ in
(children, validation);;

where sequents applied to a list of proofs produces a list of the sequents of the
proofs.

Figure 9: An improved abstract implementation of refine.

One of the advantages of the system of polymorphic typing employed in ML
is that all type checking is completed before execution (even when interpreted,
ML code is compiled into LISP code before execution). As a result, all type
information may be discarded before execution proceeds. For all types that are
normally primitive in ML, the equality predicate is the same; two objects are
equal if the are intensionally (i.e., structurally) equal.

In order to determine when the equality predicate is being applied to objects
that are of type term or formula, it was necessary to introduce a limited amount
of type information for use at execution time. This was accomplished by tagging
the representation of terms and formulas. The equality predicate was altered
to check objects for the tag, and apply the appropriate sort of equality test.
The tags were chosen in such a way that no object could accidentally happen
to contain the tags. The inclusion of type information at execution time is
violently opposed to the philosophy of the ML polymorphic type system, but
unfortunately was necessary.

5.7 Entering A\-PRL Terms and Formulas in ML.

To allow the use of constant terms and formulas in ML expressions, a special
form of quotation has been introduced. Entering terms or formulas enclosed by
braces will cause them to be parsed and assigned a type (term or formula) by
the PRL parser. To facilitate the syntactic extensions of PRL, lexical analysis
of ML expressions occurs in two phases. In the first phase, the PRL lexical
analyzer expands out syntax macros. In the second phase, the ML lexemes are
determined by the ML lexical analyzer. When parsing a term or formula, i.e.,
when scanning input between braces, only the PRL lexical analyzer determines
the lexemes. This arrangement allows the syntactic extension facilities of PRL
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to be used for ML expressions stored in library objects, and allows the these
extensions to be used when entering the names of tactics while editing a proof.
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6 Writing Tactics.

6.1 Writing Simple Tactics.

We now examine how some sample tactics are written. The basis of all
tactics are calls to the function refine. The following tactic, when applied to
a goal that is existentially quantified, provide the witness O for the existentially
quantified variable.

let zero_witness = refine (some_intro [{0}]);;

There are a couple features of this definition that may require comment. First,
the witness for the existential variable must be a PRL term, thus the occurence
of “{0}". The constructor for the existential introduction rule, some_intro,
requires a list witness that corresponds to the list of variables quantified by a
single existential quantifier. Thus it is necessary to enclose the 0 term in square
brackets; square brackets are the list delimiters in ML. Because refine maps
rules to tactics, zero_witness will correctly have type tactic. To make explicit
the fact that zero_witness is a mapping, we might have given the following
equivalent definition.

let zero_witness proof_tree = refine (some_intro [{0}]) proof_tree;;

If this tactic is applied to a goal that is not existentially quantified, then the
application of refine will fail, and since the failure is not caught in zero_witness,
the tactic itself will fail. A parameterized generalization of the zero_witness
tactic could be expressed as

let witness witness_term = refine (some_intro witness_term);;

This tactic would be invoked during proof editing by typing “witness” followed
by a term, for example, “witness {z+3}”. Because it does not depend upon the
existing children of the goal, witness could be employed as either a refinement
or transformation tactic.

6.2 Combining Tactics Using Tacticals.

Tacticals are ML functions that map tactics to tactics. By using tacticals,
existing tactics may be combined or changed to form new tactics. If we wanted,
for example, the witness tactic to provide a witness for an existentially quuan-
tified variable, and then try to complete the proof by simple reasoning, we could
combine it with the immediate tactic using the THEN tactical. The immediate
tactic is a tactic for proving simple sequents and is provided as part of the li-
brary of tactics. The THEN tactical applies the left—hand tactic and then applies
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the right-hand tactic to each subgoal of the first application.

let witness witness_term =
(refine (some_intro witness_term)) THEN immediate;;

The next sample tactic is a tactic that we call skolem. This tactic takes a
term as an argument and refines the goal until no more universally quantified
variables are proceeding the conclusion. It then assumes that the formula is
an existential one, and refines using some-intro with the given term. Thus the
argument term should be thought of as a function of the universally quanti-
fied variables proceeding the first existential quantifier in the formula and any
other variables free in the environment of the formula. The argument term is a
generalized Skolem function. With the above definition of witness, the tactic
skolem might be defined as

let skolem witness_term =
universal THEN (witness witness_term) THEN trivial;;

The THENL tactical is a variant of THEN which accepts a list of tactics as the
second argument rather than a single tactic. It applies to each child of the first
tactic (i.e., the left argument) the corresponding tactic in the list of tactics.
In addition to THEN and THENL, two other tacticals are of general usefulness:
REPEAT and ORELSE. The tactical REPEAT will repeatedly apply a tactic until
the tactic fails. That is, the tactic is applied to the goal of the argument proof,
and then to the children produced by the tactic, and so on. The REPEAT tactical
will catch all failures of the argument tactic, and can not generate a failure. For
example,

let repeat_intro = REPEAT (refine intro);;

will perform (simple) introduction on the proof until it no longer applies (i.e.,
until the goal of one of the introduced refinements is atomic, or is a disjunctive
or quantified formula). If repeat_intro is applied to a goal that can not be
refined using simple introduction, then the tactic is equivalent to IDTAC, the
identity tactic. The ORELSE tactical takes two tactics as arguments. It produces
a tactic that applies the first tactic to a proof, and if that tactic fails, applies
the second tactic. Thus,

let goal_simplify = REPEAT ((refine intro) ORELSE (refine arith));;
will repeatedly try to refine using the introduction rule, and if that fails, then
it will apply the decision procedure arith.

The achievement relation between goals and events used in PRL tactics
is quite weak; a proof achieves a goal if the sequent of the proof is equal to

33



the sequent of the goal. It is occasionally desirable to have a stonger form of
achievement. For example, we might wish to require that a tactic completely
prove a goal, or we may wish to require that a tactic makes some progress
towards proving the goal. We may implement tactics with these properties
using the tacticals COMPLETE and PROGRESS. Let tac be any tactic. Then

let finish = COMPLETE tac;;

is a tactic that will either completely prove the goal or will fail. The COMPLETE
tactical is implemented by checking that the result of the tactic applied to the
goal has an empty subgoal list.

let COMPLETE tactic =
A goal . if null (first event)
then event
else fail
where event = tactic goal;;

The PROGRESS tactical is implemented by verifying that the result of the
argument tactic applied to a goal does not result in a subgoal list that contains
exactly the original goal. The resulting tactic will fail unless the argument tactic
performed at lesat one refinement step.

let PROGRESS tactic =
A goal . let result = tactic goal in
if (first result) = [goal]
then fail
else result;;

A possible implementation of ORELSE is

let ORELSE tacticl tactic2 goal =
(tacticl goal) ? (tactic2 goal);;

However, a better implementation will take account of the fact that the first
tactic may not fail, but may fail to make progress, in which case the second
tactic should be applied.

let ORELSE tacticl tactic2 goal =
(PROGRESS tacticl goal) ? (tactic2 goal);;

The REPEAT tactical may be implemented in terms of the other tacticals. It

is crucial that progress be required of the argument tactic here; otherwise we
could produce a tactic that indefinitely does nothing.

34



letrec REPEAT tactic =
((PROGRESS tactic) THEN (REPEAT tactic)) ORELSE IDTAC;;

The THEN tactical is conceptually just as easy to implement, but requires a bit
of list processing in combining the validations to make a new validation. IDTAC
may be defined as

let IDTAC tactic = X goal . ([goal], head);;

6.3 Validity and Strong Validity.

Two important properties of tactics first identified by Gordon, Milner, and
Wadsworth [23] are validity and strong validity. Their original definitions were
based upon the relation achieves. Recall that in the PRL context, a proof p’
achieves a proof p if the seqents of p and p’ are equal. This is quite a weak
relation. Notice for example that any proof achieves itself. To get definitions of
validity and strong validity that are analogous to the ones intended by Godon,
Milner, and Wadsworth, we define a stronger from of achievement: completely
achieves.

Definition: We say that a proof p completely achieves a proof p if p achieves
p and p is a complete proof.

We can now define validity and strong validity. These definitions differ
from those in [23] in the replacement of the achievement relation with complete
achievement and in the specialization of vocabulary to the PRL context.
Definition: A tactic T is said to be valid if for every proof p, if

T(p) =[p1,---,pPa)sv

then for any proofs pi,...,P, that completely achieve py,...,pn, the proof
v[p1,...,Pn] completely achieves p.
Definition: A tactic T is said to be strongly valid if T is valid and for every
proof p with a provable sequent, if

T(p) = [pry---+Pn)sv

then py,...,pn are completely achievable.

In a general context, a tactic need be neither valid nor strongly valid. One
would like all tactics to be valid. However, strong validity is too restrictive since
many tactics which employ heuristics or are intended for use only on particular
kinds of goals are not strongly valid, but are still quite useful. For example, the
universal tactic described above is not strongly valid since if it is applied to a
universally quantified formula that can only be proved by induction, then the
resulting subgoals will be unprovable (i.e., not completely achievable).

In a general context it is difficult to enforce a requirement that all tactics
be valid [23]. In A-PRL it is difficult to write invalid tactics, and as we describe
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below we could enforce the validity of all tactics. The refinement logic of A-
PRL ensures that if the subgoals of a sequent refined by a primitive refinement
rule are completely provable, then the sequent is completely provable. By the
construction of validations in refine, we have the following:

Theorem 2 For every rule r, (refine r) is a valid tactic. O

Furthermore, as noted in [23], the tacticals preserve validity (the results of
PROGRESS and COMPLETE must be valid since these tacticals do not change the
validation or subgoals of the argument tactic).

Theorem 8 If T, and T, are valid tactics, and L is a list of valid tactics, then
T, THEN T,, T ORELSE T3, REPEAT T, T; THENL L, PROGRESS T3, and COMPLETE
T, are valid tactics. O

Thus all tactics in A-PRL ae valid so long as the validations are constructed
using refine and the above tacticals, and the validations are not seperated
from the associated subgoals. One can easily imagine using the ML type struc-
ture to represent the resultant type of a tactic (proof list # validation) so
that validations can not be manipulated except by the primitive ML functions:
refine, the tacticals given above, and a functions for applying a vaidation to
the associated subgoals. This would ensure that all tactics in PRL were valid.

6.4 A Larger Example Tactic.

Let us now examine how the tactic immediate is implemented. The tactic is
built from thirteen simple tactics, each of which will correctly operate on a very
limited set of goals. The combination, however, works for a wide class of goals.
We will show how to define a representative subset of the component tactics
from which immediate is defined, and then show the definition of immediate.
Each of the component tactics will refine with a particular refinement rule; thus
there is a tactic for and-introduction, one for or-introduction, one for hypothesis,
and so forth. The tactic for and-introduction is

let and_intro_tac goal =
it is_conjunction (conclusion goal)
then refine intro goal
else fail;;

This tactic first checks that the goal is a conjunction because the introduction
rule will succeed on many other kinds of goals, and we only want to refine
conjunctive formulas in this tactic. The function conclusion extracts the con-
clusion from a proof, and the predicate is_conjunction returns true when
applied to a formula if the formula is a conjunction. It should be apparent from
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the context what these sorts of functions mean in the following; see Appendix
B for their meaning if necessary.

We want a tactic that will scan the list of hypotheses and if it finds a hy-
pothesis, h, that equals the conclusion, refine the goal with the hypothesis rule
using the hypothesis h as a witness. The tactic for hypothesis must find a for-
mula in the hypothesis set, and then perform an hypothesis refinement. This
is complicated slightly by the fact that the hypothesis rule requires the number
of the hypothesis that matches the goal. We start the search with hypotheses
number 1.

let hyp_tac goal =
try_hyp (hypotheses goal) 1 goal;;

let try_hyp hyp_list hyp_num goal =
if null hyp_list
then fail
else if (head hyp_list) = (conclusion goal)
then refine (hyp hyp_num) goal
else

try_hyp (tail hyp_list) hyp_num+1 goal;;

In fact, hyp_tac is not implemented quite like this. This control structure (scan-
ning through each hypothesis looking for a particular property of the hypoth-
esis, and then performing a refinement if the property holds) occurs frequently
enough that a special functional, map_hyp, has been written that will take a
tactic-like function, and apply this function on each hypothesis until one of
the applications succeeds. The actual implementation of hyp_tac employs this
functional.

The tactic or_intro_tac will perform or-introduction if the goal is a dis-
junction. This is not as simple as and-introduction since or-introduction re-
finements require that a disjunct of the disjunctive formula be designated, and
that the disjunct be proved as a subgoal. In order to determine which is the
proper disjunct to designate, this tactic tries the first disjunct first. If it is un-
able to completely prove the subgoal of this refinement, then it tries the second
disjunct.? If it is unable to completely prove the subgoal of this refinement,
the the tactic fails. To prove the subgoals, or_intro_tac will recursively call
immediate.

2This is a simplification since disjunctions in A-PRL may have arbitrarilly many disjuncts.
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let or_intro_tac goal = .
if is_disjunction (conclusion goal) then
((refine (or_intro 1) goal) THEN (COMPLETE immediate))
ORELSE
((refine (or_intro 2) goal) THEN (COMPLETE immediate))
else
fail;;

The tactic that performs implication—elimination is similar. It scans the
hypothesis list until it finds a implication. It then refines using implication-
elimination, designating that hypothesis. It then applies immediate to prove the
first subgoal, the antecedent of the implication, and fails unless it can completely
prove it. If it succeeds, then it tries immediate on the second subgoal, but
does not require that this part of the subproof be complete. The tactic for
or—elimination is simlar, but requires that the proof be compelete below the or-
elimination refinement; otherwise, proofs may be split on disjunctive hypotheses
that are irrelevant to the conclusion currently under consideration, forcing a
duplication of proof reasoning below this refinement.

The remaining introduction tactics used in immediate are analogous to
and_intro_tac. There is also afalse_intro_tac that is analogous to hyp_tac.
Finally, there is a tactic for the division axiom that will try refinement using
this axiom, and then requires that the proof be complete below the refinement.
With all of these defined, immediate could be defined as

let immediate = REPEAT ( hyp_tac
ORELSE true_intro_tac
ORELSE false_intro_tac
ORELSE false_elim_tac
ORELSE (refine arith)
ORELSE (refine equality)
ORELSE and_elim_tac
ORELSE implication_intro_tac
ORELSE not_intro_tac
ORELSE division_axiom_tac
ORELSE and_intro_tac
ORELSE implication_elim_tac
ORELSE or_elim_tac
)i

The order of the subtactics in immediate is quite important since it deter-
mines the order in which refinement rules will be applied. The rules used by
immediate may be roughly categorized by the number of subgoals that are pro-
duced by refining with the rule. The first tactics in the above list are the tactics
that corespond to rules that do not produce subgoals. This includes hypothesis,
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true-introduction, false-introduction, false-elimination, and the decision proce-
dures arith and equality. Obviously, whenever one of these rules can apply, it
should be applied since it will completely prove the goal. Next come the tactics
that correspond to rules that produce only one subgoal, and—elimination and
implication-introduction. Finally come the tactics that correspond to rules that
may produce more than one subgoal. The point of the latter part of the ordering
is that the branching factor of the proof should be kept as low as possible for
as long as possible. Of course, all of this is heuristic, and it is possible to find
goals for which other orderings would perform better.

6.5 The Quantifier Tactic.

The immediate tactic is applicable only to unquantified formulas. The next
example tactic is designed to prove certain quantified formulas. It is common
in A-PRL to have theorems of the form Vv, ...Vv,.3w.P(vy,..., v,, w). If this
theorem were to be proved without using induction, then it would be necessary
to apply the introduction rule n times, once for each universally quantified
variable. The following tactic will repeatedly refine a proof until the conclusion
is not universally quantified.

letrec universal proof =
let goal = conclusion (proof) in
if is_universal goal then
(refine (all_intro (quantified_vars goal)) THEN universal) proof
else
IDTAC proof;;

This simple tactic is characteristic of many useful tactics. These tactics
provide a level of abstraction above the level of the primitive rule of inference,
allowing proof to be expressed and presented concisely.

As another example tactic, we examine the quantifier tactic. This tactic
searches the hypotheses of a sequent for a hypothesis with a quantifier structure
that is suitably related to the quantifier structure of the conclusion. It then
constructs a refinement that proves how they are related. Since the implemen-
tation details of this tactic are routine, we present a high-level description of
the tactic.

When is the matrix of a hypothesis suitably related the the matrix of the
conclusion? Consider the situation where the hypothesis and the conclusion each
have just two quantified variables. There are four cases to consider. Schemati-
cally, they are:

1. Vz.Vy.P(z,y) F Vy.V2.Q(z,y)

2. 3z.3y.P(z,y) + 3y.32.Q(z,y)
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3. 3z.Vy.P(z,y) F Vy.32.Q(z,y)
4. Vz.3y.P(z,y) + 3y.Vz.Q(z,y)

The first three cases are valid in the A-PRL logic, but the fourth is not in general.
This observation may be used to prove the following theorem:

Theorem 4 Let H, C be formulas with matrices My, Mc and bodies By, Bc.
The matriz Mc is said to be a legal permutation of My if and only if

1. Mc is a permutation of Mg, and

2. V universally quantified variables a in Mc . V ezistentially quantified variables
e in Mc . a proceeds e in My = a proceeds e in Mc.

If Mc is a legal permutation of Mg end H,,Byg,Hy + B¢ 15 provable, then
H,,H,H; F C is provable. O

The quantifier tactic is roughly based upon this theorem. The result of
an application of this tactic is one unproved subgoal: to prove that the body
of the conclusion follows from the hypotheses. Once it has been verified that
the matrix of a conclusion is a legal permutation of the matrix of one of the
hypotheses, the refinement is constructed by applying the following four rules
repeatedly (in order) until no rule applies.

1. If the conclusion is universally quantified, refine using universal-introduction.
2. If the hypothesis is existentially quantified, refine using some-elimination.

3. If the hypothesis is universally quantified, refine using all-elimination with
the same variable name.

4. If the conclusion is existentially quantified, refine using some-introduction
with the same variable name.

The usefulness of the quantifier tactics depends upon the heuristic that
if the matrix of the conclusion is the a legal permutation of a matrix of a hy-
pothesis, then the theorem may be proved by beginning the proof by the simple
quantifier manipulations given above. In general, this is a good heuristic. There
are, however, cases where the quantifier tactic will proceed to prove tangen-
tial facts that will prevent the proof of the complete theorem. For example,
quantifier may construct a tangential refinement if the conclusion must be
proved by induction, or if the the matrix of the conclusion is a valid permuta-
tion of more than one hypothesis matrix. That is, the tactic quantifier is not
strongly valid. In combining quantifier with other tactics, this problem may
be avoided by employing the COMPLETE tactical. The following tactic combines
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immediate, universal, and quantifier to form a powerful, but still simple
tactic.

letrec trivial =
REPEAT
( immediate ORELSE
((PROGRESS quantifier) THEN (COMPLETE trivial)) ORELSE
universal

)i

6.6 Example Transformation Tactics.

As a final example tactic we examine a pair of transformation tactics, mark
and copy, that can be used to copy proofs. To use these tactics, the user locates
the proof he wants to copy and invokes the mark tactic as a transformation tactic.
He then locates the goal where he wants the proof inserted, and invokes copy
as a transformation tactic. The application of mark does not change the proof
and records the proof (in the ML state) so that it is available when the copy
tactic is used. Note that the goal of the proof where the copied proof is inserted
is not, in fact can not, be changed by the copy tactic.

The mark tactic is defined as follows. The variable saved_proof is a reference
variable of type proof.

let mark goal_proof =
(saved_proof := goal_proof;

IDTAC goal_proof

)i

The basis of the copy tactic is a verbatim copy of the saved proof. This is
accomplished by recursively traversing the saved proof and refining using the
refinement rule of the saved proof. The following is a first approximation of the
copy tactic.

letrec copy_pattern pattern goal =
(refine (refinement pattern)
THENL (map copy_pattern (children pattern))
) goal;;

let copy goal = copy_pattern saved_proof goal;;

This version will of copy will fail if the saved proof is incomplete (since the
selector refinement fails if applied to a proof without a refinement rule) To cor-
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rect this deficiency, we define a predicate is_refined and change copy_pattern
to apply immediate where there is no refinement in the saved proof.

letrec copy_pattern pattern goal =
if is_refined pattern then
(refine (refinement pattern)
THENL (map copy_pattern (children pattern))
) goal
else
immediate goal;;

With this as a basis, any number of more general proof copying tactics can
be defined. For example, the following version of copy looks up the actual
formula being referenced in elimination rules (rather than just the index in the
hypothesis list) and locates the corresponding hypothesis in the context where
the proof is being inserted. Further, if one of the refinements from the pattern
fails in the new context, then immediate is tried (rather than the whole copy
failing).

letrec copy_pattern pattern goal =

if is_refined pattern then

(refine (adjust_elim rules pattern goal)
THENL (map copy-pattern (children pattern))

ORELSE immediate
) goal

else
immediate goal;;

The function adjust_elim_rules checks if the refinement is an elimination
rule. If not, it returns the value of the rule unchanged. If it is an elimination
rule, it looks up the hypothesis in the pattern indexed by the rule and finds
the index of an equal hypothesis in the hypothesis set of the goal. In this case
the value returned is the old elimination rule with the index changed to be the
index in the hypothesis set of the goal rather than the pattern.

The tactics mark and copy illustrate the usefulenss of transformation tactics
and how transformation tactics can be used to extend the A-PRL proof editor.
The result of the copy is almost a verbatim copy of the original proof. However,
one could imagine writing more general tactics to construct proofs in analogy
to existing proofs.
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7 Experience and Conclusions.

Experience.

We have come to rely more and more heavily on the tactic mechanism of
A-PRL because it has proven to be so successful for a broad class of very simple
proof techniques. A number of users have written several small special purpose
tactics, and we have written a variety of general tactics a discussed previously.
These general tactics allowed us to achieve in a matter of days most of the
capabilities of the immediate rule mechanism of PL/CV [12] which had to be
hand coded in the basic implementation (on a scale of weeks). Moreover, the
tactics that accomplished this are easily understood in every detail and can be
employed in building more complicated tactics.

The tactic mechanism has also allowed us to structure the deductive power
of the system around specialized reasoners. Users have been able to write a col-
lection of tactics and theorems designed to construct proofs about a particular
concept. For example, Tim Griffin [24] collected a dozen theorems about the
monotonicity of the arithmetic operators, and wrote a few tactics to systemati-
cally apply these results to a goal involving the order relation. The collection of
tactics and theorems constitutes a reasoner, which he calls ARITHPACK, that
can be invoked by users and by other other tactics.

Plans.

We plan to explore more domain specific tactics, such as those which have
knowledge of a particular concept such as the order relation in ARITHPACK,
and we intend to explore more general tactics such as those used in the Boyer-
Moore [6] theorem prover to structure inductive proofs. As in other cases of
theory construction, it will be necessary to accumulate a number of simple
methods before we can begin to build the powerful methods that human problem
solvers draw upon to attack the most routine problems.

Another promising path of investigation that we have undertaken is the
unification of the object language and the metalanguage. Is is possible to express
the ML primitives for »-PRL in the theory itself and to write functions in »-PRL
which are tactics. In this setting it is possible to prove in advance that certain
tactics will succeed and thereby avoid running them (C.f., Davis & Schwartz
[13], Boyer & Moore [6]). A language with this closure property is theoretically
quite interesting as is shown in Constable [11].

Conclusion

We believe that our experience with tactics has demonstrated the effective-
ness of the ML tactic mechanism and the implementation and extensions of it
discussed here. Not only are the functional metalanguage mechanisms provided
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by ML well suited to problem domain and compatible with the object theory,
but they provide a level of abstraction comparable to that of the object theory.
Thus users can build proofs and tactics with nearly equal facility. We think that
this is a feature of automated logics which should be perfected and extensively

explored.
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Appendix A

Summary of Refinement Tactics in A-PRL.

immediate: This tactic will complete most theorems where the goal follows by
simple propositional reasoning from the hypotheses possibly using the
decision procedures of A-PRL. If immediate does not completely prove
the goal, then it will return a partial proof which is guaranteed to be free
of refinements that would prevent the subgoals of the resulting proof from
being proved (although it may have refinements that will be unnecessary
in the final proof).

sequence: This tactic takes a formula as an argument and does a consequence
(“seq”) refinement with this formula. It then applies the tactic immedi-
ate to both subgoals. This is useful if the formula is easily deduced from
the goal since it eliminates the need to prove it by hand. An example
call to this tactic with the formula “z + 27 < 0” would be “sequence
{z +27 < 0}".

cases: This tactic takes a disjunctive formula as an argument, and performs
the following. The tactic tries to prove the formula as a consequence, in
much the same way as the sequence tactic would. On the second subgoal,
the formula is refined using the elimination rule for disjunctions, and the
tactic trivial is applied to the result. This tactic is useful wherever the
proof proceeds by cases, and particularly useful if it is easy to show that
the list of cases is exhaustive. An example application of this tactic would
be “cases {z <0V —~(z <0)}".

universal: This tactic repeatedly refines the goal until all the universal quan-
tifiers prefixing the conclusion have been eliminated. This is useful for
removing a string of universal quantifiers in one step.

quantifier: If the list of quantifiers of the conclusion is a legal permutation
of the quantifiers of one of the hypotheses, then this tactic performs
the necessary refinement steps to prove this. Two examples where this
arises are if the universal quantifiers have been rearranged (such as in
Vz:int.Vy:int.z < f(y) b Vy, z:int.z < f(y)) and if an existential quanti-
fier has been moved into a subfermula as in
Vz:int.Jy:int.Vziint.y = g(z, z) F Vzint.Vziint. 3yint.y = g(x, 2)).
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trivial: When applied this tactic tries to prove the goal by applying quan-
tifier or universal if the goal is quantified, and applying immediate
to any quantifier—free subgoals. This tactic includes some heuristic as-
sumptions about how the proof will proceed following the application of
the tactic. For example, it assumes that induction will not be used to
prove universally quantified formulas.

skolem: This tactic takes a term as an argument and refines the goal until no
more universally quantified variables are proceeding the conclusion. It
then assumes that the formula is an existential one, and refines using
some-intro with the given term. Thus the term should be thought of
as a function of the universally quantified variables that proceed the
first existential quantifier and any other variables that are free in the
environment (that is, it is a generalized Skolem function, whence the
name). An example of use on the goal of “F Vz:int.3y:int.z +1 = y”
would be “skolem{z+1}". This says that the witness for y is to be z+1.
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Appendix B

Summary of Extensions to ML Language for A-PRL.

Constructors and Destructors for Proofs.

e refine: rule — tactic. Given a rule, this function builds a tactic
that will refine a proof based upon the rule. The function refine will fail
if unable to refine the goal using the rule.

e true_goal_proof : proof. A constant proof with an empty environ-
ment, no assumptions, and true as the goal.

o conclusion: proof — formula. Returns the conclusion part of a goal.

o hypotheses: proof — formula list. Returns an ordered list of the
hypotheses of a goal.

e environment: proof — binding list. Returns an ordered list of the
bindings in the environment of a goal.

o refinement: proof — rule. Returnsthe current refinement rule. Fails
if no rule.

e children: proof — proof list. Returns the subgoals produced when
the current refinement rule was applied. Fails if no rule has been used.

Predicates, Constructors, and Destructors for Rules.

e rule_kind: rule — tok. Returns the type of the rule. Possible values
are: ELIM, ALL-ELIM, SOME-ELIM, INTRO, OR-INTRO, ALL-INTRO, SOME-
INTRO, HYP, SEQ, ARITH, LEMMA, INT-IND, LIST-IND, DEF, EQUALITY, SIM-
PLIFY, DIVISION, and TACTIC.
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elim: int — rule. Constructs a simple elimination refinement rule.
This rule can be used to refine a sequent if the named hypothesis is not
quantified.

destruct_elim: rule — int. Returns the integer which represents
the hypothesis of an elim rule. The function fails if the rule is not an elim
rule.

all_elim: int — term list — rule. Builds a rule for eliminating a
universally quantified formula. The terms supplied will be used instantiate
the quantified variables of the hypothesis.

destruct_all_elim: rule — int#(term list). Destructs an all_elim
rule.

some_elim: int — tok list — rule. Builds a rule for eliminating
an existentially quantified formula. The tokens in the token list will be
the variables entered into the environment for the quantified variables.

destruct_some_elim: rule — int#(tok list). Destructs a some_elim
rule.

intro: rule. Builds a rule for introducing on any formula except a
disjunction or quantified formula.

or_intro: int — rule. Builds a rule for introducing on a disjunction.
The integer is the designator indicating which disjunct should be proved.

destruct_or_intro: rule — int. Destructs an or_intro rule.

all_intro: tok list — rule. Builds a rule for introducing on a uni-
versally quantified formula. The token list is the list of variables to be
used in place of the bound variables.

destruct_all_intro: rule — (tok list). Destructs an all_intro rule.

some_intro: term list — rule. Builds a rule for introducing on an
existentially quantified formula. The term list are the witnesses to be
used.

destruct_some_intro: rule — (term list). Destructs a some_intro
rule.

hyp: int — rule. Builds a hypothesis rule. The integer is the number
of the hypothesis.

destruct_hyp: rule — int. Destructs a hypothesis rule.

seq: formula list — rule. Builds a consequence rule. The list of
formulas are the intermediate goals to be proved.
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destruct_seq: rule — (formula list). Destructs a consequence rule.
arith: rule. The arith rule.

division: rule. The division rule.

equality: rule. The equality rule.

simplify: rule. The simplify rule.

lemma: tok — rule. The lemma rule. The token is the name of the
theorem being employed as a lemma.

destruct_lemma: rule — tok. Destructs a lemma rule.

ind: int — int — int — int — rule. Builds an integer induc-
tion rule. The four arguments are respectively the downward step size,
the lower limit of the base cases, the upper limit of the base cases, and
the upward step size.

destruct_ind: rule — (int # int # int # int). Destructsan integer-
induction rule. The results are the downward step size, the lower limit of
the base cases, the upper limit of the base cases, and the upward step size.

list_ind: (tok list) — tok — rule. Builds a list induction rule.
The token list is the list of integer variables, and the token is the list
variable.

destruct_list_ind: rule — ((tok list) # tok). Destructs a list—
induciton rule. The results are the list of integer variables and the list
variable.

def: term — tok — rule. Builds a definition rule. The term is the
function or extraction object being referenced. The token is the kind
of the reference, and should be one of the following: INT-BASE, INT-UP,
LIST-BASE, LIST-IND, or EXT. The kind is determined by the kind of the
object being referenced, i.e., a recursive function on intergers, a recursive
function on lists, or an extraction function.

destruct_def: rule — term. Destructs a definition rule.

tactic: tok — rule. Builds a rule that will apply a tactic as a refine-
ment tactic. The token is the ML expression that represents the refinement
tactic.

destruct_tactic: rule — tok. Destructs a tactic rule.
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Predicates and Selectors on Formulas.

e formula kind: formula — tok. Gets the kind of formula as a token.
Possible values are ‘OR¢, * IMPLIES*, ‘AND¢, ‘NOT*, ALL, ‘SOME®, ‘ TRUE®,
‘FALSE‘, ‘LESS*‘, and ‘EQUAL°‘.

e is_disjunction: formula — bool. Returns true if the formula is a
disjunction. The following predicates are similarly defined: is_implication,
is_conjunction, is_negation, is_universal, is_existential, is_true,
is_false, is_less, is_equal.

o quantified_vars: formula — tok list. Returns the quantified vari-
ables (as tokens) of a quantified formula. Fails if the formula is not a
quantified formula.

e quantified_var_types: formula — tok list. Returns the types of
the quantified variables (i.e., tokens ‘INT‘ or ‘LIST) for each quantified
variable of a quantified formula. It fails if not a quantified formula.

e body: formula — formula. Returns the body of an ALL, SOME, or
NOT formula. Fails if the formula is not one of these kinds.

e antecedent: formula — formula. For implication formulas, returns
the antecedent. Fails if the formula is not an implication.

e consequent: formula — formula. Returns the consequent of an im-
plication. Fails if the formula is not an implication.

o disjuncts: formula — formula list. Returns the disjuncts of a dis-
junction. Fails if the formula is not a disjunction.

e conjuncts: formula — formula list. Returns the conjuncts of a
conjunction. Fails if the formula is not a conjunction.

o left_hand_side: formula — term. Returns the term on the left-hand
side of a LESS or EQUAL formula. Fails if the formula is not one of these
two kinds.

o right_hand_side: formula — term. Similar to above except returns
the term on the right-hand side of the operator.



Predicates, Constructors, and Selectors for Terms.

e term_kind: term — tok. Returns the kind of a term. The possible
values are the tokens ‘CONS¢, ‘ADD¢, ‘SUB¢, ‘MUL®, ‘DIV‘, ‘MOD¢, ‘HD‘,
‘TL¢, ‘NEG*, ‘INTEGER‘, ‘VAR®, ‘FUNCTION‘, and ‘LIST‘.

e sub_terms: term — term list. Returns the subterms of a term as a
(potentially empty) list of terms. Fails if the term is an integer or variable
term.

e identifier_of_term: term — tok. Returnsthe identifier of a variable
term or function term. Fails if not a variable or function term.

e integer_term_value: term — int. Returns the integer of an integer
term. Fails if not an integer term.

e make_var_term: tok — term . Make a variable term with the variable
name being the token.

Destructors for Bindings.

o destruct_binding: binding — tok#tok. Given a binding, reduces
the binding to the variable name and type name, both tokens. The type
name will be either ‘INT* or ‘LIST®.

e variable: binding — tok. Return the name part of a binding.

e range: binding — tok. Returns the range (type) part of a binding.
The range will be ‘INT® or ‘LIST‘.

Auto—tactic.

e set_auto_tactic: tok -> void. Sets the auto-tactic to the tactic rep-
resented by the text of the token.

e show_auto_tactic: void -> tok. Returns the current setting of the
auto-tactic.
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