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Abstract

Proof by mathematical induction gives rise to various kinds of eureka
steps, e.g. missing lemmata, generalization, etc. Most inductive theorem
provers rely upon user intervention in supplying the required eureka steps.
In contrast, we present a novel theorem proving architecture for supporting
the automatic discovery of eureka steps. We build upon rippling, a search
control heuristic designed for inductive reasoning. We show how the failure
of rippling can be used in bridging gaps in the search for inductive proofs.

1 Introduction

1.1 Motivation

G.H. Hardy [Har29] draws an analogy between a mathematician and a person
observing “a distant range of mountains”. The key steps in a proof correspond
to peaks in the mountain range. To see the proof one must observe the com-
plete mountain range, i.e. the ridges which link all the peaks. Hardy notes that
sometimes the observer:

“... can distinguish a ridge which vanishes in the distance, and conjectures

that it leads to a peak in the clouds or below the horizon.”

Conjecturing the unknown within a mathematical proof is often referred to as a
eureka step. The discovery of eureka steps represents one of the major problems
for automated theorem proving.

*This paper appears in the Edinburgh DAT Research Paper Series (No 716) and has been
submitted to the Special Issue of the Journal of Automated Reasoning on Automation of Proof
by Mathematical Induction. The research reported in this paper was supported by EPSRC grant
GR/J /80702 and ARC grant 438.



This is particularly true in the case of proof by mathematical induction. Reas-
oning about recursively defined structures or any form of repetition requires math-
ematical induction. Inductive proof is therefore crucial for reasoning about the
correctness of computer systems. Consequently, techniques for automating in-
ductive reasoning are more than just of academic interest, they have real practical
significance to industry.

Inductive proof presents very challenging search control problems for auto-
mated reasoning which give rise to various kinds of eureka steps:

e induction schemata selection: the search for an inductive proof involves
the selection of an appropriate induction schema. The induction schema is
instantiated by the given conjecture and an induction variable in the conjec-
ture. All universally quantified variables are candidate induction variables.
While the set of possible induction variables is finite the set of induction
schemata is infinite. Consequently the selection of the induction schema
introduces an infinite branching point into the search space.

¢ lemma discovery: the word “lemma” is used differently in inductive sys-
tems from the way it is used in non-inductive systems, e.g. predicate calculus
provers. A lemma does not just mean an intermediate result which is gener-
ated as a side-effect of search. A lemma may be a separate theorem which is
required to complete the original proof. The introduction of such a lemma
requires the cut rule of inference, i.e
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The cut rule can be eliminated from predicate calculus [Gen69] but not from
inductive systems. Since the cut rule allows for the introduction of arbitrary
new formulae, lemma discovery introduces an infinite branching point into
the search space.

e generalization: paradoxically, it is sometimes necessary to generalize a
conjecture in order for an inductive proof to succeed. Generalization is
however problematic since it also requires the cut rule of inference. Like
lemma discovery, generalization therefore introduces an infinite branching
point into the search space. In choosing the cut formula we must guard
against over generalization, i.e. attempting to prove a non-theorem.

e case analyses: conditional proof is an important technique. Control is
however necessary to guard against arbitrary case analysis leading to diver-
gence in the search for a proof.

Most inductive theorem provers rely upon user intervention in spotting the need
for, and in constructing such eureka steps. In contrast we present a theorem prov-
ing architecture which supports the automatic discovery of eureka steps through



the analysis of failed proof attempts. Our approach builds upon rippling [BvHSI90,
BSvH*93], a heuristic which plays a pivotal role in guiding the search for an in-
ductive proof. We demonstrate how the constraints rippling places on the search
space and its declarative nature enable us to automatically patch failed proof at-
tempts through the construction of appropriate eureka steps. In particular we
show how the systematic analysis of the failure of rippling can be used in the
selection of induction schemas and the conjecturing of lemmata, generalizations
and case analyses.

1.2 Background

It has been shown how the common structure which defines a family of proofs can
be expressed as a proof plan [Bun88]. This common structure can be exploited in
the search for particular proofs. A proof plan has two complementary components:
a proof method and a proof tactic. By prescribing the structure of a proof at the
level of primitive inferences, a tactic [GMWT9] provides the guarantee part of the
proof. In contrast a method provides a more declarative explanation of the proof
by means of preconditions. Each method has associated effects. The execution of
the effects simulates the application of the corresponding tactic. Theorem proving
in the proof planning framework is a two phase process:

1. Tactic construction is by a process of method composition: Given a goal an
applicable method is selected. The applicability of a method is determined
by evaluating the method’s preconditions. The method effects are then used
to calculate subgoals. This process is applied recursively until no more sub-
goals remain. Because of the one-to—one correspondence between methods
and tactics the output from this process is a composite tactic tailored to the
given goal.

2. Tactic execution generates a proof in the object-level logic. Note that no
search is involved in the execution of the tactic. All the search is taken care
of during the planning process.

The real benefits of having separate planning and execution phases become appar-
ent when a proof attempt fails. The declarative nature of method preconditions
provides a basis for using failure productively. In [Ire92] an extension to the proof
planning framework is proposed in which proof eritics are introduced in order to
complement proof methods. The role of the proof critic is to capture patchable
exceptions to the proof method. Since a proof method may fail in various ways,
each method may be associated with a number of critics. A critic has precondi-
tions and patches. The preconditions of a critic characterise an interesting failure
while the patch prescribes how the failure can be overcome. Critics are able to
analyse partial proofs and have a global effect upon the proof process. As well
as patching failed proof attempts critics have also been applied to the problem of
identifying and correcting faulty conjectures [MBI94].



1.3 Overview

In this paper we present the use of the critics mechanism [Ire92] in systematically
analysing the failure of the ripple heuristic. In §2 a proof plan for induction is
outlined in which we emphasize the pivotal role played by rippling. §3 forms
the core of the paper. It focuses on the ripple heuristic and how its failure can
be interpreted productively in the search for inductive proofs. Search control
issues relating to the selection and application of patches are discussed in §4. A
comparison with related techniques is presented in §5. The implementation of the
proof critics for rippling is outlined in §6 together with a discussion of test results.
Finally in §8 we draw our conclusions and outline our plans for future work.

2 A proof plan for induction

In the context of goal-directed proof the application of a rule of induction generates
base- and step-case subgoals. Example induction rules are presented in figure 1.
We will consider rule (3) in detail. The goal-directed application of (3) generates

P(0) Vn:nat. P(n)— P(s(n))
Vx : nat. P(x)
P(0) P(s(0)) Vn:mat.P(n)— P(s(s(n)))
Vx : nat. P(x)
P(nil) Vh:T.Vt: lst(T). P(t) — P(h::t) (3)
VL : Ust(T). P(1)
P(nil) Vh:T.P(h:nil) Vhy, hy: TVt: list(T). P(t) — P(hy :t hy o t) (4)
VL : Ust(T). P(1)

Four example rules of mathematical induction are shown. The first and the
third are the structural inductions for natural numbers and lists respectively.
Note that s is the successor function for the natural numbers while nil
and :: are the empty list and list constructor respectively. The second and
fourth rules are examples of two step inductions for the naturals and lists
respectively.

Figure 1: Example rules of mathematical induction

two subgoals, one base-case, i.e.

P(nil)

and one step-case, i.e.

P(t) = P(h:t)

In the step-case P(h :: t) is called the induction conclusion and P(t) is called the
induction hypothesis. The method level structure of our proof plan for induction
is given in figure 2. The role of each method is outlined in the following sections.

4



induction

base-case step-case

ripple

Y

fertilize

The proof plan for induction consists of the application of a rule of induc-
tion followed by one or more base- and step-cases. Only one of each is
shown here. In the step-case, ripple controls the rewriting of the induction
conclusion so that fertilize can apply the induction hypotheses.

Figure 2: A proof plan for mathematical induction

The heuristic which is embodied within the ripple method underpins the induction
proof plan as a whole. That is, while the ripple heuristic controls the rewriting of
step-case goals it also constrains the search for induction rules and the application
of induction hypotheses.

The ripple heuristic is based upon the observation that a copy of the induction
hypothesis is embedded within the induction conclusion. Following Hutter [Hut90]
we call this the skeleton term structure. The role of the ripple method is to
eliminate the difference between the conclusion and hypothesis while preserving
the skeleton term structure. Meta-level annotations are used to express this control
information. To illustrate, the annotated version of (3) takes the form:

P(nil) Wh:Tvt: list(t). P(t) — P(h = t])

V1 Ust(T). P(1) -

The annotated term T is called a wave. Note that the box and underlining
are meta-level constructions. The underlined object-level term , i.e. t, is called the
wave-hole. The object-level term structure within the box but excluding the wave-
hole, i.e. h :: ..., is called the wave-front. Wave-fronts highlight the difference
between the conclusion and the hypothesis. The arrow is used to indicate the
direction of movement of the wave-front within the expression tree of the induction
conclusion. The need for directed wave-fronts will be explained in §2.3.1. In the



following sections we outline the role each component of the proof plan plays in
the search for inductive proof.

2.1 Induction method

As mentioned above the constraints that the ripple heuristic places upon step-case
proof attempts also constrains the choice of induction rule. To illustrate consider
the conjecture:

Vi list(T). rev(rev(t)) =t (5)

where Tev denotes list reversal. Note that rev is defined in terms of list concat-
enation, i.e. <>. The definitions of <> and rev give rise to the following rewrite
rules!:

nil<>72 = Z (6)
X:Y¥Y<>Z = Xu(Y<>Z) (7)
rev(nil) = nil (8)
rev(X 1Y) = rev(Y)<> X unil (9)

The manipulation of wave-fronts is performed by a syntactic class of rewrite rules
called wave-rules. Wave-rules are guaranteed to preserve the skeleton term struc-
ture while making progress towards applying an induction hypothesis. Rewrite
rules (7) and (9) provide a set of wave-rules which include:

.
T <>Z = [ Xu(Y<>2) (10)
rev(T) = |rev(Y)<> X nit] (11)

The general notion of a wave-rule is explained in §2.3.1. In terms of the induction

method, wave-rules provide a mechanism for indexing appropriate rules of induc-
tion i.e. induction rules which will enable the application of wave-rules. In the case

of (5) induction rule (3) is suggested by the Tev(T) wave-term appearing on
the LHS of (11).

2.2 Base-case method

The base-case method performs simplification through the use of definitional re-
write rules. For example, a proof of (5) by induction rule (3) generates a base-case
subgoal of the form:

rev(rev(nil)) = nil
Two applications of (8) reduces this subgoal to an identity, i.e.

nil = nil

"We use = to denote rewrite rules and — to denote logical implication.



2.3 Step-case method

The ripple and fertilize methods form the step-case method. The role of the ripple
method is to rewrite the induction conclusion so that the induction hypothesis can
be applied by the fertilize method?.

2.3.1 Ripple method

Wave-fronts and wave-rules greatly constrain the search for step-case proofs. The
ripple method controls the application of wave-rules. To illustrate, consider the
step-case proof obligation associated with the proof of (5). Induction rule (3) gives
an induction hypothesis of the form

rev(rev(t)) =t (12)

while the initial induction conclusion takes the form

rev(rev(ht])) = [t

Note that the wave-fronts are associated with the induction rule so that the process
of annotating an induction conclusion is automatic. The ripple method restricts
the rewriting of an induction conclusion to wave-rules. The application of a wave-
rule requires that both the object-level and meta-level term structure match. To
illustrate, the application of wave-rule (11) to the initial induction conclusion gives
rise to

rev(jrev(t) <> h  nil T) =|h:t '

Wave-rules are not restricted to recursive definitions, for instance

rev(‘X <> X:unil ‘T) = | X:urew(Y) ' (13)

‘X::X‘T:‘X::;‘T = Y=Z (14)

are wave-rules which are derived from lemmata about rev, <> and list equality.
Using (13) the induction conclusion becomes

I
=
.

h:: rev(rev(t)) '

Finally by (14) we obtain
rev(rev(t)) =t (15)

All wave-fronts have been eliminated so the rippling of the conclusion is complete.
The conclusion is said to be fully-rippled and ready to be fertilized.

2The phrase fertilization which describes the use of hypotheses was introduced in [BM79].



The strategy as illustrated above is called longitudinal rippling. The aim of
the strategy is to manipulate the wave-fronts so that they dominate the skeleton
term structure of the induction conclusion. Note that the above example is a
degenerate case in which the wave-fronts are completely eliminated, i.e. they are
said to peter-out.

An alternative strategy is called transverse rippling. This strategy exploits the
fact that universally quantified variables in the induction hypothesis can be in-
stantiated differently from the corresponding variables in the induction conclusion.
To illustrate, consider the following conjecture

Vi, L Ust(T). rev(t) <> 1 = grev(t, 1) (16)

where qrev is the tail recursive version of rev. The definition of grev provides the
following wave-rule

arev(X Y], 2) = qrev(Y,[X:Z]) (17)

Note the change in direction of the wave-fronts. Rippling allows for upward dir-
ected wave-fronts to be turned downward but not vice-versa. This restriction
enables the use of bi-directional rewrite rules without the risk of looping. Other
systems, such as NQTHM [BM79], rely upon the user to indicate which direction
a bi-directional rewrite rule should be used. In proving (16) wave-rules (11) and
(17) suggest induction on the variable t using rule (3). We concentrate here on

the step-case which gives rise to an induction hypothesis of the form®

rev(t) <> L = qrev(t,L) (18)

In order to exploit universally quantified variables additional meta-level annota-
tions are used. The meta-level construction |...| is used to indicate an object-level
term within the conclusion which corresponds to universally quantified variable in
the hypothesis, e.g.

rev(ht]) <> [ = grev(ht], 1) (19)

These meta-level terms are called sinks. The aim of the transverse strategy is to
move wave-fronts into sinks. The rewriting of (19), the initial induction conclusion,
using wave-rules (11) and (17) gives:

rev(t) <>h: nit] <> |l = qgrev(t, {lJ) (20)

Now we need to use the associativity of <> which gives rise to a wave-rule of the

X<oV] <> 2= x<>[V<>2] 1)

3Note that we replace Lin the hypothesis with L. We use upper case letters to denote variables
while constants are denoted by lower case letters.

form




The application of (21) to the LHS of (20) gives rise to:

rev(t) <> Uh mnil <> lH = dgrev(t, {lJ)

Note that both wave-fronts now appear within the scope of sinks. In general, to
exploit sinks, the application of a transverse wave-rule may need to be followed
by further applications of longitudinal wave-rules. This is called rippling-in and
typically corresponds to the folding of definitions. Finally, simplification® of the
wave-front on the LHS using rewrite rules (6) and (7) gives

rev(t) <> {h 1l lJ = qgrev(t, {lJ) (22)

The rippling of the induction conclusion is now complete. The general pattern
of the longitudinal and transverse strategies is presented in figure 3. A detailed

description of rippling appears in [BSvHT93].

f(a(hfer (9] ), K [u]))

ca(f(a(n(0), K [esw)] | )

A schematic conclusion is shown which gives rise to both longitudinal and
transverse ripples.

Figure 3: Rippling: general pattern

2.83.2 Fertilize method

The fertilize method controls the application of induction hypotheses. In the case
of conjecture (5) fertilization is trivial since the hypothesis (12) and the fully
rippled conclusion (15) are identical. At most matching is required as illustrated
in conjecture (16) where the matching of the hypothesis (18) against the fully
rippled conclusion (22) instantiates L to be h:: 1.

3 Productive use of failure

We now consider how an inductive proof might fail. In particular we consider
failure of the ripple method. To do this, however, we must consider the ripple
method in more detail. The actual application of wave-rules is controlled by the

4The simplification of wave-fronts is guaranteed to preserve the skeleton term structure.



wave method. The ripple method iterates over the wave method. The precondi-
tions for the application of a longitudinal wave-rule are presented in figure 4 while
those for applying transverse wave-rules are presented in figure 5.

Preconditions:

1. wave_term(Conc, Pos, LHS)

2. wave_rule_match(Rn, long(D), Cond — LHS = RHS, Subs)

3. tautology(Hyps+ Cond)
Definition of meta-logical terms:
¢ Hyps and Conc denote the current hypotheses and conclusion respectively;

o wave_term(T, P, W) means that W is the wave-term at position P within a term
T

o wave_rule_match(N,T(D),C — L = R,S) means that N is the name of a wave-
rule of type T with rewrite direction D which unifies with the term L. S is the set of
substitutions for any higher-order meta variables instantiated by the unification.

e tautology(S) is true when the sequent S is a tautology.

Figure 4: Wave method: longitudinal-rippling

Preconditions:

1. wave_term(Conc, Pos, LHS)

2. wave_rule_match(Rn, trans(D), Cond — LHS = RHS, Subs)
3. tautology(Hyps+ Cond)

4. sinkable(RHS)
Definition of meta-logical terms:

¢ sinkable(T) term T contains a wave-front which is directed towards a sink.

o all other terms are as defined in figure 4.

Figure 5: Wave method: transverse—rippling

In the following four sections we systematically analyse the ways in which
preconditions of the wave method can fail and present the patches suggested in

each case.
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3.1 Induction revision critic

As mentioned in §2.1 rippling can be used in the selection of induction rules. We
now examine how the ripple heuristic can select an inappropriate induction rule.
Consider the conjecture

Vi, 1 s list(T). even(length(t <> 1)) < even(length(l <>1t))  (23)

where the predicate even holds for the even natural numbers and length computes
the length of a list. The definitions of even and length provide wave-rules which
include:

even(| s(s(X)) T) = even(X) (24)

tength(X::Y]") = [s(length(Y))] (25)

We assume an additional lemma which provides a wave-rule of the form

T
length(X <> [Y :: 2|') = [s(length(X <> 2)) (26)

In proving (23) wave-rule (10) suggests’ an induction on t using rule (3). The
initial induction conclusion takes the form:

even(leng’c‘n(T <> 1)) < even(length(l <> T))

Using wave-rules (10), (25) and (26) the conclusion rewrites to give:

even([s(length(t <> 1))]) & even([s(length(l <> )] ) (27)

blocked blocked

No more wave-rules are applicable so the wave method fails to apply. This cor-
responds to the failure of precondition 2 of the wave method. However, the wave-
fronts are preventing the fertilize method from applying. To patch this failure we
could attempt to introduce additional wave-fronts by refining our chosen induc-
tion rule. For this to be profitable there must exist a wave-rule which partially
matches with one of the blocked wave-terms, i.e. a wave-rule with a LHS of the
following form:

1

even( s(§F1(1ength(Y<>[Fz(;)f))é) ) = ... (28)

where F; and F, are second-order meta variables. Note that we use dotted boxes
to denote potential wave-fronts, i.e. wave-fronts which may or may not exist. The

SActually t or | are equally good candidate induction variables. The analysis presented here
works for either variable.

11



LHS of wave-rule (24) unifies with the LHS of (28) instantiating F; and F, to be
Ax.s(x) and Ax.x respectively. Discussion of higher-order unification is delayed

until §4.3.

This success suggests the need for an additional wave-front in overcoming the
blocked goal. This analysis is expressed as a critic in figure 6. The application of

Preconditions:

1. Precondition 1 of wave method holds, i.e.
wave_term(_, Pos, WaveTerm)

2. Preconditions 2 and 3 of wave method fail, i.e.
no matching wave-rule
no condition to check

3. partial.wave_rule_match(WaveTerm, RevisedWaveTerm)

Patch:

1. revise_induction(RevisedWaveTerm, Pos, Conc, IndRule)

2. propagate_induction(Plan, IndRule)

Definition of meta-logical terms:

e Comnc and Plan denote the current conclusion and plan structure respectively;

¢ partial-wave_rule_match(T, W) holds when W is the wave-front suggested by a
partial wave-rule match with the term T;

¢ revise_induction(W, P, G,R) R is the induction rule suggested by the wave-term
W at position P within the goal G;

¢ propagate_induction(P,R) propagates R, the revised induction suggestion
through the plan structure P.

Figure 6: Wave critic: induction revision

the critic to goal (27) suggests that an additional wave-front of the form |s(...)

is required. The rippling-in of the composite wave-front, i.e. |s(s(...))|, using

wave-rules (25) and (10) suggests a two step induction, i.e. the initial selection of
rule (3) is replaced by rule (4). This gives rise to a revised induction conclusion

of the form:

even(leng’c‘n(T <>1)) < even(length(l <> T))

This revision enables the induction conclusion to be fully-rippled, i.e.

even(length( hy :: (T <>1)

1

even(|s(length(|h,

t

" <> 1)

)) < even(

’
) < even(

12

s(length(l <>[ha = t]))])

s(s(length(l <> ) ])




even(|s(s(length(t <> 1))) T) — even(length(l <> t))
even(length(t <> 1)) < even(length(l <> t))

The exception to the general pattern of rippling which leads to induction revision

is captured in figure 7.

f(a(hfer (9] ), K [u]))

(] cs(a(h(). [ea k(D) [ D] )

missing wave-fronts

before

.|C

fa(h([er(ea())] ), k(w))))

~~

es(es(a(h(0), [ea(ea (D) | )|

cA(f(a(n(0), K [eaw)] | )

after

Conclusion schemata are shown before and after the application of the induc-
tion revision critic. The rippling of the initial conclusion becomes blocked.

1

Partial wave-rule matching identifies missing wave-fronts, i.e. | c3(cs(...))

0
and| ce(ca(...))| , which are used to calculate a revised induction suggestion,

e [ (@)

Figure 7: Exception: missing wave-fronts

3.2 Lemma discovery critic

The proof of conjecture (23), presented in §3.1, relied upon a lemma which provided
wave-rule (26). In this section we focus upon the problem of discovering such lem-
mata automatically. Consider the following term:

...rev(jrev(t) <>h nilT)... (29)

blocked

The rippling of this term blocked if we assume that wave-rule (13) is not available.
This corresponds to the failure of precondition 2 of the wave method. The induc-
tion revision critic, through precondition 2, will initiate a search for a wave-rule

of the form:

1

rev(|iFi(rev(Y)) T <>Xunil])=...

13



Preconditions:

1. Precondition 1 of wave method holds, i.e.
wave_term(_, -, WaveTerm)

2. Preconditions 2 and 3 of wave method fail, i.e.

no matching wave-rule
no condition to check

3. not partial.waverule_match(WaveTerm,_)
Patch:
1. construct_lemma_lhs(WaveTerm, Sequent, LHS)
2. construct_lemma_rhs(WaveTerm, Sequent, RHS)
3. generalize_lemma(LHS = RHS, Rewrite)
4. validate_lemma(Rewrite)
Definition of meta-logical terms:
e Sequent is the current goal sequent;

o construct_lemma_ths(W,S,L) L is the left-hand-side of a wave-rule based upon
the wave-term W and the current goal sequent S;

o construct_lemma-rhs(W, S, R) Ris the right-hand-side of a wave-rule based upon
the wave-term W and the current goal sequent S;

e generalize_lemma(R, G) G is a generalization of the rewrite rule R;
¢ validate_lemma(R) records schematic wave-rules derived from R and verifies in-

stantiations generated for R during subsequent proof planning.

Figure 8: Wave critic: lemma discovery (speculation)

Assuming only the wave-rules which are provided by the definition of rev then the
search will fail. This failure means that any revision of the current induction will
lead to a potentially infinite divergence in the proof, i.e.

...rev([(rev(t) <> hy i nil) <> hy = nil T) e

- rev([((rev(t) <> hs = nil) <> hy = nil) <> hy = nil] ). ..

. rev([(rev(t) <> T = nil) <> hs = nil) <> o = nil) <> hy = nill)...

Note that NQTHM will diverge in this way. The failure of the partial wave-rule
match (precondition 3, figure 6) suggests that we should instead be looking for a
missing wave-rule, ¢.e. a lemma. This analysis is expressed as a critic in figure 8.

14



The patch associated with the critic involves the search for a lemma and its
proof. We view this as a four step process which, in outline, involves the:

1. construction of the left-hand side of the lemma;
2. construction of the right-hand side of the lemma;
3. generalization of the conjectured lemma;

4. proof of the generalized lemma.

This process may involve backtracking. For example, step 3 may be resatisfied if
an over generalization is detected by the failure of step 4.

We have two strategies for implementing this process. The first is called lemma
calculation and is the less general of the two strategies but involves little search.
The second strategy, lemma speculation, is very general and as a consequence
introduces additional search control problems. These alternative strategies are
presented in the following two sections.

3.2.1 Lemma calculation

Lemma calculation is applicable when we are in a position to partially apply an
induction hypothesis. To illustrate, consider again the step-case proof of conjecture
(5) presented in §2.3.1. The effect of not having wave-rule (13) means that the

LHS of the conclusion becomes blocked, i.e.

’
rev(jrev(t)<>hunil|)=|h =t ' (30)

blocked

Fortunately the RHS is fully-rippled. That is, the wave-hole on the RHS contains
a copy of the RHS of (12), the induction hypothesis. Consequently, the induction
hypothesis can be used to rewrite the conclusion. We now consider the construc-
tion of a wave-rule to unblock the LHS of the goal based upon this kind of partial
use of the induction hypothesis:

1. The blocked wave-term defines the LHS of the missing wave-rule. In the
case of goal (30) there is one blocked wave-term which gives a LHS of the
form:

rev(|rev(t) <> h:nil T) = ...

2. The RHS of the missing wave-rule is constructed by rewriting the fully-
rippled subterm of the blocked conclusion using the induction hypothesis.
In the current example this means rewriting the wave-hole associated with

T using (12) which gives:

.= |h zrev(rev(t)) '
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3. The generalization of the wave-rule resulting from steps 1 and 2 takes the
form

rev(‘X <> X :nil ‘T) =X rev(Y)T

Generalization is desirable to maximise the applicability of wave-rules and
to simplify the proof of the underlying lemma. Further discussion of gener-
alization is delayed until §4.1.2.

4. The proof of the underlying lemma can be performed either before or after
the wave-rule is applied in the main proof. In practice it is performed before.

In general lemmata may be conditional. Currently we use the context in which a
ripple proof becomes blocked to suggest appropriate conditions.
3.2.2 Lemma speculation

Lemma speculation is required where calculation is not applicable. For example,
consider the conjecture:

Vi, 1z Ust(T). rev(rev(t) <> 1) =rev(l) <>t (31)

In proving (31), wave-rule (11) suggests® induction on t using rule (3). The initial
induction conclusion takes the form:

rev(rev([n s t]) <> [U) = rev(|U)) <>[h = t]

By wave-rule (11) this rewrites to

rev([rev(t) <> h: nil] <> [U]) = rev([1]) <> [h: t[ (32)

blocked blocked

Lemma calculation is not applicable because neither of the wave-fronts is fully-
rippled. Now we consider the construction of a wave-rule to unblock the RHS of
(32). Note that we could equally have selected the LHS:

1. The LHS of the missing wave-rule is constructed as for lemma calculation,

rev(l) <> T = ...

2. From the skeleton preserving property of rippling we know that the RHS of
the missing wave-rule must fit the following general form:

i.e.

:>(T‘€\)(l)<>‘t)

®Note that an induction on 1 would be equally suitable and that the technique being presented
works for either suggestion.
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We exploit the skeleton preserving property to construct a schematic RHS,
i.e. second-order meta variables are used to specify the missing wave-front
structure. Transverse, longitudinal and hybrid forms must be considered:

_______________________________________________

are:
W< [X2Y] = HWIXY) <> v (33)
w<s[XaY] = GW SV YY) (34)
---------------------------------------- 1
wes[X2Y] = G(RWXY) <>VXY) (35)

_________________

________________________________________

An application of a schematic wave-rule and its instantiation go hand-in-
hand. Rippling constrains the process of instantiation, ¢.e. any instanti-
ations for meta variables must preserve the skeleton term structure. With
the addition of schematic wave-rules (33), (34) and (35) the wave method is
now applicable to (32). Using (33) the goal becomes:

rev(|rev(t) <> honil] <> > [1) =iFi(rev([1]), h, t) <>t

blocked

The directionality of the potential wave-front and the associated wave-hole
constrains the search for an applicable wave-rule. In this case wave-rule (11)
can be applied in reverse, i.e.

rev(Y) <> X 1 nil = Tev(l)

The RHS of the induction conclusion becomes:

The associated unification instantiates F1 to be:

AW Ax Ay F3(w <> Fa(w, x,y) : nil, x,y)
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Wave-rule schema (33) now becomes:

Each incremental instantiation of a wave-rule schema is coupled with an at-
tempt to coerce the remaining meta variables. This coercion process involves
exploring possible projections. Where a meta variable denotes a potential
wave-front then only the projection of the wave-hole is considered. A conjec-
ture disprover is employed to filter the candidates generated by the coercion
process. The disprover is conservative, i.e. it may fail to identify invalid
instantiations but it will not reject results that are in fact correct. However,
all instantiated wave-rule (lemma) schemas are submitted to the prover for
verification. In the current example coercion is successful and instantiates
F, and F3 to be Aw.Ax.Ay.x and Aw.Ax.Ay.w respectively. This completes
the instantiation of wave-rule schema (33). The resulting wave-rule takes
the form:

W<>\X::X\T:>\W<>X::nu\l<>Y (37)

Note that the process of constructing (37) completes the rippling of the RHS
of the conclusion:

rev(|rev(t) <> h : nil <> 1)) = rev( {lJ) <>t

blocked

Using (37) in reverse, i.e.

(W<>Xanil] <> Y= W< XY

the rippling of the LHS of the conclusion can also be completed:

rev(rev(t) <> {lJ) =rev( {lJ ) <>t

. The proof of the underlying lemma has to be delayed until the wave-rule
schema is fully instantiated.

The exception to the general pattern of rippling which leads to the search for new
wave-rules is presented in figure 9.

3.3 Generalization critic

It is sometimes the case that a conjecture must be generalized before we can prove
it by induction, i.e. the generalization leads to a stronger induction hypothesis
which allows a proof to go through. Generalization through the introduction of
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f(a(h(er ()] ), k(1)) f(a(n(er ()] ), k(1))

#a((ea(n) |, k((y)))) #a(ea(nG) |, k([u))))

missing wave-rule

--------------------

ECIDEMPESOD

|
|
|
Lo e e o oo

before after

Conclusion schemata are shown before and after the application of the
lemma discovery (speculation) critic. The rippling of the initial conclu-
sion becomes blocked by the term g(...,k(|y|)). The patch is to construct
a schematic wave-rule which will unblock the ripple. Further rippling will
then instantiate the schema.

Figure 9: Exception: missing wave-rule

accumulator variables is an example of such a phenomena. To illustrate, consider
the following specialization of conjecture (16):

vVt o list(T). rev(t) = grev(t,nil)

Wave-rules (11) and (17) suggest an induction on t using rule (3). In the step-case
we get an induction hypothesis of the form

rev(t) = grev(t,nil) (38)
while the initial induction conclusion takes the form

rev(T) = qrev(T ,nil)

Using wave-rule (11) the conclusion rewrites to give:

.
rev(t) <>hunil| = qrev(T,nil) (39)

blocked

Note that while wave-rule (17) matches the wave-term on the RHS its applicability
is ruled out because of the absence of a sink. In terms of the wave method this
corresponds to the failure of precondition 4 (see figure 5). This failure is captured
as a critic in figure 10. The patch associated with this critic is the generalization
of the goal through the introduction of an accumulator variable into the original
conjecture. This is achieved with the use of second-order meta variables. The
revised conjecture takes the form

Vi, 1 Ust(T).Fi(rev(t), 1) = qrev(t, Gi(1)) (40)
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Preconditions:

1. Precondition 1 of wave method holds, i.e.
wave_term(_, Pos, WaveTerm)

2. Precondition 2 of wave method holds, i.e.
wave_rule_match(Rn, trans(_), Cond — LHS = RHS,_)

3. Precondition 3 of wave method holds, i.e.
tautology(Hyps F Cond)

4. Precondition 4 of wave method fails, i.e.
no sink.

Patch:
1. generalize_goal(Conc, Pos,Rn, GenConc)
2. propagate_generalization(Plan, GenConc)
Definition of meta-logical terms:

e generalize_goal(C, P,R,G) constructs G a generalization of C based upon the
transverse wave-rule R and the position P within C where it is applicable;

e propagate_generalization(P, G) propagates the generalized goal G through the
plan structure P.

Figure 10: Wave critic: generalization

Note that the relationship between the accumulator variable 1 and the original
term structure of the conjecture is partially specified using the meta variables F4
and Gi. The position of Gi(1) within the RHS is determined by the position of
the wave-front on the RHS of wave-rule (17). The insertion of the meta variables
is automatic. With the revised conjecture an induction on t is again proposed.
The induction hypothesis becomes

Fi(rev(t),L) = grev(t, Gi(L)) (41)

Note that (41) is stronger than (38), the original hypothesis. The induction con-
clusion associated with the new induction hypothesis takes the form

Fitrev(n 2], (1)) = arev(h = t], Gi([L)))

As before wave-rule (11) is applicable to the LHS and refines the conclusion as
follows:

Firev(t) <> hz nil], [1) = arev(h €], Gi([L)))

The presence of the sink on the RHS means that wave-rule (17) is now applicable
giving:

Fi(rev(t) <> h = nit], (1) = grev(t,[h = Gi([L)]) (42)
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f(a(h(e]). .. f(a(h(c()]), F(ly))))

f(o(cr(n()] -.) (o (G| F(ly))))

missing sink

=

f(a(h(x), | e2(F(Ly])) | ))

before after

Conclusion schemata are shown before and after the application of the gen-
eralization critic. The rippling of the initial conclusion becomes blocked due
to the absence of a sink. A meta variable F is used to introduce a new object-
level variable y. The positioning within the goal structure of the annotated
term F(|y|) is determined by the RHS of an applicable transverse wave-rule.

Figure 11: Exception: missing sink

Using wave-rule (21) the LHS can be further rippled to give:

rev(t) <> ([ nil <> Fa(rev(t), [ID]) = qrev(t, [z Gi([L)])

The effect of this wave-rule application is to instantiate Fq to be
AxAy.x <> Fa(x,y)

As described in §3.2.2 after each incremental instantiation of a meta variable we
attempt to coerce the remaining meta variables through projection. Here we
have the added constraint that sinks corresponding to the same variable must
be instantiated consistently. In this example the coercion process instantiates F,
and Gy to be Ax.Ay.y and Ax.x respectively. This completes the rippling of the
induction conclusion:

rev(t) <> ({lJ) = qrev(t, {lJ)

Note the instantiation of (40) corresponds to (16). The exception to the general
pattern of rippling caused by missing sinks is presented in figure 11.

3.4 Case analyses critic

The last critic deals with the failure of precondition 3 of the wave method, i.e.
where the condition attached to a wave-rule is not provable in the current context.
To illustrate, consider the conjecture:

Va:t.vt,l: Ust(t).aet—ae(t<>1) (43)
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where € denotes list membership. The definition of € provides the following
rewrite rules:

X enil = false

X#Y-xe[Yaz] = xez (44)
X=YoXe[Ynz] = true (45)

Note that (45) is not a wave-rule since it is not skeleton preserving. It is in-
stead classified as a complementary rewrite rule since its condition forms part of
a covering set which includes the condition associated with (44).

In proving (43), wave-rule (44) suggests an induction on t using rule (3). This
provides an induction hypothesis of the form

act—ae(t<>1)

and an induction conclusion of the form

acfnit] »ae(nat] <)

By wave-rule (10) this rewrites to give

i i
aE — a€lhut<> |
————— —

blocked blocked

Although (44) matches both wave-terms the associated condition, a # h, is not
provable in the current context. This corresponds to the failure of precondition 3
of the wave method. The critic associated with this failure is given in figure 12.
The patch is to perform a case analysis based upon the covering set of conditions
defined the wave- and complementary-rules. In the current example this covering
set gives rise to a case split on (a # h) VvV (a = h). By (44), in the a # h case, we
get

acet—ae(t<>|l))
to which fertilize is applicable. In the a = h case using (45) we get
true — true

which is trivially true. The exception to the general pattern of rippling caused by
a missing condition is presented in figure 13.

3.5 Summary

We have argued that by having an explicit proof plan one is able to accurately
pin-point and interpret failures productively. In the case of the proof plan for
induction the break-down of the preconditions for rippling provide a handle on
the major eureka steps associated with inductive proof. The relationship between
precondition failures and patches is summarized in table 1.
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Preconditions:

1. Precondition 1 of wave method holds, i.e.
wave_term(_, _, LHS)

2. Precondition 2 of wave method holds, i.e.
wave_rule_match(Rn,_, Cond — LHS = _, )

3. Precondition 3 of wave method fails, i.e.
Cond not provable given Hyps

Patch:

1. setof(Cond, (wave_rule_match(_,_,Cond — LHS = _,_) v
comp_rule_match(_, Cond — LHS = .)),
Conds)

2. case_split(Plan, Conds)

Definition of meta-logical terms:

o comp_rule_match(N, R) means that N is the name of the complementary rewrite
rule R;

e case_split(P, C) introduces a case-split on C at the current node in the plan
structure P.

Figure 12: Wave critic: missing condition

fa(h([er ()] ), k([w)))) fa(h([er ()], k((w))))

#a(ea(nG)) |, k([w)))) #a((ea(n()) | K(Lw))))

missing condition
/ ) N\

(] cs(a(h(x), [ea(k()) | D] )

before after

Conclusion schemata are shown before and after the application of the case
analyse critic. The rippling of the initial conclusion becomes blocked by the
absence of a condition. A set of conditional wave-rules and complementary
rewrite rules suggests the missing case split.

Figure 13: Exception: missing condition
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.. . Induction | Lemma
Precondition | Generalization | Case analyse | ravision discovery
1 * * * *
2 * * o o
3 * o
4 °

The association between precondition failure and patches for the ripple huer-
istic are shown. Note that x, o and e denote success, partial success and
failure respectively.

Table 1: Precondition failures and patches for rippling

4 Search control issues

In this section we address a number of search control issues which arise in the
critics mechanism and the use of higher-order meta variables in the search for
proofs.

4.1 Wave-term selection

For a given goal the selection of wave-terms is determined by the LHS of an applic-
able wave-rule. In the absence of an applicable wave-rule we require a mechanism
for selecting wave-terms. The search space associated with this selection process
is discussed below.

4.1.1 Most nested wave-fronts

A blocked goal may contain many blocked wave-fronts. In searching for a wave-
front to unblock we select a most nested wave-front. The motivation is that un-
blocking a more nested wave-front may in turn unblock a less nested wave-front.
To illustrate, consider the goal

cceven(s(x+{s(x)[)])---

Both wave-fronts are blocked if we assume only the wave-rules provided by the
definitions of even and +, i.e. wave-rules (24) and

S| +Y=[s(x1v)|
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If our search for a missing wave-rule is successful, i.e.

X+[s0)] = [sxx )|

then the unblocking of the most nested wave-front also enables the unblocking of
the less nested wave-front, i.e.

T i
ceven(s(x+{s(x)[)])---

..even([s(s(x+x))...

...even(x +x)...

4.1.2 Wave-term context

The context of the wave-term is important when searching for a missing lemma.
On the one hand we wish to minimize the context associated with a wave-rule but
on the other hand we are only interested in wave-rules derived from theorems. For
example, consider the following blocked goal

...even(length(l <> T)) e

Selecting the minimal wave-term, i.e.

L [z

will lead to the following invalid wave-rule:

W<>‘X::X‘T :>‘X::W<>Y‘T

The required wave-term takes the form

length(l <> [ t])

and provides a valid wave-rule of the form:

T
length(W <> [X :: Y]} = [s(length(W <> Y)

Backtracking is therefore necessary to allow for the selection of progressively larger
subterms of the skeleton term structure of the goal. In addition, we also consider
the need to manipulate multiple wave-fronts simultaneously. Since the goal term
structure is finite the associated search space is also finite.

Finally, generalization is an important technique in minimizing context. We
exploit two forms of generalization: replacement of common terms and distin-
guishing variables apart. In the context of automatic inductive theorem proving
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Aubin [Aub75] was the first to investigate such techniques. We adopt similar
heuristics to those developed by Aubin, e.g. exploiting primary recursion paths’
in distinguishing between variables to generalization apart.

All of the above heuristics may lead to invalid wave-rule suggestions. In prac-
tice we rely upon a conjecture disprover to prune the search space of wave-rule
suggestions.

4.2 Schematic wave-rule construction

As observed in §3.2.2 there may be a choice as to whether to apply longitudinal,
transverse or hybrid wave-rule schemata. The strategy we employ is to persue
the direction which provides greatest constraints in the instantiation of higher-
order meta variables. For example, in the case of goal (32), where three schematic
wave-rules are generated, schema (33) was selected since it gave rise to further
rippling.

In general, however, it may not be obvious which is the best schema to ap-
ply. We therefore allow backtracking over the selection process using a conjecture
disprover to prune the search space.

4.3 Guiding unification

Asillustrated by the lemma discovery and generalization critics the ability to apply
wave-rules in the context of higher-order meta variables is crucial to our technique.
The instantiation of such meta variables occurs as a side effect of applying wave-
rules. The generality and controllability of such a technique is dependent upon
the type of variables used. If we choose first order variables then control is not
a problem but the framework is not very general [Hut90]. Alternatively, using
higher-order variables we gain generality but at the cost of controllability.

Meta-level control information provides a basis for regaining controllability.
Hesketh [Hes91] used the meta-level control information embedded within the
wave-front annotations in controlling the search for generalizations. We adopt a
similar approach to Hesketh in using the wave-fronts and wave-holes to divide the
higher-order unification task into a number of sub-tasks. We extend the approach,
however, by exploiting the directionality of wave-fronts in focusing the unification
process. That is, when rippling-in we match wave-holes first and when rippling-
out we first match the superterm which contains the wave-front. This is necessary
in order to support the incremental instantiation of meta variables.

Backtracking over alternative instantiations, however, is necessary. This is
particularly the case for the generalization critic where we employ an iterative
deepening planner. To illustrate the problem, consider again the LHS of goal

"We exploit ripple paths, a generalization of the recursion path notion.
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(42), i.e.

Fi(rev(t) <> honit], (1) = ... (46)

In §3.3 the associativity of <> (wave-rule (21)) was used to obtain

rev(t) <> ([h = nil <> Fa(rev(t), [(L)]) = ...

However, the associativity of <> provides another applicable wave-rule, i.e.

X<>\X<>Z\T:>\X<>Y<>Z\T

which when unified with the LHS of (46) gives

Fa(rev(t), [1]) <>rev(t) <> h nilT =...

This longitudinal ripple is rejected because it gives rise to a non-theorem which is
detected by our conjecture disprover. Control is hard for generalization since we
are dealing with a schematic skeleton term structure. Consequently, the skeleton
preservation property of rippling is less useful for restricting search than in the
case of lemma discovery.

Higher-order annotated unification is a hard problem. We acknowledge that
our approach is far from ideal. The interested reader is referred to [HK95] for
some promising results we may be able to exploit in our future work.

4.4 Critic selection

Multiple critics may be applicable to a particular proof failure. Preference is given
to the critic with the most restrictive preconditions (see table 1). For example, the
generalization critic was used to patch goal (39) although lemma calculation was
also applicable. However, patches are not guaranteed to succeed so backtracking
across critics is supported.

5 Comparison with related techniques

Most theorem provers rely upon user interaction to identify, interpret and patch
failures. In contrast, proof critics attempt to automate this process. In order to
draw comparison with other related techniques we must consider the individual
critics presented here.

Firstly, induction revision appears to be unique in theorem proving terms. In
relation to other inductive theorem proving systems this kind of patching involves
the user in supplying a hint in the form of a dummy recursive function which
reflects the desired induction.
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Secondly, lemma calculation is based upon the strategy of cross fertilization
[BM79] and weak-fertilization [BSvH193]. A practical limitation of both these
strategies is that they discover lemmas in-line. As a consequence the same lemma
may be re-discovered and verified many times during the course of a proof. Lemma
calculation factors out lemmas and verifies them as separate proof attempts. This
eliminates the redundancy problem mentioned above and provides a degree of
modularity in structuring proofs.

Thirdly, lemma speculation was first presented in [Ire92]. A missing lemma
typically causes divergence in the rewriting of step-case proofs. Lemma spec-
ulation pre-empts such divergence. We are able to achieve this because of the
constraints rippling imposes on the search space. In contrast, Thomas & Jantke
[TJ89] observe divergence patterns and use them to suggest generalizations in the
context of inductive completion. A similaridea has been applied by Walsh [Wal94]
to the problem of proof divergence in the SPIKE [BR93] theorem prover. Diver-
gence patterns generated by SPIKE are used to suggest lemmas. Central to this
approach is the technique of difference matching [BW92]. Difference matching is
used to speculate the structure of missing lemmas by generalizing over a sequence
of diverging formulae. This process of overcoming divergence is largely independ-
ent of the SPIKE proof strategy. In contrast, the proof critics mechanism has direct
access to the meta-level control information which is used to guide the search for
proofs. This increases the sophistication by which failure can be interpreted. For
example, without our meta-level notion of a “sink” it is hard to see how one could
distinguish between the need for generalization as opposed to a missing lemma.
The diversity of patches associated with the ripple heuristic demonstrates the
power of rippling and the proof critics mechanism. More generally the proof crit-
ics mechanism supports the global analysis of the proof process since it has access
to the whole proof structure (see §5 of [Ire92]). As a consequence, we believe that
the approach presented here provides a powerful framework for patching proofs.

Fourthly, the use of higher-order meta variables in discovering generalizations
through the introduction of accumulators was first achieved by Hesketh [Hes91].
The generalization critic presented here represents a rational reconstruction and
extension of this work.

Lastly, the case analyses critic is an alternative to having a method for sup-
porting conditional rewriting [BSvH*93]. The critic mechanism, however, allows
for more sophisticated case analyses involving the composition of multiple partial
proofs. This idea is illustrated in [Ire92].

6 Implementation and results

The proof critics presented here have been implemented and tested. Our imple-
mentation is an extension of the cLAM [BvHHS90] proof planning system and
exploits the higher-order features of A-Prolog [MN88].

Our test results are presented in tables 2, 3 and 4. The proofs of all the example
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conjectures® given in table 2 are discovered completely automatically. These proofs
are based only upon definitions supplied by the user. Fxcept for the generalization
examples, all additional lemmas are automatically discovered by the system.

The example conjectures in table 2 are classified under the four critics. In
the case of lemma discovery, conjectures T1 to T13, T22 to T26 and T48 to T50
required only the relatively weak strategy of lemma calculation. Even so, NQTHM
failed” to prove T1, T3, T4, T6, T7, T8, T9, T10, T11, T13 and T22 through to
T126. Examples T14 to T21 required lemma speculation while T27 to T35 required
generalization. Note that different generalizations were obtained depending upon
the available lemmata. All the examples which required induction revision, lemma
speculation or generalization fall into a class of inductive theorem which are not
uncommon but are acutely difficult to prove. With the exception of T14, NQTHM
failed to prove any of these examples. Finally, examples T22 to T26 and T48 to
T50 illustrate the need for multiple critics in patching some conjectures.

7 Limitations and further work

We have focussed upon failure in the context of constructor style induction. The
complementary destructor style induction is already incorporated within rippling.
A destructor style induction introduces wave-fronts into the induction hypothesis,

e.g.

GI(ax)[ )] F GlF(x,u)]

Rippling uses creational wave-rules [BSVHT93] to set-up a ripple in the conclusion
by neutralizing the wave-fronts in the hypothesis, e.g.

Gl ax) [, v F Gl e d)] ,v))|]

Creational wave-rules have the following general form:

Cond — f(x,u) = [c(f(d(x)] ,1v))

We are currently investigating the automatic discovery of creational wave-rules.
This will involve generalizing our technique for generating conditional lemmata.
There is a strong connection between creational wave-rules and well-founded in-
ductions. The discovery of missing creational wave-rules may provide a handle on
the problem of generating new inductions dynamically.

8The examples come from a number of sources which include [Aub75], [BM79], [MW85],
[Wal94].

?This is without the aid of the linear arithmetic decision procedure. With the decision
procedure, NQTHM is able to prove T1, T3, Teand T7. More generally, when we talk of “failure” we
are talking about the failure of NQTHM to find a proof without user intervention, ¢.e. additional
lemmata, induction hints or generalizations supplied by the user.
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In terms of the proof critics mechanism, the analysis presented here relies upon
patterns of precondition failures which are constructed off-line. We are currently
investigating the use of meta-level inference in deriving patches automatically.
This will provide a more dynamic form of failure analysis.

8 Conclusions

The ripple method has proved to be a very successful search control heuristic
within inductive proof. We have shown, through the use of proof critics, that
rippling provides useful heuristic guidance even when a proof attempt fails.

More generally, it has been argued [BW81] that the separation of meta-level
control information from the object-level logic brings clarity, flexibility and mod-
ularity to reasoning systems as well as providing a more constrained search space.
The proof critics technique demonstrates another advantage of this separation,
namely robustness. That is, the ability to exploit failure productively in the search
for proofs.
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No | Conjecture (1) (il) | (iit) | (iv) |
T double(X) = X + X I

T2 length(X <> Y) = length(Y <> X) L2

T3 length(X <> Y) = length(Y) + length(X) L1

T4 length(X <> X) = double(length(X)) L2

T5 length(rev(X)) = length(X) L3

T6 length(rev(X <>Y)) = length(X) 4+ length(Y) L2

T7 length(grev(X,Y)) = length(X) + length(Y) L1

T3 Tth(X, nth(Y, 2)) = nth(Y,nth(X, 7)) [4&15

T9 | nth(W,nth(X, nth(Y,2))) = ntn(Y,nth(X, nth(W, 2))) T6&L7

T10 rev(rev(X)) =X L8

T11 rev(rev(X) <> rev(Y)) =Y <> X L9&L10

T12 grev(X,Y)=rev(X) <>Y L1

T3 half(X + X) = X ]

T14 ordered(isort(X)) L12

15 X+ 5(X) = s(X + X) ]

T16 even(X + X) L1

T17 rev(rev(X <> Y)) = rev(rev(X)) <> rev(rev(Y)) L8

T18 rev(rev(X) <> Y) =rev(Y) <> X L11&113

T19 rev(rev(X)) <> Y = rev(rev(X <> Y)) L8

T20 even(length(X <> X)) L2

T21 rotate(length(X), X <>Y)=Y <> X L11&113

T22 even(length(X <> Y)) — even(length(Y <> X)) (3) — (4) L14

23 half(length(X <> Y)) = half(length(Y <> X)) G —(® | 15

T24 even(X +Y) < even(Y + X) (M —(2) L16

T25 | even(length(X <> Y)) < even(length(Y) + length(X)) | (3) — (4) L16

T26 Ralf(X + V) = half(Y + X) M= 17

T27 rev(X) = grev(X,nil) G1

T28 revflat(X) = qrevflat(X,nil) G2

T29 rev(grev(X,nil)) = X G3&G4

T30 rev(rev(X) <> nil) = X G5&G6

T31 grev(grev(X nil),nil) = X G7&G8

T32 rotate(length(X),X) = X G?

T33 fac(X) = qfac(X,1) G10

T34 XY = mult(X, Y,0) GI11

T35 exp(X,Y) = gexp(X,Y,1) G12

T36 XeEY—=Xe(Y<>2Z) *
T37 XeZ—=Xe(Y<>2Z) *
T38 XeV)W(XeZ)=Xe(Y<>7Z) *
T39 X Enth(Y,Z) = X € Z *
T40 XCV— (XUY=Y) *
T4 XCY— (XnY=X) *
T42 XeY—=Xe(YuZz) *
T43 XEY = XE€(ZUY) *
T44 (XeV)A(XeZ)— (XeYNnZ) *
T45 X € insert(X,Y) *
T46 X=Y — (X e insert(Y,Z) — true) *
T47 XZY = (X € insert(V,Z) = X € Z) *
T48 length(isort(X)) = length(X) L18 *
T49 X etsort(Y)— X €Y L19 *
T50 count(X,isort(Y)) = count(X,Y) L20&121 *

The numbered columns denote (i) induction revision, (ii) lemma discovery, (11i) generalization
and (iv) case split. Note that nth(X,Y) denotes the list constructed by removing the first XtM ele-
ments from Y. Note also that fac, exp and X denote factorial, exponentiation and multiplication
while qfac, gexp and mult denote tail recursive versions respectively.

Table 2: Example conjectures
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Lemma

L1 X+5s(Y)=s(X+Y)

L2 length(X <> Y :: Z) = s(length(X <> Z))

L3 length(X <> Y :: nil) = s(length(X))

L4 nth(s(W),nth(X,Y:: Z)) = nth(W, nth(X, Z))

L5 nth(s(V),nth(s(W),X:: Y :: Z)) = nth(s(V),nth(W, X :: Z))
L6 nth(s(V), nth(W, nth(X,Y :: Z))) = nth(V,nth(W, nth(X, Z)))
L7 | nth(s(U), nth(V,nth(s(W),X:: Y :: Z))) = nth(s(U), nth(V,nth(W, X :: Z)))
L8 rev(X <> (Y = nil)) = Y s rev(X)

L9 rev(X <> (Y<> Z:umnil)) = Z =rey(X <>Y)

L10 rev((X <>Y unil) <> nil) = Y = rev(X <> nil)

L11 (X<>(Yunil))<>Z=X<> (Y Z)

L12 ordered(Y) — ordered(insert(X,Y))

L13 (X<>Y)<>Zunil=X<>(Y<>Z:nil)

L14 even(length(W <> Z)) < even(length(W <> X : Y :: Z))
L15 length(W <> X 1 Y i1 Z) = s(s(length(W <> Z)))

L16 even(X+Y) < even(X + s(s(Y)))

L17 X+ s(s(Y))=s(s(X+Y))

L18 length(insert(X,Y)) = s(length(Y))

L19 X#£Y— (Xeinsert(Y,Z) — X € Z)

L20 count(X, insert(X,Y)) = s(count(X,Y))

L21 X #Y — (count(X, insert(Y, Z)) = count(X, Z))

122 (X<>Y)<>Z=X<>(Y<>2)

L23 (X*xY)xZ=Xx*(Y*Z)

124 (X+Y)+Z=X+(Y+2)

Table 3: Lemmata
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‘ No ‘ Generalization ‘Lemmata

G1 rev(X) <> Y = qrev(X,Y) 122
G2 revflat(X) <> Y = grevflat(X,Y) L22
G3 rev(qrev(X,Y)) = rev(Y) <> X L11
G4 rev(grev(X,rev(Y))) =Y <> X [8&L11
G5 rev(rev(X) <>Y)=rev(Y) <> X L11

G6 rev(rev(X) <> rev(Y)) =Y <> X [8&L11
G7 | qgrev(grev(X,Y),nil) = rev(Y) <> X L11
G8 | grev(grev(X,rev(Y)),nil)=Y <> X | L8&LI1
G9 | rotate(length(X),X<>Y)=Y <> X | L11&L22

G10 fac(X)*Y = gfac(X,Y) [23
G11 (X*Y)+ Z = mult(X, Y, Z) 124
G12 exp(X,Y)* Z = gexp(X,Y,Z) [23

The lemmata used to motivate each generalization are indicated in the right-
hand column.

Table 4: Generalized conjectures
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