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Abstract. In this paper we consider the asymmetric assignment problem and we propose a new 
auction algorithm for its solution. The algorithm uses in a novel way the recently proposed idea 
of reverse auction, where, in addition to persons bidding for objects by raising their prices, we also 
have objects competing for persons by essentially offering discounts. In practice, the new algorithm 
apparently deals better with price wars than the currently existing auction algorithms. As a result, 
it tends to terminate substantially (and often dramatically) faster than its competitors. 
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1. Introduction 

We consider the classical asymmetric assignment problem where we want to 
match m persons with m out of n objects (m < n). The benefit for matching a 
person with an object is given, and we want to assign all the persons to distinct 
objects so as to maximize the total benefit. There are a number of methods 
for solving this problem, including primal-simplex and primal-dual (or sequential 
shortest path) methods ([5], [ll], [12], and [14]). In this paper we will focus 
on auction algorithms, first proposed in [l] for both symmetric and asymmetric 
problems, and subsequently developed in several other papers ([2], [3], [7], and 
[8]). The textbook [S] contains an extensive discussion of these methods and 
their extensions to other network flow problems. Recent experimental evidence 
suggests that auction algorithms outperform their competitors by a substantial 
margin, particularly for sparse assignment problems ([4], [7], and [S]), and are 
also well suited for parallel computation ([6], [lo], [13], [15], [16], and [17]). 

In the original proposal of the auction algorithm there is a price for each 
object, and at each iteration, one or more unassigned persons bid simultaneously 
for their “best” objects (the ones offering maximum benefit minus price), thereby 
raising the corresponding prices. Objects are then awarded to the highest bidder. 
The bidding increments must be at least equal to a positive parameter E, and 
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are chosen so as to preserve an +complementary slackness condition. For good 
practical (as well as theoretical) performance, it may be important to use f- 
scaling, which consists of applying the algorithm several times, starting with a 
large value of 6 and successively reducing E up to an ultimate value that is less 
than some threshold (l/m when aij are integer). Each scaling phase provides 
good initial prices for the next. The original proposal of the auction algorithm 
for asymmetric assignment problems had a deficiency: It required that the initial 
object prices be zero, thereby precluding the use of c-scaling. As a result the 
method was susceptible to “price wars,” that is, protracted sequences of small 
price rises resulting from groups of persons competing for a smaller number 
of roughly equally desirable objects. Thus, in order to use auction algorithms 
to solve asymmetric problems where price wars are likely, one had to convert 
the problem to a symmetric one by adding 7~ - m artificial persons that can 
be assigned to any object at zero benefit. There are specialized versions of 
the auction algorithm-the auction algorithm with similar persons ([6])- that can 
take advantage of the structure induced by the artificial persons. However, 
the approach of converting the problem to a symmetric problem introduces an 
undesirable increase in the problem’s dimension and to our knowledge has not 
seen much use. 

In part to address the difficulty with price wars of the original asymmetric 
auction algorithm, an alternative algorithm, called reverse uucfic~~, was recently 
developed in [7]. Here, roughly speaking, the objects compete for persons by 
lowering their prices. In particular, objects decrease their prices to a level that 
is sufficiently low to lure a person away from its currently held object. One 
can show that forward and reverse auctions are mathematically equivalent, but 
their combination has resulted in algorithms that can solve various assignment- 
like problems much faster than forward or reverse auction can by themselves. 
In particular, an e-scaled version of a combined forward/reverse auction was 
developed for asymmetric problems that can deal effectively with price wars. 
This method operates principally as a forward auction and uses reverse auction 
only near the end to rectify violations in the optimality conditions. According to 
computational results given in [7], the solution times of this method for m x 7~ 
asymmetric problems are quite reasonable and do not exceed the solution times 
of the original (forward only) auction algorithm for similar symmetric m x m 
problems by a factor larger than the natural ratio n/m. 

However, as demonstrated in [7], by frequently switching between forward 
and reverse auction, a substantial performance improvement can be obtained 
for symmetric assignment problems. A natural question therefore arises whether 
a similar improvement can be realized for asymmetric assignment problems by 
similarly combining forward and reverse auction. The purpose of this paper is 
to develop auction algorithms for asymmetric assignment problems that switch 
frequently between forward and reverse auction. Our computational results show 
that for difficult problem structures, some of which typically arise in important 
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data association problems, the new methods are much faster than the asymmetric 
assignment method of [7]. 

In Section 2, we define the asymmetric problem, and we develop e-complemen- 
tary slackness conditions in a form suitable for our purposes. In Section 3, we 
introduce the new combined forward/reverse auction algorithm and we develop 
its basic properties. Finally, in Section 4 we provide computational results. 

2. Asymmetric assignment problems 

In the asymmetric assignment problem there are m persons and n objects (m < n). 
The benefit or value for assigning person i to object j is aij. The set of objects 
to which person i can be assigned is a nonempty set denoted A(i). The set of 
arcs of the underlying bipartite graph is denoted by A 

A = {(i,j)u E A(i),i = 1,. . . ,m}. 

The set of persons to which object j can be assigned is assumed nonempty and 
is denoted by B(j) = {ilj E A(i)). An assignment S is a (possibly empty) set 
of person-object pairs (i, j) such that j E A(i) for all (i,j) E S; for each person 
i there can be at most one pair (i, j) E S; and for every object j there can be 
at most one pair (i, j) E S. Given an assignment S, we say that person i is 
assigned if there exists a pair (i, j) E S; otherwise we say that i is unassigned. 
We use similar terminology for objects. An assignment is said to be feasible if 
it contains m pairs, so that every person is assigned; otherwise the assignment 
is called partial. The problem is said to be feasible if there exists at least one 
feasible assignment. We want to find an assignment {(l,jl), . . . , (m,j,)} with 
maximum total benefit Cz”=, q,. 

A dual problem can be defined by introducing a price variable pj for each 
object j and a profit variable 7~ for each person i. It was shown in [7] (see also 
[5]) that a corresponding dual problem is 

minimize 2 7ri + 2 pj - (71 - m)jzinnpj 
i=l j=l 9 t 

subject to ri + pj 2 cij, V (i,j) E A. (1) 

We denote by p the vector of prices (pl , . . . ,p,), and by 7r the vector of profits 
(m , . . . ,m,). The following condition was introduced in [7] for an assignment S 
and a pair (r,p). 

DEFINITION 1. An assignment S and a pair (rr, p) are said to satisfy e-complementary 
slackness (cCS for short) if 
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7T; + pj 2 aij - E, V (Cd E -4 (24 
Ti + pj = C&j, v (GA E s, (2b) 

Pj 5 
k: assig~?!mler S pk’ 

V j : unassigned under S. (SC) 

The following proposition, proved in [7], clarifies the significance of E-CS. 

PROPOSITION 1. If a feasible assignment S satisfies the E-CS conditions (2a)-(2c) 
together with a pair (x,p), then S is within rn6 of being optimal for the asymmetric 
assignment problem. In particulal; if the benefits aij are all integer and E < l/m, S 
is an optimal assignment. 

3. A forward/reverse auction algorithm for asymmetric assignment problems 

In this section we consider auction algorithms that use a fixed E > 0, and 
maintain an assignment S and a pair (~,p) satisfying together with S the first 
two E-CS conditions (2a) and (2b). The algorithms strive to obtain a feasible 
assignment S, that also satisfies the last E-CS condition (2~). The novel feature 
of the algorithms, which distinguishes them from other auction algorithms, is 
the mechanism used to satisfy the last &CS condition (2~). The key idea is to 
maintain a scalar X such that 

Pj 2 A V j that are assigned under S. (3) 

As in earlier auction algorithms, any unassigned person can perform a forward 
bid, but this person will be assigned to his/her preferred object only if the 
corresponding bid is no less than X. Furthermore, for an unassigned object to 
perform a reverse auction bid, it is additionally required that its price exceeds 
X. The algorithms terminate when S becomes feasible and, in addition, all 
unassigned objects j satisfy pj < A. Thus upon termination, in view of (3), the 
last E-CS condition (2~) is satisfied, and by Proposition 1, the assignment S is 
optimal if E < l/m and the benefits aij are all integer. 

The level X may be viewed as a profitability threshold below which we cannot 
drop the price of any assigned object. In the course of the algorithm, X may be 
reduced if it is set initially so high that there is at least one unassigned person 
that cannot submit a bid that is greater or equal to X. The various algorithms to 
be presented differ among each other in the precise mechanism used to adjust 
X. Some algorithms adjust X only after a feasible assignment has been obtained, 
some algorithms adjust X only at the beginning of a scaling phase, and some 
algorithms adjust X as frequently as is necessary to have at least one unassigned 
object at a price no less than X at all times prior to termination. The last two 
types of algorithms proved most successful in the computational experiments 
reported in Section 4. 
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Note that we can initially select S to be empty, X and p to be arbitrary, and 7ri 
to be sufficiently large so that the conditions (2a) and (2b) are satisfied. Thus, 
in particular, we can try to use a favorable price vector such as one obtained 
from a scaling phase corresponding to a larger value of E. This is the feature 
that allows the use of E-scaling in connection with the algorithms of this paper. 

3.1. Forward and reverse auction iterations 

There are two types of iterations, forward and reverse. Forward iterations can be 
performed only as long as there is an unassigned person, and reverse iterations 
can be performed only as long as there is an unassigned object j with pj > A. 
Both types of iterations start with an assignment S, a pair (n,p), and a scalar X 
satisfying conditions (2a), (2b), and (3). 

Forward iteration: 

Find an unassigned person i, its best object ji 

ji = arg JyAyj {aij - Pj}, 

the corresponding values 

Vi = max {Uij -pj}> 
jEA(i) 

and 

(4) 

(5) 

Wi = max (Uij - pj}. (6) 
jWi),j#ji 

[If ji is the only object in A(i), we define wi to be -ox or, for computational 
purposes, a number that is much smaller than vi.1 Set 

pji := max {X,&j, - Wi + E}, (7) 

ITi I= Wi - E. (8) 

If X 5 C&j, - wi + E, add (i, ji) to S, and if ji was assigned to some i’ at the start 
of the iteration, remove from S the pair (i’, ji). 

Reverse iteration: 

Find an unassigned object j with pj > A, its best person ij 

i j = arg max {Uij - 7Ti}, 
iEB(j) (9) 
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the corresponding values 

/3j = max {Uij - 7fi}, 
i&(j) 

and 

7j = max {Uij - lri). 
iQ3(j),i#ij 

(10) 

(11) 

[If ij is the only object in B(j), we define 7j to be -CO or, for computational 
purposes, a number that is much smaller than ,B+] Proceed according to the 
following two cases: 

(1) ,Bj 2 X + 6. In this case set 

pj := max {X,7j - E}, 

7Tij I= &,j - max {A, 7j - E}, 

(14 

(13) 

add (ij, j) to S, and if ij was assigned to some j’ at the start of the iteration, 
remove from S the pair (ij, j’). 
(2) ,k$ < X + E. In this case, set 

(14) 
and if the objects k with pk < X are now more than n - m, set 

x := min {< ] pk 5 < for n - m or more objects k}. (15) 

Note that X remains unchanged in a forward iteration, and it can either 
decrease or stay unchanged in a reverse iteration. Note also that the “bidding 
person” i in the forward iteration may not get assigned to the best object ji; 
this happens when X > aij, - wi + E. In this case, however, it will be shown in 
Proposition 3(a) that the price pji will be increased by at least 6. Furthermore, 
the “bidding object” j in the reverse iteration may not get assigned to the best 
person ij; this happens when the “best value” /3j is low relative to A, in which 
case the price pj is reduced below X [cf. (14)], and the object cannot bid again 
until X decreases from its current level. Figure 1 illustrates the two cases that 
can arise in the reverse iteration. 

The next proposition establishes a basic property of the forward and reverse 
iterations. 

PROPOSITION 2. Suppose that at the beginning of a forward or a reverse iteration, 
(T,P) t‘ fi t th sa 1s es oge er with S the first two E-CS conditions (2a) and (2b), and X 
satisfies condition (3). The same is true for (?r,p), S, and X at the end of the 
iteration. 
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Figure 1. Ilustration of the possible cases that can arise in the reverse iteration. These are: (a) 
pj 2 X + E and rj - E > X. Then j gets assigned to ij,pj is set to rj - E, and Tij is set to uijj - rj + C. 
(b) & 2 X + c and ri - E 5 X. Then j gets assigned to ii,pj is set to X, and ni, is set to ui,j - X. (c) 

& < X + E . Then j stays unassigned and pj is set to pj - E, while ni, remains unchanged. 

Proof. Suppose that the iteration starts with S, (~,p), and X satisfying (2a), (2b), 
and (3). Let 3, (w, p), and 3 be the corresponding quantities at the end of the 
iteration. 

Consider first a forward iteration and let i be the corresponding unassigned 
person that submits the bid as per (4)-(8). W e will first verify that the pair (T,p) 
satisfies (2a) for each arc. From (4)-(6), we see that aij, - wi 1 pj,, SO by (7), 
we have 

Fji 2Pj,+E* (16) 

By adding this relation to the relation Tk + pji >_ fZkji - E [cf. @a)], and by using 
the fact ,& = Fl, for all k # ij, we obtain 

?ik + ?jj, 2 akj, - e, v k E B(ji), k # i. (17) 

On the other hand, since pj = ~j for all j # ji, we have 

?r, = Wi - E 2 aij - pj - E = - CZij - pj - E, V j E A(i), j # 5, 

while from (7) and (8), we have 

?ii = Wi - E 2 aij, - pj, - E. 

Combining the last two relations, we obtain 

?ii+j5j >&j-E, V j E A(i). (18) 

Finally, for arcs (k, j) with k # i, j # ji, we have 7rk = ?ik and pj = ~j, SO by 
(2a), we obtain 

?fk + pj >_ akj - e, V (k,j) E d,k # Gj # 5. (19) 
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By combining (17)-(19), we see that 

Fk + pi 2 akj - f, v (kj) E 4 

that is, the E-CS condition (2a) holds at the end of the iteration. 
We next show that (2b) is preserved by the iteration, that is, 

Fk + pj = f&j, v (k,j) E 3. (20) 

Note that if (k, j) E 3 and j # ji, we must have k # i, (k, j) E S, and ?rk = 
Fki,Pj = pi, so by using the hypothesis [cf. (2b)], we see that (20) holds. If, on 
the other hand, (k, ji) E 3 for some k, we claim that k = i, since otherwise, by 
the rules of the iteration, we would have X > aij, - wi + e, so that by (7) and 
W9 

x = i”j, 1 pj, + E, 

contradicting the condition (3). Now if (i, ji) E 3, we must have by the rules of 
the iteration, A 5 aii, - wi + E and ~ji = aij, - wi + 6, SO that 

?-ii = Wi-E= aij,-pjciji. (21) 

We see therefore that (20) holds for the case where j = ji as well. 
Finally, to show that condition (3) is preserved by the iteration, note that 

A = X, that pj = ~j for all j # ji, and that ~ji 2 X [cf. (7)]. Since the only object 
that can become assigned during the iteration is ji, we see that 

Fj 2 x7 V j that are assigned under 3. 

The proof of the proposition for the case of a forward iteration is thus complete. 
Consider next the case of a reverse iteration. Let j be the corresponding 

unassigned object that submits the bid as per (9)-(H). 
In the case where /3i 2 A + E, we have max{X, rj - E> 5 ,0j, SO by (12) and 

(1% 

zi, = C$j - max {A, ^(j - E} 2 ai,j - ,bj + E = xij + E if @j 2 A + E. (22) 

By using also the relation xi, + pj 2 ai,j - E, we have 

pj = max (A, yj - E) 5 pj - e = ai,j - riJ - E 5 pj if pi 2 X + E. (23) 

In the case where pj < X + E we have yj 5 pj < A + E and by using also the 
fact pi > A, we obtain 

pj = /3j - e < X < pj if @j < X + E, (24) 
Ti, = Ti, if @j < X + e. (25) 
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To prove that the E-CS condition (2a) is preserved by the reverse iteration, 
consider first the arcs (i, j) with i # ij. Since ??i = 7ri and pj >_ rj - E, we have 

+ii+pj L~i+rj-~>~i+aij-~i-~=aij-~, V i E B(j),i # ije (26) 

Consider next the arcs (ij, k) with k # j. We have mij + pk 2 aijk - e [cf. (aa)], 
and since pk = & for k # j, we obtain [cf. (22)] 

?Tij + pk 2 ri, + E + pk 2 aijk 

and [cf. (25)] 

if /?j 2 X + 6, k # j, (27) 

Fij + Fk = Ri, + I)k 2 aijk - E if @j < X + e, k # j. (28) 

Finally for the arc (ij, j), we have by (13) 

Fi, + ~j = aijk 

and by (14) 

if pj 2 X + E, (29) 

?ii, + ~j = Xi, + flj - 6 = ai,j - & 

By combining (26)-(30), we see that 

if pj < X + e. (30) 

Tii + & 2 C&k - E, V (i, k) E A, 

so the condition (2a) is preserved by the reverse iteration. 
To show that (2b) is preserved by the reverse iteration, that is, 

Fi + pk = a&, V (i, k) E 8, (31) 

note that if (i, k) E ?? and i # ij, we must have Xi = ?ii,pk = &, and (i, k) E s, 
so by using the hypothesis [cf. (2b)], we see that (31) holds. If, on the other 
hand, (ij, k) E 3 for some k, then either k = j, in which case we must have 
G, + isj = ai,j by (12) and (13), or else k # j, in which case (ij, k) E S, “Ti, = 7rij, 
and Tjk = pk, SO by (2b) and the induction hypothesis we have Fij + & = uijk. 
Thus (31) holds in all cases and the condition (2b) is preserved by the reverse 
iteration, 

Finally to show that (3) is preserved by the reverse iteration, note that X 2 x, 
while the only object that can become assigned during the iteration and whose 
price can change is j. On the other hand, if j becomes assigned, we must have 
pj 2 X by (12) SO at the end of the iteration, we will have ~j >_ 1, thereby 
preserving (3). Q.E.D. 

As a corollary of the preceding proof, we obtain the following proposition. 

PROPOSITION 3. Suppose that S, (r,p), and X satisfy conditions (2a), (2b), and 
(3). Then: 
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(a) In a forward iteration, pji increases by at least C. Furthermore, either ji is assigned 
to i during the iteration and pj; is increased to a level no less than A, or else pj, 
is increased to the level X 

(b) In a reverse iteration, either Ai, increases by at least e and j becomes assigned, 
or else j remains unassigned and pj decreases to a level below A. 

(c) If all persons are assigned (S is feasible), the reverse iteration leaves X unchanged. 

(a) See (16) and (7). 
(b) See (22) and (24). 
(c) If all persons are assigned, the number of assigned objects is m and each 

assigned object k satisfies pk 2 X by (3). Therefore, the objects k with pk < X 
cannot be more than 71. -m, which is the only situation where X can change. 
Q.E.D. 

We will now use the results obtained so far to analyze several possible algo- 
rithms. 

3.2. Purely forward algorithm 

It is possible to consider a forward auction algorithm that consists exclusively of 
forward iterations. In such an algorithm it is essential to choose initially X > pj 
for all unassigned objects j. Then, since X will remain unchanged, by using 
Proposition 3(a), it can be seen that in the course of the algorithm, we will have 

(32) 

so by using also Proposition 2, we see that all three e-CS conditions (2a)-(2c) 
will be satisfied. Furthermore, by Proposition 3(a), the price pj, is increased by 
at least e at each forward iteration. Using this fact and standard arguments (see 
e.g., [3] and [S]), it can be shown that this forward algorithm will terminate with 
a feasible assignment S that satisfies e-CS together with (x,p) (and is optimal if 
E < l/m and the problem data are integer). 

Unfortunately, even though this forward algorithm will work with arbitrary 
initial prices, it is not suitable for use in conjunction with E-scaling because of the 
requirement that initially we have X 2 Pj for all unassigned objects j. Since for 
an object to be assigned, its price must rise to at least the level A, the advantage 
of approximately optimal initial prices that E-scaling attempts to carry from one 
e-scaling phase to the next is largely diminished. 
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3.3. Purely reverse algorithm 

It is also possible to consider a purely reverse auction algorithm that consists 
exclusively of reverse iterations, provided that the initial assignment is feasible 
and the initial X is such that condition (3) is satisfied (pj 2 X for all assigned 
objects j). The following proposition establishes the validity of the algorithm. 

PROPOSITION 4. For a feasible problem, the purely reverse algorithm starting from 
a feasible assignment, a pair (r,p), and a scalar X sarisfLing conditions (2a), (2b), 
and (3) terminates. The assignment obtained satisfies E-CS together with (x,p). 

Proof. From Proposition 3(c), we have that X will remain unchanged and that 
at each iteration there are two possibilities: (1) rij will increase by E and 
the selected unassigned object j will get assigned to ij; or (2) the number of 
unassigned objects whose price exceeds X will decrease by one. Therefore, after 
some iteration, case (1) will occur exclusively. By (13) we have 

Fi, = ai,j - max {X,rj - 6) 5 &,j - X, (33) 

so rij cannot exceed max (i,k)Eaagk - X. It follows that the algorithm cannot 
execute an infinite number of iterations and must therefore terminate. Q.E.D. 

The disadvantage of the purely reverse algorithm is that it requires an initial 
feasible assignment. The reason is that if the initial assignment is infeasible, 
through a poor choice of X, we may have pj 5 X for all unassigned objects j, 
in which case the algorithm can make no further progress. Furthermore, it may 
occur that in the course of the algorithm, following several iterations in which 
the prices of some unassigned objects get strictly below X, we have pj 2 X for all 
unassigned objects j, while we have pj < X for no more than R. - m unassigned 
objects. Then the purely reverse algorithm will leave X unchanged and will 
terminate without finding a feasible solution. A possible remedy is to start with 
an arbitrary assignment, but to reduce X by some positive increment whenever 
the difficulty just described occurs. Unfortunately, however, it is not easy to 
determine the proper size of the increment for fast termination. 

Another possible way to circumvent the need for an initial feasible assignment 
is to combine the forward and reverse algorithms, so that the forward part 
guarantees that a feasible assignment will be obtained, while the reverse part is 
capable of dealing with essentially arbitrary starting values of X. In particular, 
one may use the purely forward algorithm first to obtain a feasible assignment, 
and then switch to the reverse algorithm after setting 

x := min . 
k: assigned under S 

In fact, this is precisely the algorithm proposed in [7]; it is suitable for e-scaling, 
but it does not take advantage of the beneficial effect of mixing the forward 
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and the reverse algorithms that was demonstrated for symmetric problems in 
[7]. The following algorithm switches several times between the two algorithms, 
aiming at less reliance on c-scaling and faster termination. 

3.4. Combined forward1 reverse algorithm 

The combined forward/reverse algorithm that we now introduce switches between 
forward and reverse auction until all persons are assigned. Then it executes 
reverse iterations exclusively, aiming to satisfy the final remaining optimality 
condition (pj 5 X for all unassigned objects j). The initial S, (r,p), and X must 
satisfy the c-CS conditions (2a), (2b), and the condition X _< pj for all assigned 
objects j. Thus, if the initial assignment is empty, any initial p and X can be 
used. We assume that initially there is at least one unassigned person (otherwise 
the forward part of the algorithm is inapplicable and unnecessary). 

Combined forward/reverse auction algorithm: 

Step 1 (forward auction cycle): Execute iterations of the forward auction 
algorithm until at least one more person becomes assigned. If there is 
an unassigned person left, go to step 2; else go to step 3. 

Step 2 (reverse auction cycle): Execute several iterations of the reverse auction 
algorithm until at least one more object becomes assigned, or until we 
have pj 5 X for all unassigned objects j. If there is an unassigned 
person left, go to step 1; else go to step 3. 

Step 3 (reverse auction): Execute successive iterations of the reverse auction 
algorithm until the algorithm terminates with pj 5 X for all unassigned 
objects j. 

The following proposition establishes the validity of the algorithm. 

PROPOSITION 5. For a feasible problem, the combined forward/reverse algorithm 
terminates with a feasible assignment S and a pair (T, p) satisfying the E-CS conditions 
(2a)-(2c). 

Proof: We will assume that the algorithm does not terminate and will arrive at a 
contradiction. When the algorithm obtains a feasible assignment, it gets reduced 
to the purely reverse algorithm and terminates by Proposition 4. Assume 
therefore that the algorithm never obtains a feasible assignment. Since the 
cardinality of the assignment must increase before switching from a forward to a 
reverse cycle, there are two possibilities: (1) The algorithm will execute forward 
iterations exclusively after some iterations; or (2) the algorithm will execute 
reverse iterations exclusively after some iteration, and we will always have pj > X 
for some unassigned object j. 
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In case 1 the algorithm will be reduced to the purely forward algorithm, and, 
as discussed earlier, it must terminate for a feasible problem. This contradicts 
our earlier hypothesis that the algorithm does not terminate. 

In case 2, since whenever a profit variable increases, it increases by at least E, 
there are two possibilities: 

(a) After some iteration, all profit variables 7ri stay constant and no object 
changes assignment. 

(b) Some profit variable increases to 03, in which case, by the argument given 
in the proof of Proposition 4 [cf. (33)], X decreases to --oo. 

In case a, the variables ,L3j stay constant after some iteration, so in view of 
(14), the object prices cannot change after some iteration. This contradicts 
Proposition 3(b), which states that ~j < pj at each reverse iteration [see also 
(24)]. In case b, let 

Jo3 = {A& -+ --~)> x3 = {Aj 51 Jco), 
I, = {iJ?ri --) cm}, 7, = {iii $! Im}. 

By the e-CS condition (2a), we must have q + pj 2 aij - E for all (i, j) E d, so 

i E 7, e- j ET,, Vj E A(i). (34) 

We claim that after some iteration, each of the objects in 7, must be assigned 
at all times to the same person from 7,. To see this, note that if some object 
j E >m bids an infinite number of times for some person ij, then xij will increase 
by at least E an infinite number of times, in view of Proposition 3(b), the definition 
of 3m, and the fact X + -00. On the other hand, by (34), we must have ij E 7, 
so 7rij must remain bounded and we have a contradiction. 

Thus, f, contains the set of persons that are assigned to 7,. However, 
7, contains some additional persons, namely the persons that are unassigned 
throughout the last reverse cycle (a person that becomes assigned in a reverse 
cycle remains assigned for the duration of the cycle). Therefore, the number 
of persons in 7, exceeds the number of objects in 2,. In view of (34), this 
contradicts the hypothesis that the problem is feasible. Q.E.D. 

A careful examination of the preceding proof shows that there are other valid 
variations of the combined/forward reverse algorithm, corresponding to variations 
of the reverse iterations and/or the scheme for switching from a reverse to a 
forward cycle. What is important is that: (a) X should remain unchanged at all 
forward iterations and at all reverse iterations where the current assignment is 
feasible; (b) X should not increase during all reverse iterations (here again only 
unassigned objects j with pi > X should be allowed to bid); and (c) a mechanism 
is provided whereby the combined method is guaranteed to eventually exit from 
a reverse cycle if the current assignment is not feasible. 
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Consider now what happens if the problem is infeasible. Then, eventually the 
number of unassigned persons will stop decreasing and the method will get caught 
in either a forward cycle (step 1) or in a reverse cycle (step 2). Infeasibility will 
then be detected in the standard way for auction algorithms, that is, some price 
or some profit will exceed a certain precomputable upper bound, as described 
in [5]. Another way to detect infeasibility is to periodically check (through a 
breadth-first search) whether, in the current assignment, there is an augmenting 
path starting at some unassigned person and ending at some unassigned object. 
It is also possible to deal with infeasibility by adding a sufficient number of 
artificial arcs to convert the problem to a feasible problem. These arcs must 
have sufficiently small values to guarantee that they are not part of an optimal 
assignment unless the original problem is infeasible (see [5]). 

3.5. An alternative reverse iteration and combined forwardlreverse algotithm 

A variation of the reverse iteration is obtained if we keep A constant, even if 
the number of objects k with Pk < X becomes greater than n - m. Thus, this 
alternative iteration is defined to be identical to the one given earlier, except 
that we forego the change of /\ in case (2) [cf. (15)]. For this iteration, 
Propositions 2 and 3 still hold, but the purely reverse algorithm may terminate 
with some persons still unassigned because X was set to a value so high that 
the number of unassigned objects with price less or equal to X exceeds n - m. 
Nonetheless, if the alternative iteration is combined with the forward iteration as 
in the algorithm given earlier, the resulting combination is valid because forward 
iterations will continue as long as there are some unassigned persons, even if no 
reverse iterations can be executed. 

Note that X remains unchanged throughout this alternative combined for- 
ward/reverse algorithm, and can only change at the beginning of each scaling 
phase. Thus, the choice of X at each scaling phase is critical for the algorithm’s 
performance. A reasonable scheme is to choose X at the beginning of each 
scaling phase except the first as 

x = min 
j: assigned under 5”” 

where S is the assignment obtained at the end of the preceding scaling phase. 
At the first scaling phase one may start with the empty assignment, zero object 
prices, and X = 0. With these choices, no reverse iterations will be executed in 
the first scaling phase, since the prices of the unassigned objects as well as A will 
remain at zero throughout the phase. 

4. Computational results 

In order to evaluate the relative performance of the new forward/reverse auction 
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algorithms, we used the following FORTRAN codes: 

l ASFR1: An implementation of the combined forward/reverse algorithm 
discussed in Section 3.4. 

l ASFR2: An implementation of the combined forward/reverse algorithm 
discussed in Section 3.5. 

l AS: An implementation of the forward/reverse algorithm of [7] discussed 
briefly at the end of Section 3.3. 

All three codes solve assignment problems as minimization problems, that is, 
they work with arc costs, which are the negatives of the arc benefits. In all codes 
we used e-scaling with the same starting value of E. Following each scaling phase, 
we reduced e by a certain factor, which was 10 for the two ASFR codes and 
5 for the AS code. These values were found to work reasonably well over the 
range of problems solved, and are consistent with the values used for forward 
and forwardjreverse auction codes tested in [7]. It is possible to use a larger 
c-reduction factor (and consequently execute fewer scaling phases) for the ASFR 
codes than for the AS code because forward/reverse auction apparently tends to 
resolve price wars faster than forward auction. 

The three codes were evaluated on the following classes of inequality-constra- 
ined assignment problems: 

1. Randomly generated problems, obtained with the DIMACS assign.c problem 
generator ([9]), which also include a number of high-cost arcs. 

2. Geometric matching problems, where a list of two-dimensional points must 
be matched with a randomly perturbed copy of the same list. 

3. Clustered geometric matching problems, where a list of clustered two- 
dimensional points must be matched with a randomly perturbed copy of 
the same list. 

The last two classes are representative of an important class of applications 
that motivated this research: data association in multiobject tracking. In these 
problems, new sensor measurements at each time frame must be associated with 
the predicted position of existing tracks. Because of the presence of false alarms 
(due to clutter or other effects), missed detections, and sensor measurement 
inaccuracies, the set of measurement values will be a random perturbation of the 
set of predicted positions. The maximum likelihood problem of determining which 
measurement-track associations are most likely is equivalent to an asymmetric 
assignment problem. 

4.1. Results on random problems 

Table 1 summarizes the results of our random experiments for asymmetric 
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Tnbk I. Average run time in seconds on the NeXTStation 68040 for 2,000~person, degree-8 random 
problems. Each data point is an average over 10 sample problems. 

Problem 2,000 x 2,020 2,000 x 2,050 2,000 x 2,100 2,000 x 2,200 

AS 3.05 2.50 2.00 0.53 

ASFRl 1.13 0.84 0.69 0.50 

ASFR2 1.14 0.83 0.67 0.50 

Table 2. Average run time in seconds on the NeXTStation 68040 for 4,000-person, degree-8 random 
problems. Each data point is an average over 10 sample problems. 

Problem 4,000 x 4,040 4,000 x 4,100 4,000 x 4,200 4,000 x 4,400 

AS 9.86 7.85 6.54 2.39 

ASFRI 4.43 3.57 2.90 1.14 

ASFR2 4.45 3.56 2.92 1.16 

assignment problems with 2,000 persons. In these experiments, an initial random 
problem is generated with eight arcs per person, with cost range [l, 2001. Based 
on the results of [7], purely random problems are often easy to solve and require 
no scaling. In order to make scaling necessary, we modified the problems to 
increase the costs of 20% of the arcs by a factor of 100. The resulting problems 
have a difficult structure, which requires scaled auction algorithms, as discussed 
in [7]. 

Table 2 summarizes the results of random experiments with 4,000-person, 
degree-8 problems, with cost range [l, 2001, with 20% of the arc costs increased 
by a factor of 100. The results in these two tables indicate little difference in 
the performance of the ASFRl and ASFR2 algorithms. The results also indicate 
the superiority of the new forward/reverse auction algorithms over the previous 
algorithm of [7]. 

Table 3 contains the results of experiments with 4,000 x 4,400 person assignment 
problems as a function of increasing density for two classes of problems: “easy” 
problems where the arc costs are randomly selected uniformly in [l, 20,000], and 
“hard” problems where the arc costs are selected uniformly in [l, 2001, and 20% 
of the arc costs are increased by a factor of 100. As the times indicate, the 
ASFRl and ASFR2 algorithms offer little advantage over the old AS algorithm 
for easy problems; these problems do not create “price wars” among persons, 
and can be solved without the use of scaling. For the “hard” problems, the new 
forward/reverse auction algorithms are much faster than the AS algorithm. 
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7hbk 3. Average run times in seconds on the NeXTStation 68040 for 4,000~person, 4,400-abject 
random problems with increasing degree. Each data point is an average over 10 sample problems. 

4.2. Results on geomettic matching problems 

The geometric matching problems were generated to simulate the structure of 
data association problems arising in multiobject tracking. An initial number 
of points was randomly generated using a uniform distribution on the square 
105 by 105. From these initial points, two lists of points were generated according 
to the following rules. 

1. The first list was generated by accepting each point of the initial list with 
probability 0.95, independently of the selection of other points. This effect 
was chosen to simulate a missed detection rate of 5%. Thus, the first list is 
a reduced version of the initial list of points. 

2. The second list was generated by first accepting each point of the initial list with 
probability 0.95, independently of the selection of other points in the second 
as well as the first list. This effect was chosen to simulate some false alarms in 
the data set, corresponding to points not included in the first list. Then, the 
locations of all the points in the second list were shifted by a constant bias, 
which was randomly generated from a bivariate Gaussian distribution with a 
specified bias standard deviation. Subsequently, each point in the second list 
was shifted by an independent bivariate Gaussian random variable, representing 
measurement noise, with a specified measurement standard deviation. 

3. The list with the least number of points was selected to be the persons in 
the asymmetric assignment problem. The other list was selected to be the 
objects. Arcs were created between each person-object pair for which the 
Euclidean distance between the corresponding points was less than three times 
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Table 4. Average run times in seconds on the NeXTStation 68040 for geometric problems with 
2,000 points per list, probability of detection 0.95. Each data point is an average over 10 sample 
problems. 

Bias/Measurement SD S/50 lo/100 H/150 201200 
AS 0.26 30.37 378.42 374.03 

ASFRl 0.32 1.67 3.78 9.34 
ASFRZ 0.34 1.62 3.04 5.99 

the measurement standard deviation. The cost assigned to each arc was an 
integer between 1 and 1,000, which was proportional to the Euclidean distance 
of the corresponding person-object pair. 

4. In order to guarantee feasibility of the asymmetric assignment problem, an 
extra object node was introduced for each person node, with a corresponding 
arc cost of 20,000. This large cost encouraged the problem to find a feasible 
assignment without using the extra nodes. 

Table 4 summarizes our results with random geometric experiments corre- 
sponding to 2,000 points in the initial list. Four different combinations of 
bias/measurement standard deviation were tested. For each combination, Table 4 
lists the average run times across 10 different problems with similar statistics for 
each of the three algorithms. For small bias/measurement standard deviations, 
the points in the person lists and object lists are far apart, and thus the solution 
of the assignment problem is trivial. As the standard deviation increases, object- 
person groups form with an unbalanced number of persons or real objects in the 
group (because of the missed detection and false-alarm probability 0.95). This 
creates long price wars to determine which extra persons in the group will be 
assigned to artificial objects, or which objects will remain unassigned. The size 
of these groups increases with bias/measurement standard deviations, leading to 
longer price wars. 

As the results in Table 4 indicate, the new forward/reverse algorithms are much 
more efficient than the AS algorithm of [7]. The reason for this efficiency is that 
forward and reverse iterations are interleaved at each scaling phase; in contrast, 
the AS algorithm performs only forward iterations at most scaling phases, and 
then switches to an unscaled reverse-only algorithm. Most of the computation 
time (over 95%) is spent in this unscaled reverse-only algorithm trying to enforce 
the condition pj 5 X for all unassigned objects j [cf. (3)] within groups with more 
objects than persons. The new forward/reverse algorithms use both forward and 
reverse iterations in all scaling phases, resulting in more robust performance for 
this class of problems. 
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Table S.Average run times in seconds on the NeXTStation 68040 for clustered geometric problems 
with 2,000 points per list, probability of detection 0.95. Each data point is an average over 10 sample 
problems. 

7 
Spread/Measurement/Bias SD 500/50/5 lOOO/lOO/lO 2500/150/15 2000/200/20 

AS 1.04 28.33 225.60 813.92 

ASFRl 0.45 1.70 2.21 3.68 

ASFR2 0.49 1.74 1.94 3.53 

4.3. Results on clustered geometric matching problems 

The clustered geometric matching problems were generated to simulate a different 
type of data association problem arising in multiobject tracking: groups of objects 
moving close together, but with significant distance among the groups. The 
principal difference between this class of problems and the geometric class of 
problems is the location of the initial number of points, which are generated as 
follows. 

1. An initial number of cluster centers are generated with a uniform distribution 
on the square l@ by 10s. 

2. For each cluster center, a fixed number of points is generated by adding to 
the cluster center an independent bivariate Gaussian random variable with 
a specified cluster spread standard deviation. 

Once the initial list of points is available, generation of the asymmetric assignment 
problem follows identically steps l-5 of the geometric matching problems of the 
previous section. 

Table 5 summarizes our results with random geometric experiments correspond- 
ing to 50 clusters of 40 points each in the initial list. Four different combinations 
of spread/measurement/bias standard deviation were tested. For each combina- 
tion, Table 5 lists the average run times across 10 different problems with similar 
statistics for each of the three algorithms. For small spread/measurement/bias 
standard deviations, the assignment problem decouples by cluster and thus cor- 
responds to solution of 50 small problems. As the spread standard deviation 
increases, the assignment problems become coupled across clusters, and finding 
an optimal assignment becomes harder and more susceptible to long price wars. 

The results in Table 5 agree closely with the results from Table 4. The 
performance of the new forward/reverse algorithms is much more robust to 
scenario variations than the performance of the AS algorithm of [7]. This is due 
largely to the use of scaling both in forward and reverse iterations, and the mixing 
of forward and reverse iterations at each scaling phase. In essence, this mixing 
of forward and reverse iterations forces the object prices and person profits to 
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satisfy the complementary slackness condition (3) locally for each cluster and at 
each scaling phase. In contrast, the AS algorithm tries to enforce this condition 
only at the last scaling phase, while using a single value of X for all the clusters; 
if the prices in one cluster rise much higher than the prices in other clusters 
(because of price wars), the reverse-only part of the AS algorithm may require 
an excessive number of bids to satisfy condition (3). 
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