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ABSTRACT

Many problems, such as cutting stock problems and the scheduling of tasks with a 
shared resource, can be viewed as two-dimensional bin packing problems. Using 
the two-dimensional packing model of Baker, Coffman, and Rivest, a finite list L 
of rectangles is to be packed into a rectangular bin of finite width but infinite 
height, so as to minimize the total height used. An algorithm which packs the list 
in the order given without looking ahead or moving pieces already packed is called 
an on-line algorithm. Since the problem of finding an optimal packing is NP-hard, 
previous work has been directed at finding approximation algorithms. Most of the 
approximation algorithms which have been studied are on-line except that they 
require the list to have been previously sorted by height or width. This paper 
examines lower bounds for the worst-case performance of on-line algorithms for 
both non-preordered lists and for lists preordered by increasing or decreasing height 
or width.

Introduction
Two-dimensional packing problems arise in many contexts. For example, cutting stock prob­

lems involving rolls or sheets of material and the scheduling of tasks with a shared resource can be 
viewed as two-dimensional packing problems. In the model proposed by Baker, Coffman and 
Rivest [2], a finite list L of rectangles is to be packed into a rectangular bin of finite width but infin­
ite height, in such a way as to minimize the maximum height used. The packed rectangles cannot 
overlap, nor can they be rotated. Since the problem of finding an optimal packing is NP-hard [2], 
several approximation algorithms have been studied [1,2,3,6,7,10]. Figure 1 illustrates possible 
packings of a list of five pieces, with sizes as specified. Notice that, for a computer scheduling 
application, the horizontal dimension represents core while the vertical dimension represents time.

A two-dimensional bin packing algorithm is said to be on-line if, given a list of rectangles 
L = (ph ...,pn), it

•  packs the rectangles in the order given by L,
•  packs each rectangle p{ without looking ahead at any pj (J > i), and
•  nevers moves a rectangle already packed.

*This author’s work was supported by the Joint Services Electronics Program (U.S. Army, U.S. Navy and U.S. 
Air Force) under Contract DAAG-29-78-C-0016.
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Most of the algorithms which have been studied are designed to pack lists already sorted by decreas­
ing or increasing height or width. Thus, some simple preordering is done before the actual on-line 
packing. For instance, the Split algorithm [7] is an on-line algorithm which requires that the list be 
ordered by decreasing width. Next-Fit and First-Fit Decreasing Height [6] are on-line algorithms 
which require that the list be first sorted by decreasing height. On the other hand, the Next-Fit and 
First-Fit Shelf algorithms [3] are on-line and do not require that the list be preordered.

This paper examines lower bounds for the performance of on-line packing algorithms for both 
non-preordered lists and for lists preordered by decreasing or increasing height or width. As a spe­
cial case, lower bounds for packing squares in order of increasing or decreasing size are also investi­
gated.

Absolute Lower Bounds
For any algorithm A, let A(L) denote the height of the packing of L produced by A and let 

OPT(L) denote the height used by an optimal packing. As a measure of absolute worst-case perfor­
mance, we study the ratio ; i.e., we consider bounds of the form A (L)^aO P T(L), where a

is some constant.
A piece (rectangle) p{ is said to have size (xj,y,) if p, has width x, and height yt. Pieces /?,• and 

pj are said to be colateral at height h from the bottom of the bin in a packing if a horizontal line at 
height h intersects both /?,• and pj. For instance, in Figure lb  pieces p\, p2, and p$ are colateral at 
height 5. If Li = (pt , . . . ,P i)  and L2 = (p j ,...,/»/ ) are two lists, then we write L\L2 to denote their 
concatenation (p^, ..„ p ^ .p j, ...,p jJ .

When presented with lists which are not preordered appropriately, most of the algorithms 
which have been studied either are undefined or have performance which can be arbitrarily bad 
relative to an optimal packing, i.e. for any a , there is a list L such that A{L)> clOPT{L). The two 
exceptions are the Next-Fit and First-Fit Shelf algorithms of Baker and Schwartz [3]. Of these, the 
First-Fit Shelf algorithm performs better, with a worst-case performance of at most 6.99 OPT(L). 
We give here a corresponding lower bound of about 2; every on-line algorithm packs some list so 
badly that it comes arbitrarily close to doubling the height of an optimal packing. Thus, even for 
unpreordered lists, there may be room for substantial improvement over the performance of the 
First-Fit Shelf algorithm.

Theorem 1: Let A be an on-line algorithm. For any 5>0, there is a list L for which

A(L) >  (2 -8 )  OPT(L).

Proof: Let 8 and e be fixed, with 0<e<8/4 , and suppose that the bin has width 3. We obtain a 
contradiction by assuming that, for every list L, A (1 )^ (2 -8 )  OPT(L). In particular, we construct a 
list L —L\L2L,T,LtiJ-5 (with each list L, consisting of a single piece pi) for which it cannot be the case 
that

A(Li......Lk) ^  (2 -8 )  OFT(Lh ...,Lk)

for each k, l</fe<5. In other words,

f A(L{) A(LiL2) A{L\L2Lf) A(LiL2LjLf) A(L) ] >  2_g  
maX{ OPT(L!) ’ OPT(L!L2) ’ OPTtLiZ^a) ’ OPT(L1L2L3L4) ’ OPT(L) J

Let Li consist of a piece pi of size (1,1). The algorithm A packs p\ at some height hlt as 
indicated in Figure 2a. Let the next piece, p2, have size. (3,/ii + e). Clearly, p2 must be placed 
above p\_ Let h2 denote the difference in height between the top of p\ and the bottom of p2_ If the 
next piece, p2, has size (1, l + ̂  + Z^+e), then p3 is too tall to fit below p2 and so A must place p2 at 
some height h2 above the top of p2.

Assume that, for 1<&<3,

A(L!...L*) <  2 OPT(L!...!*)•
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Letting yt denote the height of piece pt, we have:

OPTCLj)
A(L iL2)

o p t (i 1l 2)

h\+y\
y\

< 2 hl < y l = l

h \+ y\+ h2+y2

y\+ y2

=*> hi + h2 < y\+ y2 =1 + Ai +€

==> h2 < 1 + e

A{L\L2L 2) _  hl +yl + h2+y2+h3+y3 ^
O P T ( L i L 2L 3 )  > 2+ > '3

==̂> /ii + /i2+/j3+};i < _y2+y3 = (/ti+e)+(l + /ti + /t2+e)

=*> h3 < h\+ 2e. <  l  + 2e

So if piece p4 has size (3 ,l + 2e), then y4 >  max{/i1,A2,/i3}, and p 4 will be placed with its bottom at 
some height /t4 above the top of p3. A piece p$ of size ( l , l  + /i1 + /i2+fc3+ /i4+2e) would then have 
to be placed above p 4, giving:

A(J^\L2L 3LliLs)

-  hi+yx+h2+y2+h3+y3+h4+y4+y5

— /ti + l + /t2 + y2+/t3+ ( l  + /ti + /t2+€) + /l4 + y4+ jy5

= ,y2+>’4+>'5+(/ii + e)+ (l + 2e) + ( l + /i1 + /i2+/i3+/i4+2e)+/i2—4«

= 2[y2+y4+y5J + /i2-4 € .

Noting that OPT(L) = y2+yt+ys > 1 (see Figure 2b), we have 

A(L) >  2 OPT(L)+/t2-4 e

>  2 O PT(L)-8

>  (2 -5 )  OPT(L) 

thereby proving the theorem. □

The Bottom-Leftmost algorithm [2] and the Split algorithm [7] both have a worst case perfor­
mance of 3 OPT(L) for lists ordered by decreasing width. The following result shows that every 
on-line algorithm which packs pieces ordered by decreasing width has a worst case bound of at least
( l+ - ^ ) O P T ( i ) .*

Theorem 2: For any on-line algorithm A , there is a list L ordered by decreasing width such that

A(L) >  (1 + ^ y - )  OPT(L) >  1.81 OPT(L).

Proof: Let e be fixed, 0< e< -^-. Consider the list of rectangles L=LiL2LyL4 where 

Li consists of 8 pieces of size ( y — 3e,l),

L2 consists of 6 pieces of size (1 + e, — 1 + V 6 ),

*This is an improvement over Storeys result of approximately 1.78 [11].
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L3 consists of 3 pieces of size (1,2),
L4 consists of 3 pieces of size (1,3).

Note that L is ordered by decreasing width.
Figures 3a,b,c,d give optimal packings of lists L u L\L2, L\L2L 3, and L\L2L ^  = L, respec­

tively, for a bin of width 12. Therefore,

O P T ^ )  = 1,

that

OPT(LiZ.2) = 2,

O P T ( L 1L 2̂ 3)  =  V 6 ,

OPT(L1L2L3L4) = OPT(L) = 3.

It is shown that any algorithm which packs each of the lists L\, L {L2, L\L2L 3 in such a way

/!(£.,) <  ( 1 + ^ )  OPT(Z.,),

A{LxLi) <  (1 +  ̂ )  O P T (i,i2),

A(L\L-iLi) <  (1 + ̂ )  O P W 2Z.3),

V 6will necessarily lead to a packing of list L\L2LJuA = L for which A(L) >  (1 + - — -) OPT(L). In 

other words, we assume that

max-
^ (¿ i)  A{L\L2) A{L\L2L3) A(L)

[ OFT(Li) ’ OPT(L!L2) ' OPT(L1L2L3) ' OPT(L)
< 1 + V 6

and then obtain a contradiction, thereby proving the theorem.
We must first pack L\. Since OPT(L1) = l ,  it is clear that the bottom of every L { piece must 

be strictly ^bglow height 1, or else we would violate our assumption that
A (LO <  (1 + —~ )  OPT(Li). Thus, for sufficiently small 8i>0, all L\ pieces are colateral in the bin

at height 1 — 8i (see Figure 4a). Since the bin is filled to a width of 12-24« at height l - S ^  the
total remaining unfilled space is only 24«. None of the remaining pieces of L will be able to fit
below height 1.

Now each piece of L2 must be placed with its bottom at or above height 1 and will therefore 
reach a height of at least V ó in the bin. As above, in order to avoid violating
A{L iL2) < ( l  + -~ ')O P T (L 1L2), the L2 pieces are colateral at height V 6 - 8 2 in the bin, for any suf­

ficiently small 82 (see Figure 4b). In particular, it is not possible to pack two L2 pieces on top of 
each other, because this would give

A{LxL2) l+ 2 ( —1 + V ó) V ó

OPT(L!L2) 2 3 *

Similarly, no L3 piece can be placed on top of an L2 piece because we would have

A{LxL2L 3) ^  ! + ( - !  + V ó)+ 2  = V ó 
OPT(L1L2L3) V ó 3 ‘

So at height V ó —82, the three L3 pieces are colateral with the L2 pieces, filling the bin to a width of 
9+óe. Thus, it is not possible to pack all of the L4 pieces below height V ó. At least one of them 
must be above an L2 or an L3 piece, which gives

A(L) ^  ! + ( —! + Vó) + 3 _  V ó 
OPT(L) ~  3 3 ‘
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This contradicts our assumption, proving the desired result. □

The First-Fit Decreasing Height algorithm [6] does somewhat better than the above algorithms 
which use decreasing width; its performance is at most 2.7 OPT(L). The following theorem gives a 
corresponding lower bound of y .

Theorem 3: For any on-line algorithm A, there is a list L ordered by decreasing height such that

A(L) a  |  OPT(L).

Proof: Consider a bin of width 6. For CKeC-jy, let the list L= L\L2L2 be defined as follows:

Li consists of 6 pieces of size ( l - 2 e , l ) ,
L2 consists of 6 pieces of size (2+e, 1),
¿3 consists of 6 pieces of size (3 + e ,l) .

Observing Figure 5a, it is easy to verify that 

OPIXLi) = 1 ,

OPT(L1¿ 2) = 3,

OPT(L1L2¿ 3) = 6.

Assume that

Í ^ (¿ i)  ^ ( ¿ 1̂ 2) A(L) ) 5_
m a X \  O P T ( i i ) '  O P T O . ’ O P T ( £ )  J  3 '

Then, in order to avoid violating this assumption, the bottom of every L\ piece must be strictly 
below height 1; i.e., for sufficiently small 8>0, all L\ pieces are colateral at height 1 -8 . Since no 
L2 piece will fit below height 1, and yet all the L2 pieces must pack below height 5 (since 
OPT(Li¿ 2) = 3), there is not enough height for four L2 pieces to fit above each other. Also, no 
three pieces of L2 or L3 can be colateral. Thus, there is no way to leave space for an L3 piece below 
height 4, and an algorithm A can do no better than to pack L2 as shown in Figure 5b. But this 
forces all the pieces in L3 to be at or above height 4 and, since no two L3 pieces can be colateral, 
A(L) >  10 = y  OPT(L). □

Some algorithms perform better for squares than for rectangles. The Bottom-Leftmost algo­
rithm [2] and the Next-Fit and First-Fit Decreasing Height algorithms [6] pack squares in order of 
decreasing size with performance no worse than 2 OPT(L). This performance is not bad in light of 
the following theorem.

THEOREM 4: Let A be any on-line algorithm. For any S>0, there is a list L of squares ordered by 
decreasing size such that

A(L) >  (1 .5 -8 ) OPT(L).

Proof: This proof uses a list L consisting of two squares of size y  + e and four squares of size y  — e, 

where 0 < e < y S . An optimal packing into a bin of width 1, illustrated in Figure 6a, has height y .  

For L ordered by decreasing size, the two y  + e squares must be packed first. In order to achieve 

A(L) <  (1.5—8) OPT(L), they would have to be colateral at height y  + e—Si, for sufficiently small 

83. Since this fills the bin to a width of y  + 2e, there is not enough space left for a third piece at 

height y  + e — 8*. Thus, all four of the y  — e squares must be placed with their bottoms at height at 

least y  + e. Because no four of the squares can be colateral, the best any on-line algorithm can do
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is to have A (L ) = l - € ,  as illustrated in Figure 6b. This gives

„ d i a ,  >
OPT(L)

□

Most of the algorithms thus far proposed have used lists ordered by decreasing width or 
height. An obvious alternative would be to pack pieces in order of increasing width or height. The 
lower bound in this case is somewhat higher than the other lower bounds presented here for preor­
dered lists.

Theorem 5: For any on-line algorithm A, there is a list L ordered by both increasing width and 
increasing height such that

A{L) >  OPT(L) >  1.82 OPT(L).

Proof: Let e be fixed, 0 < e<  For k -  , consider the list of pieces L = L XL2L3L4, where

L\ consists of 4 pieces of size (1 -e , 1),
Jq

L2 consists of 2 pieces of size (1, —),

¿3 consists of 1 piece of size (l.Jfc—1),
L4 consists of 1 piece of size (1 +€,&).

An optimal packing of L into a bin of width 4 is illustrated in Figure 7a. Notice that 

OPTCLO = 1 ,

O Y I(L xL2) = 2,

OFT(L,L2L,) = 1  + 1 

OPT(£) = k.

We shall show that the assumption

max
' ¿ ( ¿ 1) M L iL2) A{LxL2L2) M L)  Ì
OPTCLi) ’ OPT(LiL2) ’ OPT(L1L2L3) ’ OPT(L) J

1+V7
2

leads to a contradiction.
Since OPT(Z.1)=: 1, all L x pieces must be colateral at height 1 — Si for sufficiently small 5t . So 

at height 1 —81, the bin is filled to a width of 4 -4 e , which forces all remaining pieces to have their 
bottoms at height at least 1 (see Figure 7b). Thus, the L2 pieces must be colateral at height

kl  + - - 82, for sufficiently small 52; otherwise the above assumption would be violated, because the
k kL2 pieces would reach height 1 + y + —, and

¿ ( ¿ ¿ 2) ^  1+ 2 + 2 = l + ¿ >  1+V7
OPTCL^) 2 2 2

In fact the L3 piece must also be colateral with the L2 pieces at height 1 + -—— 82, or else

2L 3) ^  1 + 2 +(<: = = l + V?
O P T iL ^ L ,)  k_ .k +2 2 

2

But having the L2 and L3 pieces all colateral at height 1 + y  • 82 means that there is not enough
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width left to fit the L4 piece also at this height. This forces

1 + —+ /fc
A(L) >  2 = 3k+2 _  1 + V 7

OPT(L) it 2k 2
So our assumption must be incorrect, which proves the desired result. □

Similarly, the lower bound for squares preordered by increasing size is higher than for squares 
preordered by decreasing size.

Theorem 6: For any on-line algorithm A, and any 5>0, there is a list L of squares ordered by 
increasing size such that

A(L) > ( i - S ) O P T

Proof: For fixed e, 0<e<m in  {48, -g-}, consider the list of squares L = L iL2L3, where

L\ consists of 7 squares of size 1—€,
L2 consists of 2 squares of size 2,
L3 consists of 1 square of size 4.

Figure 9a illustrates an optimal packing of L into a bin of width 8- € ,  and 

OPTCLi) = 1—€,

O PT(I1I 2) = 2,

OPT(L) = 4.

Once again, we prove that

max M L  1) M L\L2) A(L) ] 1 _ ,
O P T ( L i )  ’ O P T ( I 1L 2 )  ’ O P T ( L )  J  4

by assuming the contrary.

In order for <  -7 » it must be the case that all Li pieces are colateral at height
O P T ( L i )  4 F  *

1 - € - 5 i , for sufficiently small 81. Thus each L2 square must have its bottom at height at least 1 -e . 
For sufficiently small 82, the L2 pieces must be colateral at height 3 - e - 8 2, or else we would have

M L 1L2) ( l - e )  + 2+2 >  7 _
OPT(L1L2) 2 4 '

This means that the bin is filled to width 4 at height 3 - e - 8 2 (see Figure 8b), and so the square of 
size 4 must be packed above an L2 square, giving

M L) ^  (3—€)+4 _  ? - €  7 Q
OPT(L) 4 4 4 *

Asymptotic Lower Bounds
The lower bounds cited above are all bounds for absolute worst-case performance. If H , a , 

and (3 are constants such that, for every list L with pieces of height at most H , 
A (L )^ a  OPT(L)+{3, then a  is called an asymptotic worst case bound. The absolute worst case 
bound seems to be a better measure of performance when the number of rectangles to be packed is 
small, whereas the asymptotic bound is a better measure when the number of rectangles is large.

In this section we shall need the following definition. If horizontal lines are drawn across the 
bin through the top and bottom of each piece, as illustrated in Figure 9, the region between two
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successive horizontal lines is called a slice.
The results of Brown [4] and Liang [9] for one-dimensional bin packing can be interpreted in 

two dimensions to give the following result.

Theorem 7: Any on-line algorithm which packs rectangles in order of increasing or decreasing 
height or increasing width has an asymptotic bound of at least 1.536.

The First-Fit Decreasing Height algorithm has an asymptotic worst-case bound of 1.7 [6], 
which is not much worse than 1.536. If the widest rectangle packed has width at most 1Jm times the 
bin width, where m is a positive integer greater than 1, then its asymptotic worst-case bound is 
(m + l)/m [6]. Thus, the narrower the pieces are with respect to the width of the bin, the better the 
algorithm performs. Note that for m = 2, the asymptotic bound is 1.5, which is better than the lower 
bound of 1.536 for m = l.

For on-line algorithms without preordering, the asymptotic worst-case bound must also be at 
least 1.536. By picking a parameter appropriately, the asymptotic performance of the First-Fit Shelf 
algorithm can be made arbitrarily dose to 1.7 [3], again not much worse than the lower bound of 
1.536.

Coffman [5] showed that for on-line algorithms which pack squares in order of decreasing 
size, the asymptotic worst-case bound is at least 8/7. The Up-Down algorithm packs squares 
ordered by decreasing size with an asymptotic worst-case bound of 1.25 [1], not much worse than 
8/7. The following theorem generalizes Coffman’s result based on the maximum width of the 
squares.

Theorem 8: Consider any on-line algorithm A and a bin of width 1. Let m be a positive integer. 
Let a  and (3 be constants such that for every list L of squares of size at most 11m ordered by

decreasing size, A(L) ^  aOPT(L)+(3. If m> 1, then a s —---------- . If m = 1, then
mr—m +1 '

Proof: Let m be an integer greater than 1, and let n be a positive integer divisible by m. Consider 
the list L=L]L2, where L\ contains n squares of size —^ -  + me and L2 contains nm squares of size

— — e. Note that OPTfLO = — (—~ -  + me) and O F IX L ^) <  - + me). (See Figure
m +1 m m + 1 m + 1
10.)

L\ is packed first. Let hi be the total height of slices containing exactly one segment of a 
square oi L\, and let h2 be the total height of slices with at least two segments of squares of L\ (see 
Figure 9). Then

A{L{) s  h\ + h2

>  [n (-~ Y + m e )-m /i2]+/i2

= — -----h W l—m)+mne.
m + 1 '

Thus,

A (L^ aO P T ^O + P

m + 1
+ h2( l~ m )  + mne ^  — ( 1

m m+1
+ me)a+(3

h2

n

ae + -^— me 
n

m — 1

A slice containing k>  1 segments of squares of L x can contain at most m — k segments of 
squares of L2. Therefore, after packing L\ and L2 the total height of pieces packed in the slices 
composing h\ and h2 is at most {m-\- l)h \ + mh2. Since the total height of squares in L\ and L2 is
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n(—^-- + m€)+nm(—~ — e), and at most m + 1 segments fit in a slice, 
m+1 m + 1

AiLiL-i) — /ti + /M---- — €)—(m + l)h i — mh2]v 1 u x 1 m + 1L v m+1 7 v m + 1 7 v 71 11

-  2̂ n

Thus,
m + 1 m + 1

A(LxL2) ^  aO P T (I1L2)+ P

— ■——4 <  a[ — + nme] + 0.
m+1 m + 1 m+1

a  >
— + l - - ^ ( m + l )  _/z_____n_____

l  + m (m +l)e

Substituting in for
h2

m a

a  >

a  >

m2- l m3— m
..A

m — 1 (m + 1)

™L---- A m2
m +1 n

l + m (m +l)€ 

m2+me

m3 —m + 1 
m (m +1)

Choosing n sufficiently large,

+ (m3—m+1)<

m
a  > m+1

m3 — m + 1 
m (m +1)

-0(€) = m'
m3—m + 1

- 0 (€)

Thus, for any 8>0, a list of squares ordered by decreasing size, with each piece of size at most
m

can be found such that for any on-line algorithm A, A(L) <  aOPT(L) + {3 implies
m3a  >  —------------- 5.

mr — m + 1
Note that for lists of squares of size at most 1, the asymptotic bound must be at least as large

23as for lists of squares of size at most 1/2. Therefore, for m = l ,  a > —;---------= 8/7. □
23- 2 + l

The following result extends the lower bound of 1.536 for one-dimensional on-line algorithms 
[4,9] to two-dimensional algorithms which pack squares ordered by increasing size.

Theorem 9: For any on-line algorithm, the asymptotic worst-case bound when packing squares 
ordered by increasing size is at least 1.536.

Proof: It is sufficient to make some straightforward modifications to the proof of Brown [4] that in 
the one-dimensional case, every on-line algorithm has an asymptotic bound greater than 1.536. 
Intuitively, wherever the one-dimensional proof requires summing over bins, this proof sums over 
slices of varying heights.

Define the sequence of integers {an}, for «2:1, by

<2i  =  2

an+l=l+IIa<i=l
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Define

Rt =
Ä a , - 1

Let 8>0 
0 <  e <  min {

(1)

such thatand for any positive integer r^ 3 , choose €
1 s }. Let r be a multiple of ( a , - ! - ! ) .  Consider the list of

at( a , - l ) ( t - l ) ’ t Rtßt-\
squares L = L xL2...Lt, where L x consists of (at- l ) r  squares of size p\ = 1

consists of raf+1_,- squares of size p-x =

OPT{LxL2...Lk)

1
af-l

at+i-i•+€. Then, for

at+i-k~l
+ raf_1€.

— ( /— l)e and L,,

(2)
Let 5 be the set of all slices in the packing after LxL2...Lt- x has been packed. A slice s e S inter­
sects mj(s) squares of size p{. For the set a, is defined to consist of those slices in S
which are at least half full and in which the smallest piece has size pt. Similarly, we define (3,- to be 
those slices in S which are less than half full and in which the smallest piece has size p {. Let h(a{) 
( A ( 0 ,) )  represent the total height of slices in a,- (0,). For

and

Assume that

A{LxL2...Lk) = 2(A (a,)+ A (ß ,))i=i

A(LxL2...Lt) s  r+ ^hicL i).
i=i

A(LxL2...Lk) 
max{— ———----— < Rt- 8.

OPT (LxL2...Lk)

It follows from (3), (4), and (5) that for — 1,

and

OPT(LxL2.■ -Lk)(Rt- 8) >  2 (A (« i)+ * (ß i))i=i

OPT(LxL 2. ..Lt)(Rt—8) >  r + 2 * ( a i ) .i=i
Because there are raf+1_, squares of size p t (2 < /< /) ,

1[— *—  + €]raf+1_, =
a t + l - i  seS

(3)

(4 )

(5)

(6)

(7 )

(8)
where h(s) represents the height of slice s. Summing inequalities (6) and (7) and using (2) and (8) 
gives

' •• 1
( * r - 8) 2 [— r +r a r-ie] ~ S ~ T T rai+i-<i-------- +61

¿=1 a t + \ - k  I  1=2 a i f  a t + l - i

> 2  2 [Ä(“ «)+Mß«)3 + r + 2 Ä(a /) “  2 ~ i t 2 K + i-.(*)]*(*)•
¿=1 i = 1 i = l i = 2 a i Jt5

(9)

By (1) and the choice of e <
tRtat-

•, the left hand side is less than
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t t •
Rt l , ------- r  -  2 - ^ 7¿=ltff+l-* 1 ( = 2 1

r — r.

Combining (9) and (10)
r - l

2  2  ~ T T m'+!-<•(>*) >  2 [ 0 '+ i)^ (a f- ;)+ X ß f-y)3.
stS  i = 2 “ i 1 ;=  1

(10)

( 11)

At this point, it is possible to apply Brown’s original proof [4] which shows that (11) leads to a con­
tradiction for e <  —r----- 7—— — . We conclude that the assumption in (5) is incorrect, and the

af(af- l ) ( ? - l )
asymptotic bound is at least R, > 1.536 for t^ 5 .  □

Conclusions
The lower bounds show the extent to which it might be possible to improve on the current 

packing algorithms. They suggest that decreasing height and width are likely to yield better algo­
rithms than increasing height or width.

In order to improve performance beyond the lower bounds presented here, it would be neces­
sary either to violate the on-line conditions or to try other orderings of the lists. Sleator [8] 
describes an algorithm which achieves an absolute worst case bound of 2.5 by first packing pieces at 
least half as wide as the bin, and then packing the remaining pieces in order of decreasing height. 
Coffman, Garey, Johnson and Tarjan [6] have investigated the Split-Fit algorithm which has an 
asymptotic bound of 1.5. It groups pieces by width and then orders each group by decreasing 
height, and is not on-line since it requires moving rectangles around. More recently, Baker, Brown 
and Katseff [1] have proposed the Up-Down algorithm which groups pieces by width and orders 
each group by decreasing height or width, but is on-line and has an asymptotic bound of 1.25. By 
the result of Brown cited earlier, it is substantially better than any on-line algorithm which packs 
solely by increasing or decreasing height or by increasing width.

Note that the proofs of Theorems 3 and 4 use pieces which are all of the same height. Thus, 
these results also apply to algorithms for one-dimensional bin packing. Theorems 3 and 4 give abso­
lute lower bounds of 5/3 and 3/2 for lists ordered by increasing size and decreasing size, respectively. 
Removing the epsilons from the^ heights in the proof of Theorem 8 gives an asymptotic one­

dimensional lower bound of —r-^ ------for pieces of size at most Um ordered by decreasing size.
mJ—m + l
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(a) One possible packing of list L.
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(b) An optimal packing of list L.

Figure 1. Packing list L =
with width x.:l
and height y\:

(P 1 >P2 »P3 JP4 JP5 )
3 8 11 4 1
6 4 4 3 5
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(a) A packing of L by an algorithm A.

(b) An optimal packing of L. 

Figure 2. Packing list L of Theorem 1.
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--------------------------- ----------- ---------- ---------------------

-i------- — i-----------J ----------- 1—  1-------------------------1—  1----------L*----------- m --------

2 4 6 8 10 12

(a) An optimal packing of L-̂ .

(b) An optimal packing of

(c) An optimal packing of L^L^L^.

(d) An optimal packing of = L.

Figure 3. Optimal packings of sub lists in Theorem 2.
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-*--------,------- -------- 1—  1--------kJ------ 1— — i--------
4 6 8 10 12

(a )  A packing of L^.

(b) A packing of L by an algorithm A.

Figure 4. Packing list L of Theorem 2.
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(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 5. Packing list L of Theorem 3.
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(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 6. Packing list L of Theorem 4.

■
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(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 7. Packing list L of Theorem 5.

—
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(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 8. Packing list L of Theorem 6.
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Figure 9. Division of a packing into slices.
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2/3

1/3

4/3

1

2/3

1/3

Figure

+ 46

+ 26

+ 26

+• 36

+ €

+ 26

1/3 2/3 1 

(a) An optimal packing of L^.

z y  / / /

' Z Z Z Z 7

1/3 2/3

(b) An optimal packing of L-̂ L̂ .

10. Optimal packings of sublists in Theorem 8, 
for m = 2 and n = 4.


