
ACT-14 DECEMBER, 1978

5 3 COORDINATED SCIENCE LABORATORY

APPLIED COMPUTATION THEORY GROUP

EFFICIENT ALGORITHMS
FOR FINDING MAXIMUM
MATCHINGS IN CONVEX
BIPARTITE GRAPHS
AND RELATED PROBLEMS
W. LIPSKI, JR.
F. R PREPARATA

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

REPORT R-834 UILU-ENG 78-2227

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

UNCLASSIFIED
(S E C U R IT Y C L A S S IF IC A T IO N OF T H IS P A G E (When Data E ntered)

REPORT DOCUMENTATION PAGE R E A D IN S T R U C T IO N S
B E F O R E C O M P L E T IN G FO RM

1. R E P O R T N U M B E R 2. G O V T A CCESSIO N NO. 3. R E C I P IE N T 'S C A T A L O G N U M B E R

4. T I T L E (and S ubtitte) 5. T Y P E O F R E P O R T 4 P E R IO D C O V E R E D

EFFICIENT ALGORITHMS FOR FINDING MAXIMUM MATCHINGS Technical Reports
IN CONVEX BIPARTITE GRAPHS AND RELATED PROBLEMS 6. P E R F O R M IN G ORG. R E P O R T N U M B E R

R-834; UILU-ENG 78-2227
7. A U T H O R * »

W. Lipski, Jr. and F. P. Preparata
8. C O N T R A C T OR G R A N T N U M B E R * »

NSF MCS 76-17321; DAAB-07-72-
C-0259; DAAG-29-78-C-0016

9. P E R F O R M IN G O R G A N IZ A T IO N N A M E AND ADDRESSCoordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. PROGRA-M E L E M E N T , P R O J E C T , TASK
A R E A 4 WORK U N IT NUM B ER S

11. C O N T R O L L IN G O F F I C E N AM E AND ADDRESS

Joint Services Electronics Program
12. R E P O R T D A T E

December, 1978
13. N U M B E R O F PAGES

30
14. M O N IT O R IN G A G E N C Y N AM E 4 AODRESS*"// d iffer en t from C on trollin g O ffic e) 15. S E C U R IT Y CLASS, (o f th is report)

< UNCLASSIFIED
15«. D E CL AS S I FI C A T IO N /D O W N G R A D IN G

S C H E D U L E

16. D IS T R IB U T IO N S T A T E M E N T (o f th is R ep ort)

Approved for public release; distribution unlimited

17. D IS T R IB U T IO N S T A T E M E N T (o f th e a b stra ct en tered in B lo ck 20, If d ifferen t from R eport)

18. s u p p l e m e n t a r y n o t e s

19. K E Y WORDS (C on tin u e on r e v e r s e s id e i f n e c e s s a r y and id en tify by b lo ck number)

Maximum Matching Gale-Optimal Matching
Convex Bipartite Graph Scheduling Algorithms
Maximum Independent Set
Greedy Algorithms

20. A B S T R A C T (C on tin u e on r e v e r s e s id e if n e c e s s a r y and id en tify by b lo ck number)

A bipartite graph G = (A,B,E) is convex on the vertex set A if A can be
ordered so that the elements of A connected to any element b in vertex set B
form an interval of A; G is doubly convex if it is convex on both A and B. For
these types of graphs Glover discovered a simple rule for finding maximum match­
ings. Letting fA| = m and |Bj = n, in this paper we describe an implementation
of Glover's rule which runs in time 0(m+nloglogn) on a convex graph, and in time
0(m+n) on a doubly convex graph. We also show that, given a maximum matching
in a convex bipartite graph G, a corresponding maximum set of independent

DD 1473 E D IT IO N OF 1 N OV 65 IS O B S O L E T E UNCLASSIFIED
S E C U R IT Y C L A S S IF IC A T IO N O F T H IS PA GE (W hen Data E n tered)

UNCLASSIFIED___________________
S E C U R IT Y C L A S S IF IC A T IO N O F T H IS PAQ gftfhw i D i d Entered)

20. ABSTRACT (continued)

vertices can be found in time 0(m+n). Finally, we briefly discuss some
generalizations of convex bipartite graphs and some extensions of the
previously discussed techniques to instances in scheduling theory.

UNCLASSIFIED
S E C U R IT Y C L A S S IF IC A T IO N O F TH IS PAGE(TKh«n D ata E ntered)

UILU-ENG 78-2227

EFFICIENT ALGORITHMS FOR FINDING MAXIMUM MATCHINGS
IN CONVEX BIPARTITE GRAPHS AND RELATED PROBLEMS

by
W. Lipski, Jr. and F. P. Preparata

This work was supported in part by the National Science Foundation
under Grant MCS76-17321 and in part by the Joint Services Electronics Program
(U.S. Army, U.S. Navy and U.S. Air Force) under Contracts DAAB-07-72-C-0259
and DAAG-20-78-C-0016.

Reproduction in whole or in part is permitted for any purpose of
the United States Government.

Approved for public release. Distribution unlimited.

EFFICIENT ALGORITHMS FOR FINDING MAXIMUM MATCHINGS IN

CONVEX BIPARTITE GRAPHS AND RELATED PROBLEMS

* iW. Lipski, Jr. and F. P. Preparata
Coordinated Science Laboratory-

University of Illinois at Urbana-Champaign

ABSTRACT. A bipartite graph G = (A,B,E) is convex on the vertex set

A if A can be ordered so that the elements of A connected to any element

b in vertex set B form an interval of A ; G is doubly convex if it is
convex on both A and B. For these types of graphs Glover discovered a

simple rule for finding maximum matchings. Letting |Aj = m and jB| = n,

in this paper we describe an implementation of Glover's rule which runs
in time O(mH-nloglogn) on a convex graph, and in time 0(m+n) on a doubly

convex graph. We also show that, given a maximum matching in a convex

bipartite graph G, a corresponding maximum set of independent vertices

can be found in time 0(m+n). Finally, we briefly discuss some generali­
zations of convex bipartite graphs and some extensions of the previously
discussed techniques to instances in scheduling theory.

KEYWORDS AND PHRASES: maximum matching, convex bipartite graph, maximum
independent set, greedy algorithms, Gale-optimal matching, scheduling

algorithms.

CR CATEGORIES: 5.25, 5.32

On leave from the Institute of Computer Science, Polish Academy of Sciences,
P. 0. Box 22, 00-901 Warsaw, PKiN, Poland
fAlso with the Departments of Electrical Engineering and of Computer Science

This work was supported in part by the National Science Foundation under Grant
MCS76-17321 and in part by the Joint Services Electronics Program under
Contracts DAAB-07-72-C-0259 and DAAG-29-78-C-0016.

EFFICIENT ALGORITHMS FOR FINDING MAXIMUM MATCHINGS IN

CONVEX BIPARTITE GRAPHS AND RELATED PROBLEMS
W. Lipski, Jr. and F. P. Preparata

1. Introduction

Matching problems constitute a traditionally important topic in

combinatorics and operations research [8] and have been the object of

extensive investigation. Particularly interesting is the problem of finding

a maximum matching in a bipartite graph, which is stated as follows: Let

G = (A,B,E) be an undirected bipartite graph, where A and B are sets of
vertices, and E is a set of edges of the form (a,b) with a 6 A and b £ B.

A subset M C E is a matching if no two edges in M are incident to the same

vertex; M is of maximum cardinality (or simply, maximum) if it contains the

maximum number of edges. As noted by Hopcroft and Karp [7], this problem has

many applications, such as the chain decomposition of a partially ordered

set, the determination of coset representatives in groups, etc. Hopcroft and
Karp have also developed the best known algorithm for this problem.

A special instance of the problem, with some industrial applications,
was originally discussed by Glover [6] and referred to as matching in a

convex bipartite graph. A bipartite graph G is convex on A if an ordering
'*<" of the elements of A can be found so that for any b £ B and distinct

a^ and a^ in A (with a^ < a ^)

(a^,b) 6 E and (a^^) € E => (a,b) £ E for any a € A such that a^ < a < a^

2

In other words, G is convex on A when there is an ordering on A such that

for any b £ B the set of vertices of A connected to b forms an interval in

this ordering. In such a bipartate graph we let BEG[b] and END[b] denote

the "smallest" and "largest" elements in the interval of the elements

of A connected to b. Naturally, if b € B is isolated, the set A(b) is empty
and BEG[b] = END[b] = A, the empty symbol. In what follows we assume that

there is no isolated vertex in B.

When this property holds, the maximum matching problem is considerably

easier to solve. In fact Glover proved that the following simple procedure

yields a maximum cardinality matching (we assume that both A and B be given

as sequences of integers from 1 to |A| and |b | respectively; MATCH[i] denotes

the element of B matched to i (A):

1 begin
2
3
4
5
6
7
8
9
10 end

Algorithm 0

for i; = 1 to [A 1 do
begin U: = {k:(i,k) £ E and k has not been deleted from b }

if U ^ 0 then (* find j £ u to be matched to i *)
begin j: = element in U with minimum value of END

~ MATCHC i] : = j
Delete j from B

end
else MATCH[i]: = A (* i unmatched *)

end

In words, element i of A is matched to an available element j of B whose

corresponding interval ends the closest to i. The most time consuming task

of this algorithm is the formation of the set U and the associated determina­

tion of an element j € U with the smallest value of END[j]: for any given

i 6 A, it involves scanning all the elements of B connected to i. Thus the

3

running time of this task is clearly 0(Je |), as pointed out by Lawler [8].
In this paper we shall describe a considerably more efficient

implementation of Glover’s rule and investigate both specializations and

generalizations of the original matching problem. Specifically, after

considering (Section 2) the maximum matching problem in a convex bipartite

graph, we shall analyze the further simplifications which are possible

when the graph is doubly convex (Section 3), and the optimal time

determination of the maximum set of independent vertices associated with a

given maximum matching (Section 4). Finally (Section 5), we succinctly

describe two generalizations of the convex matching problem and an extension

of the techniques to weighted matching, which directly applies to the
solution of a scheduling problem.

4

2. Maximum matching in convex bipartite graphs: an efficient implementation

of Glover's rule.

Let G = (A,B,E) be a bipartite graph convex on A, with JA| = m and

|B| = n. As before, A= {l,2,...,m} and B = {l,2,...,n}. For b € B,

A(b) c A denotes the set {a:(a,b) £ E}; similarly, for a £ A, B(a) c B

denotes the set (b:(a,b) £ E]. Again, we assume that A is ordered so that,
for each b 6 B, A(b) is the interval [BEG[b], END[b]]. Notice that if the

set A is not initially ordered so that the property of convexity is manifest,

the bipartite graph G can be tested for possession of this property - and,

if so, rearranged - in time 0(|Ej+m + n) by means of the Booth-Lueker algorithm

[2].

We begin by giving a generalization (and simpler proof) of Glover's rule.
Lemma 1. If (a,b) £ E and A(b) C A(c), for any c £ B(a), then there is a

maximum matching containing (a,b).

Proof. Suppose M is a maximum matching not containing (a,b). If a is

unmatched then we may replace the edge of the matching incident to b with

(a,b), similarly if b is unmatched. Suppose therefore that (a,c), (d,b) £ M

for some c £ B, d £ A. Since d £ A(b) c A(c), it follows that (d,c) £ E,

and we may replace (a,c),(d,b) by (a,b),(d,c) (see Figure 1).

Figure 1. To the proof of Lemma 1. Wiggly edges belong to the matching.

5

In order to prove that Algorithm 0 correctly finds a maximum matching,

let us denote by the graph obtained from G by deleting l,...,i-l from A

and MATCH[1],...,MATCH[i-1] from B, together with the edges incident to all
these vertices. Let be the set of edges matched by Algorithm 0 to
vertices l,...,i in A (we put MQ >» 0), and let A^b) and B^a) be defined

for G^ in the same way as A(b) and B(a) were defined for G. We say that

can be extended to a maximum matching of G if there is a maximum matching

M of G containing M^; this means that M is the union of and of a maximum
matching of G^+ .̂

Assume inductively that a < m and that M „ can be extended to aa-1
maximum matching of G. (This is trivially true for a=l, since MQ is empty
and Gn coincides with G.) We shall prove that M can also be extended to u a
a maximum matching of G. This is obviously true if Ba(a) = 0, so assume

that B (a) £ 0, whence Algorithm 0 chooses MATCH[a] = b ^ A. It is then
a

sufficient to show that there is a maximum matching of G containing
cl

(a,b). But this is immediate, since for any c in B (a) we have
cl

A (c) = [a,END[c]]; by line 4 of Algorithm 0, we have END[b] < END[c] for
a

any c £ b in B (a), whence A (b) C A (c), and, by Lemma 1, the claim is
a c i cl

established.

As noted earlier, efficiency can be achieved if for a given a 6 A
the computation of j (B (a) for which END[j] is minimum can be sped-up.

cl

We shall now show that, by some additional preprocessing and the use of

appropriate data structures, this can be done in time which is sublogarithmic
in the size of B.

6

The basic idea is to try to store the set B^(i) of unmatched vertices

of B connected to a currently inspected vertex i € A on a priority queue,

so that the element j 6 B to be matched to i can be found as the least element

of the queue. This is indeed possible if the elements of B are relabelled

so that END[l] < ... < END[n] . Then the least element of the priority
queue minimizes the value of END, as required by Glover's rule. In order

to complete the description of our implementation, we should specify a
method of updating the priority queue, so that its content is changed from

B^(i) to Bi+^(i+l) as i is increased by one. It is easy to see that we

should delete the least element from the queue (the vertex to be matched

to i), then delete all vertices k 6 B with ENDTk] = i and finally insert all

vertices k (B with BEG[k] = i+1. Deleting vertices is easy, since the set

of vertices k € B with END[k] = i appears as an interval in our ordering of

B. Inserting vertices can be made easy too, if we precompute an array

ORDBEG[l:n] containing the vertices of B sorted according to the

parameter BEG, so that BEG[ORDBEG[1]] < ... < BEG[ORDBEG[n]]; then the set
of vertices k (B with BEG[k] = i is stored in an interval of consecutive

positions of ORDBEG. Notice that both relabelling of vertices in B so
that END[l] < ... < END[n] and computing the array ORDBEG can be done in

time 0(m4n) by standard bucket sorting (see e.g. [1]), since in both cases

there are n items to be sorted by a key which may assume values from

integers 1,...,m.

7

Next we may take advantage of the fact that the elements in the

priority queue are integers in the range [l,n] and employ the priority
queue structure developed by van Emde Boas [3 ,4], which allows each of the

standard queue operations to be performed in time O(loglogn) and uses

space 0(n).
We can now formally describe the matching algorithm, where:

QUEUE denotes the just mentioned priority queue £ La van Emde Boas (with

associated operations MIN, DELETE, INSERT, EXTRACTMIN); MATCH[l:m]
ORDBEG[l:n], BEG[l:n], and END[l:n] are arrays of integers, the integer

variables nb and ne are counters referring to the arrays ORDBEG and END,

respectively (nb-1 and ne-1 count respectively the number of beginnings
and ends of intervals [BEG[k],END[k]] found so far.

Algorithm 1 (Finding maximum matching in convex bipartite graph)

Input: BEG[1:n], END[1:n], ORDBEG[l:n]

END[l] < ... < END[n], BEG[ORDBEG[l]] < ... < BEG[ORDBEG[n]]
Output: MATCH[1:m]

(Algorithm on next page)

8

1 begin QUEUE: = 0 , nb: = ne: = 1
2 for i: = 1 to m do
3 begin (*find vertex to be matched to i*)
4 while (nb < n) and (BEG[0RDBEG[nb"]] = i) do
5 begin INSERT (0RDBEG[nbl)
6 nb: = nb + 1
7 end
8 if QUEUE =0 then MATCH!" i] : = A (*i unmatched*)
9 else begin MATCH[i] : = MIN
10 EXTRACTMIN
11 end
12 while (ne < n) and (END[ne] = i) do
13 begin DELETE(ne)
14 ne: = ne+1
15 end
16 end
17 end

From the viewpoint of performance, notice that each term of MATCH[l:m]

is processed exactly once (lines 8 or 9), for a total work 0(m), while each

term of B is inserted into the queue once (line 5) and extracted once

(lines 10 or 13). So we conclude that the running time of Algorithm 1 is
0 (m + nloglogn).

9

3. Maximum matching in doubly convex bipartite graphs

As noted by Glover, the maximum matching problem becomes even simpler

when the bipartite graph G is doubly convex, i.e., orderings of both A and B

exist such that every A(b) is an interval of A and every B(a) is an interval

of B.

As before, we assume that G be given as a bipartite graph convex on A,
that is, as a set {< BEG[b],END[b] > : b € B] representing intervals of A.
A preliminary task is to test whether the set B can be reordered so that

for each a € A the set B(a) be an interval of B.

Pictorially, we may display G by means of a set of segments (Figure 2a):

specifically, in the plane (x,y), we let the segment y = b, BEG[b] < x < END[b]

represent the interval A(b) (in the sequel this will be briefly referred

to as segment b). If we next join the extremes of adjacent segments, i.e.,
introduce in this diagram edges (BEG[i],BEG[i+l]) and (END[i],END[i+1]),

for i = l,2,...,n-l, the set of segments is enveloped by two polygonal

lines called the left and right boundaries. which together with the first

and last segments of the given set form a simple polygon. In this

representation, G is convex on B if the intercept of a vertical line with

this polygon consists of a single segment: thus G is convex on B if and

only if the segments can be rearranged so that both boundaries are bitomic,
as shown in Figure 2d (that is, in the resulting relabelling of elements

of B, for some 1 < r^ < n, BEG[l] ^ ... ^ BEG[r^] and BEG[r^] < ... < BEG[n];

similarly for some 1 < < n, END[1] < ... < ENDCr^] and

END[r«] ^ ... ^ END[n]). We shall now describe a linear time - hence

optimal - algorithm which tests G for double convexity and, if this property
holds, produces the desired ordering of B.

10

left
boundary

Figure 2. Different polygons corresponding to the same set of segments.
(a) arbitrary order; (b),(c) ordered by nonincreasing BEG;
(d) ordered to exhibit double convexity.

In the rest of this section we shall always assume that the convex

bipartite graph G under consideration is connected. In fact, it is very

easy to find connected components of a convex bipartite graph. It is

sufficient to scan vertices i € A in increasing order and to count the

number of beginnings and the number of endings of intervals found up to

vertex i. Each time these two counts coincide, a new connected component

is found. With the elements of B labelled so that END[l] < ... < END[n],
and with the array ORDBEG as in Algorithm 1, the determination of connected

components can be done in 0(m+n) time.

11

Referring to Figure 2d, it is easy to see that the polygon displaying

the double convexity of an arbitrary G consists - up to the reversal of the
ordering of B - of three regions (not all simultaneously empty): a middle

region, where both left and right boundaries are nondecreasing (i.e.,

both BEG[j] and END[j] are nondecreasing with increasing j, assuming that
the labelling of elements of B coincides with the bottom to top ordering of
segments in the given geometric representation); a top region where the left

and right boundaries are nondecreasing and nonincreasing, respectively; a

bottom region where the left and right boundaries are nonincreasing and

nondecreasing, respectively. Moreover, all segments of the top region are
nested, starting with the topmost segment of the middle region, similarly,

all segments of the bottom region are nested, starting with the bottommost

segment of the middle region.

It is easy to see that our description need not define the three regions

uniquely, if there are different elements in B with the same value of BEG
or END; to guarantee the uniqueness we require that all segments in the

bottom region have BEG[j] > min^ < ^ < nBEG[k] , and all segments in the
top region have END[j] < max^ < ^ < nEND[k] .

Suppose that we initially index the elements of B so that the pairs

<BEG[j],END[j]>, j = l,...,n are in lexiographic ascending order; this can
be done by bucket sorting these elements on the parameter BEG, and then

(stably) bucket sorting the resulting sequence on the parameter END, all in
time O(m-ki). Once this ordering of segments {A(b) :b 6 B} is available

12

(see Figure 2b), we shall first extract from it the subsequence of segments

to be assigned to the middle region. To complete the test, we must verify

whether the remaining segments can be successfully assigned to either top

or the bottom regions. Since for segments in these regions, the orderings

BEG and END are contragradient, we must preliminarily alter the order of the

segments not assigned to the middle region, so that for any two such

consecutive segments j and j+l,(BEG[j] = BEG[j+l]) => (END[j] ^ END[j+l]):
this can be obviously done in linear time by a straightforward use of a

stack (Figure 2c). Next, we must test whether the resulting sequence can be
partitioned into two subsequences, for each of which the parameter END is

nonincreasing: if this is feasible, then the two subsequences of segments

will respectively form the top and bottom regions. More exactly, we should

do the partitioning in such a way, that the resulting subsequences of

segments be nested as previously explained. We guarantee this by assigning

the extremal segments of the middle region to the sequence to be partitioned.
The whole task is performed by the following algorithm, which computes

for each segment j a parameter Y[j] denoting its order in the final

arrangement. This algorithm also makes use of a special subroutine, which -

if at all possible - partitions in linear time a sequence of integers into

two nonincreasing subsequences; for example, (4,6,3,5,4) is partitioned

into (4,3) and (6,5,4). This simple subroutine is described formally in an

appendix. Its additional feature, which is important for the correctness

of our algorithm, is that the first term of the sequence is assigned to

the first subsequence.

13

Algorithm 2 (Testing for double convexity of a connected convex

bipartite graph)

Input; BEG[l:n] ,EM)[l:n]

The pairs <BEG[j],END[j]>, j = l,...,n are in lexicographic

increasing ordering

Output: Y[1:n]

Vertices j € B relabelled so that for 1 < j < n

BEG[j] < BEG[j+1], or BEG[j] = BEG[j+1] and END[j] £ END[j+1]

1
2
3
4
5
6
7
8
9
10
11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

begin (* find last segment jm of middle region *)
jm: = 1
for j: * 2 to n do

if END[j] ^ END[jm] then jm: = j
(* extract segments not in internal part of middle region *)
e : = END[l] , 1 : =* 0
for j: = 1 to n do

if (ENE>[jT ̂ e) and (j^l) and (j^jm) then e: = END[j]
else begin H : = l + 1

' SU] : = j
end

relabel the elements of B so that for 1 < j < n
(BEG[j] = BEG [j+1]) =* (END[j] £ END[j+1])

reorder ST1: j?J so that for 1 < P <
(BEG[S[p]] = BEG[S[p+l]]) => (END[S[p]] £ END[S[p+l]])

partition S[l:jfc] into two subsequences SUBl[l:jg,l] and
SUB2f 1:^2] , such that END[SUB1[1]] ^ ^ END[SUBl[^l]]
and END[SUB2[1]] ^ ^ END[SUB2[£2]]

kl: = k2: = k3: = 1
for j: = 1 to n d_o (* determine Y[j] *)

if SUBl[kl] =j then (* j belongs to bottom region *)
begin Y[j]: « ¿1 - kl + 1

kl: = kl + 1
end

else if SUB2[k2] = j then (* j belongs to top region *)
begin Y[j] : = n - i2+k2

k2: = k2+l
end

else (* j belongs to middle region *)
begin Y[j]: = ^2+k3

k3: = k3+l
end

14

It is straightforward to conclude that Algorithm 2 runs in time 0(n).

We can now describe the maximum matching algorithm, which makes use

of a DEQUE (doubly-ended-queue) as an auxiliary data structure; as is well-
known, DEQUE has two distinguished elements, top and bottom, and the

following repertoire of instructions: INSERTTOP, DELETETOP, INSERTBOTTQM,

and DELETEBOTTOM.

Algorithm 3 (Finding maximum matching in doubly convex bipartite graph)

Input: BEG[l:n], END[l:n], Y[l:n]

BEG[j] < BEG[j+l], or BEG[j] = BEG[j+l] and END[j] £ END[j+1]

for 1 < j < n

Output: MATCH[l:m]

1 begin
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 end

DEQUE: = 0, j: = 1
for i: = 1 to_ m do

begin (* find element in B to be matched to i (A *)
while (BEG[j] = i) and (j < n) do

begin (* insert j into deque *)
if (DEQUE =0) or (Y[j] > Y[top]) then INSERTTOP(j)
else INSERTBOTTOM(j)
j: = j+1

end
if (DEQUE = 0) then MATCH[i] : = A (* i unmatched *)
else if ENDftop] <”]END[bottom] then

begin MATCH[i]: = top
~ DELETETOP

end
else begin MATCH[i]: = bottom

~ DELETEBOTTOM
end

while (DEQUE ^ 0) and (END[top] = i) do DELETETOP
while (DEQUE ^ 0) and (END[bottom] = i) do DELETEBOTTOM

end

15

Notice that each element of B is inserted into and deleted from the

DEQUE exactly once, and that each of the standard deque operations can be
executed in constant time; it follows that the entire matching can be

computed in time 0(m+n).

16

4. Finding a maximum Independent set of vertices in a convex bipartite graph

Closely related to the maximum matching problem in bipartite graphs

is the determination of a maximum independent set (of vertices), that is,

of a maximum cardinality set of vertices of the bipartite graph G such that

no two of them are connected. It is well-known (see, e.g. [10]) that a

maximum independent set can be derived from a maximum matching M by

standard alternating path techniques as follows (see Figure 4): (i) direct

every edge e € M from A to B, and any e € E-M from B to A ; (ii) letting Bq

denote the set of unmatched vertices in B, find the sets A^ c A and

B1 (B q 9 B]_ E B) of vertices reachable from BQ; (iii) construct the maximum

independent set as I = B^ U (A-A^). Therefore the entire problem reduces

Illustration of the derivation of a maximum independent set from
a maximum matching (wiggly edges are in the matching M): vertices
in the independent set shown as # .

Figure 3.

17

to finding all the vertices of G which are reachable from B . A most0
interesting fact we shall now show is that, when G is convex, this reachable

set can be obtained in time O(n-hn) so that the determination of a maximum

independent set runs in total time O(m-fnloglogn), or 0(m+n) if G is

doubly convex, the computation of the maximum matching being the dominant

task (notice that, once and are known, I is obtainable in time
O(n-fm)).

As usual, the graph G is described by the two arrays BEG[l:n] and

END[l:n]; MATCH[l:n] gives for each i € A either A or the element of B

matched to it. We assume that the elements of B be ordered so that

BEG[i] < BEG[i+l], 1 < i < n. Due to the property of convexity, for each

b € Bq the set A(b) of vertices reachable by a single edge from it form an
interval of A; from any matched vertex a in this interval we reach a single

vertex MATCH[a] G B, which in turn reaches another interval A(MATCH[a]) of
A. Notice thar A(b) and A(MATCH[a]) necessarily overlap, so by the

convexity of G their union is a single interval. Therefore, initially we

place in a queue all the elements of Bq in increasing order, and starting with
the smallest one j^, we determine a single extended interval A*(i^) D A(j^)
of A, which is the set of all elements of A which are reachable from -jJ 1
(A*(jcould be informally viewed as the "closure" of A(j^)). This
extended interval is constructed by scanning A(j^) in decreasing order

starting from END[j^] and currently updating the extremes of the reached

interval; once the scanning reaches the lower extreme without further

downward extension of the interval, then if the interval has been extended

upward beyond END[j^], scanning is resumed in ascending order starting from

18

END[j^] until the same terminating condition occurs, and this process

is repeated until no further extension - either downward or upward - is

possible. At this point the construction of interval A*(j^) has been

completed. We then extract the next element j^ from the queue and begin

the construction of Notice that if A*(j^) and A (j^) are disjoint

(Figure 4a), BEGCj^] must be larger than the upper extreme of A*(j^). Since

by hypothesis, BEG[j^] < BEG[j2], it follows that only downward extensions

O
O

(b)

Figure 4. (a) Illustration of the case where A*(j^) and A(j^) are disjoint.
(b) Explanation of the meaning of variables "lower", "upper",

i and u.

19

of A(j^) may meet previously scanned elements of A. To avoid any time-

consuming unnecessary repeated scanning, we must ensure than any previously

scanned interval be skipped in subsequent processing, so that each element
of A be scanned at most once. This objective is achieved by means of a

stack: as soon as the construction of A*(j), for some j € Bq , is completed,

its lower and upper extremes are inserted into the stack, whose content -

at a generic instant - is a sequence such that,
k

for 1 < p < k, eD + 1 < i [i^,ej is an interval of A, and U [i_,ejP P p=l P P-
is the set of all scanned elements of A. The reachability algorithm uses

as auxiliary data structures a QUEUE, containing the elements of Bq ordered

according to nondecreasing value of BEG, and a STACK, for storing the

sequence of scanned intervals, as already noted. The intuitive significance
of the program variables lower, upper, i , and u is as follows (see Figure 4b)

lower and upper denote respectively the current boundaries of the extended

interval being constructed; i and u are pointers used in scanning, running

downward and upward respectively.

Algorithm 4 (Finding the set of vertices in A reachable by

alternating paths from the set of unmatched vertices in B in a convex

bipartite graph)

Input: BEG[1:n] , END[l: n] , MATCH[1: m]

QUEUE containing the unmatched vertices b (B in increasing order
BEG[l] < . .. < BEG[n]

k
Output: The set U [i ,e] C A of vertices reachable from unmatched

P=1 P P-

vertices b (B, represented by a sequence -1,i^,e^,i2,e2,•••,i^,ek
stored on STACK

20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

begin
STACK « -1
while QUEUE ^ 0 d£ (*' find vertices reachable from first(QUEUE)*)

begin j « QUEUE
if END[j] > top(STACK) then (* new vertices to be scanned *)
begin A: = END[j]+l, lower: = BEG[j], u: = upper: = END[j]

repeat (* extend interval of vertices reached from j *)
while A > lower do> (* scan downward *)

begin A: = ¿-1
if MATCH[jj] ^ A then (* A is matched *)
begin lower: = min (lower, BEG[MATCH[^]])

upper: = max (upper, END[MATCH[^]])
end

if A < t0P(STACK)+l then (* skip interval *)
begin A * STACK

A * STACK
lower: = min (lower }A)

end
end

while u < upper do (* scan upward *)
begin u: = u+1

if MATCH[u] ^ A then (* u is matched *)
begin lower: = min(lower, BEG[MATCH[u]])

upper: = max(upper, ENDCMATCHCu]})
end

end
until (j^=lower) and (u=upper) (* extended interval completed *)
STACK ̂ lower
STACK <= upper

end
end

end

To analyze the performance of Algorithm 4, we note that each element

of A is scanned at most once (either by loop 8 or by loop 20); the extremes

of extended intervals are pushed into (lines 28 and 29) and popped from

STACK (lines 15 and 16) at most once, thereby allowing the conclusion that
the algorithm runs in time O(m-hi).

21

5. Generalizations and related problems

In this section we shall briefly describe two interesting generalizations
of the notion of a convex bipartite graph to which Glover's rule, and hence

the efficient algorithms previously described, are applicable, and an
extension of the techniques to a weighted matching problem, which models
a significant scheduling application.

5.1. Simple chessboards: a generalization of doubly convex bipartite graphs

Algorithm 3 can be applied to a class of convex bipartite graphs more

general than that of doubly convex graphs. In order to describe this class
we shall need some definitions. By a chessboard we shall mean any finite

collection of unit squares with integer coordinates on a plane. Any such
unit square will be denoted by coordinates <x,y> of its left lower corner.

A chessboard is simple if for any of its squares <x,yp-> <x,y2>, where

y^ < y2, it contains all squares <x,y>, y^ < y < y2 (se,e Figure 5). Rows
and columns of a chessboard are defined in the natural way as maximal

horizontal and vertical sequences of adjacent squares, respectively. We may

allow a simple chessboard to be cut vertically in some places to make

some squares nonadjacent (such as <6,8> and <7,8> in Figure 5), provided the

line along which we cut touches the boundary of the chessboard. Let A and B

be the set of columns and rows of a simple chessboard, respectively, and

let us consider the bipartite graph G = (A,B,E), where (a,b) 6 E iff column
a and row b intersect (i.e., have a square in common). This graph is

convex on A (but not necessarily doubly convex),the required ordering of

A being given by the natural left-to-right ordering of columns. It is

easily seen that any matching in G corresponds to a set of nonattacking

22

throoks on this chessboard (see Figure 5). If the j row of a simple chessboard

consists of squares <x,Y[j]>, BEG[j] < x < END[j], then the maximum

cardinality set of nonattaching rooks on this chessboard is found by

Algorithm 3 in time linear in the number of rows and columns. The reason

why Algorithm 3 works correctly is that similarly to the doubly convex

case, the sequence of ends of rows "seen" from any column of a simple

chessboard is bitonic, whence the sequence of the values of END for

vertices j € B (rows of the chessboard) stored on the DEQUE is also

bitonic, and we may find a vertex with the minimal value of END either at

the top or at the bottom of the DEQUE. We leave details to the reader.

0
0

0 o
0 0

0
0 0

0 o
0

0
o

Figure 5. A simple chessboard with a maximum set of nonattacking
rooks found by Algorithm 3.

23

5.2. Bipartite graphs convex on a tree-ordered set

Glover's rule works correctly in a more general situation, where the
sets A(b), b G B are (sets of vertices of) paths in a directed tree (for

concreteness we shall assume that the tree is directed toward the root;

families of sets of this type are of some importance in file organization,

see [9]). The convex case is easily seen to correspond to a tree

degenerating into a single path. Assume that a directed tree with vertex

set A is represented by an array s[l:m] which gives the successor S[a] of
any vertex a 6 A (S[a] = A if a is the root). Similarly as in the convex

case, let A(b) be represented by the pair <BEG[b],END[b]>, meaning that A(b)
is the set of vertices of the path in the tree, beginning at BEG[b] and

ending at END[b]. From the array S we can easily produce, in 0(m) time,

a topological ordering of A, i.e., a linear ordering of the elements of A,

in which the distance to the root-, or the rank of a vertex, is nonincreasing.
We may also assume that the predecessors of any vertex appear consecutively

in this ordering, and that if a^ appears earlier than a^ then all predecessors

of a^ appear earlier than all predecessors of a T h i s is always the case if

the ordering is found by a breadth-first search of the tree. The algorithm
for finding a maximum matching in our bipartite graph processes the
vertices of A according to the just described ordering and runs as follows.

Instead of a single priority queue, we maintain a collection of priority

queues; at any instant in the execution of the algorithm there are as many

distinct queues as there are vertices of A with the same value of rank

currently being processed. Each time we encounter a vertex i 6 A which is
a leaf of the tree we initialize a new priority queue and insert into it all

24

vertices j € B with BEG[j] = i; each time we have processed all predecessors

of a vertex a, we merge the queues corresponding to them into one queue

corresponding to a. All other details are the same as in Algorithm 1. The

reason why our procedure works correctly is as follows. The priority queue
Q corresponding to a vertex a contains all so far unmatched vertices b € B

such that a 6 A(b). The paths starting at a and ending at vertices END[b],

b in Q, are nested one in another, exactly as in the convex case, whence the
same agrument based on Lemma 1 can be applied to prove that matching a to

the vertex b in Q with the minimal value of END guarantees that the matching

obtained will be of maximal cardinality.

If we apply the mergeable heap structure described by van Emde Boas [3] ,

which allows the priority queues to be efficiently merged, then we can

achieve 0 (m + A(n)nloglogn) time complexity, where A(n) is the functional
inverse, very slowly growing, of a function of Ackerman type (see Tarjan

[11]).
Our algorithm can be used to find a maximum set of nonattacking rooks

on a chessboard satisfying the following condition: any two squares <x,y^>
K X fY g * can be joined by a sequence <x,y^> = < x ^ \ y ^ ^ > , < x ^ ^ ,y^^>,... , < x ^ ,y(k)>

<x,y2 > of adjacent (i.e., having an edge in common) squares with x^^ ^ x,

1 < i < k. In words, the chessboard does not branch as we go from left to

right (see Figure 6). The tree-like ordering of the set A of columns of
such a chessboard is defined so that a column containing square <x+l,y>

is the successor of column containing square <x,y>.

25

Figure 6. A chessboard and a maximum set of nonattacking rooks found by
a modification of Algorithm 1.

^•3. Gale-optimal matchings and one-processor scheduling of independent tasks

It is clear that Algorithm 4 can be modified so that it finds an
alternating path in a convex bipartite graph - if there is one - in linear

time. Using such a modified algorithm as a subroutine in the standard

method of finding a maximum matching, based on repeatedly augmenting a

matching along an alternating path (see, e.g. [8]), we can obtain an algorithm
of complexity 0(n(m+n)). Of course, it is less efficient than the
0 (m+nloglogn) Algorithm 1. However, there is a situation when the standard

alternating path algorithm is of interest.

26

Suppose that there is a weight w(b) ^ 0 associated with every b € B,

and that we are looking for a matching which maximizes the sum of weight of

matched vertices in B. Since assignable subsets of B - i.e., subsets that

can be covered by a matching - form a matroid, it follows that the matching

we are looking for can be found by a matroid greedy algorithm (see Lawler [8]

for the explanation of all notions related to matroids). More exactly,

our matching can be obtained as follows: (i) order the vertices in B

according to nonincreasing weight, (ii) starting with the empty matching,

scan B in this order; for any b € B, augment the current matching along an

alternating path starting at b and ending at an unmatched vertex in A, if

such a path exists, or leave b unmatched otherwise. Notice that after the
augmentation process in step (ii), vertices which were matched remain matched

(probably to different vertices), and vertices which were left unmatched
before, remain unmatched. It can be proved (Gale [5], see also [8]), that

the matching M so obtained is Gale-optimal, i.e. optimal in the following

strong sense: Let {b^,...,b^} c B, w(b^) ^ ... ^ w(b^) be tbe set °f
vertices covered by M. Then for any other matching M ’, the set [c ,...,c] C B3

w(c^) ^ ... ^ w (°g) °f vertices covered by M ’ satisfies the condition
i < k, w(b^) ^ w(c^),...,w(b^) ^ w(c^). (Notice that both the greedy

algorithm and the notion of Gale-optimality depend only on the ordering of

B according to the weights, and not on the actual values of the weights.)

It is obvious that a Gale-optimal matching of a convex bipartite graph

can be obtained in 0(n(m+n)) time by the greedy algorithm, using a modification
of Algorithm 4, as explained at the beginning of this subsection.

27

There is an interesting relationship between Gale-optimal matchings

in convex bipartite graphs and the problem of scheduling a set B of n

independent (no precedence constrains) tasks on one processor, where each

task takes one unit of processing time, there is a starting time BEG[j]

and deadline END[j] for every task j, and a penalty p(j) which must be

paid if this task is not executed in the time interval [BEG[j],END[j]]

(we assume that time is integer-valued). It is easy to see that any

schedule minimizing the total penalty corresponds to a Gale-optimal matching

in a convex bipartite graph defined by arrays BEG,END, and with w(j) = M-p(j)

(M > max^ < < np(j)): the vertex i matched to task j G B determines the

unit interval of time when j is to be executed (see Lawler [8], Chapter 7).

We conclude that an optimal schedule for this problem can be obtained in

0(n(m+n)) time (m is the maximal deadline). Of course, if all penalties

are equal, i.e., when we simply maximize the number of tasks executed,

then the optimal schedule can be obtained in O(m-fnloglogn) time by Algorithm 1.
As a closing remark, we note that the maximum matching problem on a general

bipartite graph G corresponds to the situation where for any b G B the set

A(b) is a collection of t(b) intervals of A. It is an almost straightforward

extension of our discussions in Sections 2 and 4, to show that the standard

approach based on augmenting paths [8] can be implemented - both for the

maximum matching and for the Gale-optimal matching - in time O(n(m+tloglogn))

where t = £ t(b) is the total number of intervals in the given G.
b G B

28

Appendix

Algorithm A (Partitioning a sequence of n integers into two non­

increasing subsequences)

Input ; S[l:4] - the original sequence

Output; SUBl[1:41], SUB2[1:42] - two nonincreasing subsequences

into which S[l:4] is partitioned S[l] = SUBl[l]

1 begin 41: = 42: =0, SUBl[0]: = SUB2[0]: = «
2 for i: = 1 to 4 do

3 ijf S[i] < SUBl [41] then (* add S[i] to first subsequence *)

4 begin 41: = 41 + 1

5 SUBl[XI]: = S[i]
6 end

7 else if S[i] < SUB2 [i,2] then (* add S[i] to second subsequence *)
8 begin 12 : = 12 +1

9 SUB2[^2]: = S[i]
10 end

11 else stop (* no partitioning possible *)
12 end

To prove the correctness of the algorithm, first notice that we always

have SUBl[i,l] < SUB2[i2], the inequality being strict except for 11 = 12 = 0.

If now, for some i, we reach the condition SUBl [H I] < SUB2[j&2] < S[i]

(line 11) it is clear that the original S[l:j£] contains an increasing sub­

sequence of length 3, which makes impossible its partitioning into two
nonincreasing subsequences.

One may note that the algorithm easily generalizes to an algorithm for

partitioning an arbitrary sequence of length i into the minimal possible

29

number of nonincreasing subsequences, in time O(^logd), where d is this

minimial number of subsequences, or - equivalently - the maximal length

of an increasing subsequence in the given sequence.

30

References

1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

2. Booth, K. S., and Lueker, G. S. Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree
algorithms. J. Comp. System Sci. 13 (1976), 335-379.

3. Emde Boas, P. van Preserving order in a forest in less than
logarithmic time. Proc. 16th Annual Symp. on Foundations of Comp.
Sci., Univ. of California, Berkeley, Oct. 1975, pp. 75-84.

4. Emde Boas, P. van Preserving order in a forest in less than
logarithmic time and linear space. Information Proc. Lett. 6.
(1977), 80-82.

5. Gale, D. Optimal assignments in an ordered set: an application
of matroid theory. J. Combinatorial Theory 4 (1968), 176-180.

6. Glover, F. Maximum matching in convex bipartite graph. Naval
Res. Logist. Quart. 14 (1967), 313-316.

5/27. Hopcroft, J. E. and Karp, R. M. An n algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput. 2,(1973), 225-231.

8. Lawler, E. L. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston, New York, NY, 1976.

9. Lipski, W. Information storage and retrieval - mathematical
foundations II (Combinatorial problems). Theoret. Comput. Sci.
3 (1976), 183-211.

10. Lipski, W., Lodi, E., Luccio, F., Mugnai, C., and Pagli, L.
On two dimensional data organization II. Tech. Rep. S-77-43,
Inst, of Comp. Sci., Univ. of Pisa, Italy, December 1977. To
appear in Fundamenta Informaticae.

11. Tarjan, R. E. Efficiency of a good but not linear set union
algorithm. J. ACM 22 (1975), 215-224.

