Skip to main content
Log in

Preliminary investigation into a neural net theory of color vision

  • Published:
Kybernetik Aims and scope Submit manuscript

Zusammenfassung

Dieser Bericht enthält die Ergebnisse einer Untersuchung des Farbensehens der Wirbeltiere, dargestellt in einem theoretischen Modell, das, obgleich es nur einen Receptor besitzt, auch auf mehrere Receptoren erweitert werden kann. Es wird angenommen 1., daß die Zeitkonstante der Veränderung des Receptor-Potentials die Farbeninformation des Lichtreizes überträgt, während die Potentialgröße mit der Intensität des Lichtreizes zusammenhängt, und 2., daß eine Gruppe von Zellen, die vorläufig als Ganglionzellen angenommen werden, mit jedem Receptorfeld assoziiert sind. Diese Zellen werden nur dann aktiviert, wenn die Zeitkonstante in einen bestimmten Bereich fällt. Demgemäß kann das visuelle Spektrum in Bereiche eingeteilt werden, die die Information aus diesem Bereich an das Zentralnervensystem weiterleiten. Die Unterscheidung der Wellenlängen in dem theoretischen Modell erreicht man durch ein Teilmodell der Retina, das differentiell beeinflußt wird. Ein Analogrechner wurde bei dieser Voruntersuchung verwandt. Es wurde besonders darauf geachtet, daß das Modell mit dem heutigen Stand des Wissens der Anatomie und Physiologie übereinstimmt. Die Ergebnisse ähneln den Verläufen von Granits Spektralempfindlichkeit und Kellys Amplitudenempfindlichkeit. Das Modell, das „Subjektive Farben-Erscheinungen” bei passenden Frequenzen voraussagt, wirft Fragen auf, die psychophysiologischen Methoden zugänglich sind.

Summary

This paper reports results of an investigation of the problem of vertebrate color vision by means of a theoretical model, which, although it uses one kind of receptor, can be adapted to a multireceptor concept. It is assumed (1) that the time constant of the change of the receptor potential conveys the color information of the stimulus, whereas the magnitude of the potential is correlated with stimulus intensity and (2) that a group of cells, tentatively identified as ganglion cells, are associated with each receptor field. These cells fire only if the time constant falls within a certain range. Thus, the visual spectrum is divided into regions and the information is transmitted to the central nervous system. Wave length discrimination in the theoretical model is accomplished by one kind of retinal neural nets that are biased differentially. An analog computer was used in this initial phase of the investigation. Care has been taken to ensure that the model satisfies current anatomical and physiological knowledge. It has produced results similar to Granit's (1955) spectral sensitivity and Kelly's (1961) amplitude sensitivity curves. The model, which will predict “subjective color phenomena” at appropriate frequencies, has raised questions amenable to psychophysiological techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adelman, W. J., E. L. Pautler and S. Epstein: Analysis of repetitive transient response of lobster motor axons. Amer. J. Physiol. 199, 367 (1960).

    Google Scholar 

  • Adrian, E. D.: The basis of sensation. London: Christopher 1928.

    Google Scholar 

  • Balaraman, S.: Color vision research and the trichromatic theory (a historical review). Psychol. Bull. 59, 434–448 (1962).

    Google Scholar 

  • Blair, H. A.: On the intensity time relations for stimulation by electric current. J. gen. Physiol. 15, 709 (1932).

    Google Scholar 

  • Cole, K. S., H. A. Antosiewicz and P. Rabinowitz: Automatic computation of nerve excitation. J. Soc. Indust. and Appl. Math. 3, 153–172 (1955).

    Google Scholar 

  • Diamantides, N. D.: Artificial neurons through simulation. Proc. 3rd Internat. Conf. on Analog Computation. Brussels, Belgium: Presses Academiques Europeennes 1962 (in press).

    Google Scholar 

  • Donner, K. O.: The spike frequencies of mammalian retinal elements as a function of wave-length of light. Acta physiol. scand. 21, Suppl. 72 (1950).

  • Enoch, J. M.: Nature of the transmission of energy in the retinal receptors. J. Opt. Soc. Amer. 51, 1122 (1961).

    Google Scholar 

  • Enroth, C.: Spike frequency and flicker fusion frequency in retinal ganglion cells. Acta physiol. scand. 29, 19–21 (1953).

    Google Scholar 

  • Granit, R.: Receptors and sensory perception. 1st edition. New Haven, Conn.: University Press 1955.

    Google Scholar 

  • Grundfest, H.: Varieties of inhibitory processes. Nervous Inhibition, Proc. 2nd Friday Harbor Symp., p. 8–12. New York: Pergamon Press 1961.

    Google Scholar 

  • Harmon, L. D.: Studies with artificial neurons. I. Properties and functions of an artificial neuron. Kybernetik 1, 89–101 (1961).

    Google Scholar 

  • Hartline, H. K., and C. H. Graham: Nerve impulses from single receptors in the eye. J. cell. comp. Physiol. 1, 277 (1932).

    Google Scholar 

  • Hartline, H. K., F. Ratliff and W. H. Miller: Inhibitory interaction in the retina and its significance in vision. Nervous inhibition, Proc. 2nd Friday Harbor Symp., p. 241–284. New York: Pergamon Press 1961.

    Google Scholar 

  • Hill, A. V.: Excitation and accommodation in nerve. Proc. roy. Soc. B. 119, 305 (1935).

    Google Scholar 

  • Horvath, W. J., P. Halick, B. Peretz and J. G. Miller: Precision measurements of latency and the variability of latency in single nerve fibers (abstract). Digest 1961 Internat. Conf. Med. Electronics (New York). Princeton, N. J.: The Conference Committee (IRE, AIEE, ISA) 1961.

    Google Scholar 

  • Kelly, D. H.: Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. J. Opt. Soc. Amer. 51, 422–429 (1961a). - II. Single-channel model of the photopic visual system. J. Opt. Soc. Amer. 51, 747–754 (1961b). III. Individual variations. J. Opt. Soc. Amer. 52, 89–95 (1962a). - IV. Effects of chromatic adaptation. J. Opt. Soc. Amer. 52, 940–947 (1962b).

    Google Scholar 

  • Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37 (1953).

    Google Scholar 

  • Le Grand, Y.: Light, colour and vision. 1st English edition, p. 293–294. London: Chapman and Hall, Ltd. 1957.

    Google Scholar 

  • MacAdam, D. L.: Beat frequency hypothesis of colour perception. Visual Problems of Color (Symposium), vol. II, p. 207–231. New York: Chemical Publishing Co., Inc. 1961.

    Google Scholar 

  • Monnier, A. M.: L'excitation electrique des tissues. Paris: Hermann & Cie. 1934.

    Google Scholar 

  • Myehs, O. E.: Spectral sensitivity of visual receptor cells. Nature (Lond.) 4814, 449 (1962).

    Google Scholar 

  • Polyak, S.: The vertebrate visual system, 1st edition. Chicago: University Chicago Press 1957.

    Google Scholar 

  • Rall, A.: Theory of physiological properties of dendrites. Ann. N.Y. Acad. Sci. 96, 1071–1092 (1962).

    Google Scholar 

  • Rashevsky, N.: Mathematical biophysics (physicomathematical foundations of biology), 3rd revised edition vol. 1. New York: Dover Publications, Inc. 1960.

    Google Scholar 

  • Ruch, T.: Somatic sensation. In: Medical physiology and biophysics (edited by Ruch and Fulton), 18th edition, p. 300–310. Philadelphia and London: W. B. Saunders Company 1960.

    Google Scholar 

  • Schroeder, A. L.: Theory on the receptor mechanism in color vision. J. Opt. Soc. Amer. 50, 945 (1960).

    Google Scholar 

  • Smirnov, M. S., and M. M. Bongard: Hypothesis concerning the mechanism of photoreception in the retina (an analogy between retinal photoreceptors and semiconducting photoelements). Biophysics 4, 57–63 (1959).

    Google Scholar 

  • Svaetichin, G., and E. MacNichol Jr.: Retinal mechanisms for chromatic and achromatic vision. Ann. N.Y. Acad. Sci. 74, 385–404 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pautler, E.L., Wilson, R.A. Preliminary investigation into a neural net theory of color vision. Kybernetik 1, 236–242 (1963). https://doi.org/10.1007/BF00271677

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271677

Keywords

Navigation