' [
Acta Informatica 24, 633-651 (1987) I _

© Springer-Verlag 1987

Lifetime Analysis for Attributes

Uwe Kastens
Universitit-GH Paderborn, Fachbereich Mathematik-lnformatik, D-4790 Paderborn,
Federal Republic of Germany

Summary. Reduction of attribute storage is a vital requirement for attribute
evaluators. We present a new method for the analysis of lifetime of attribute
instances. It is assumed that attribute cvaluation is performed by a visit-
oriented evaluator. Its evaluation sequence for any input can be described
by a contex-free grammar derived from the visit-sequences. Conditions on
that CFG decide for each attribute whether all its instances can be stored
in a single global variable. Furthermore ON¢ can decide whether several
different attributes can be mapped to a single global variable. Similarly cpndl—
tions for stack implementation are given. All decisions can be made efficiently
at evaluator generation time. Hence the method is well suited for compiler
generation.

L. Introduction

Any practical attribute evaluator has 10 take special care of storage used for
attribute values: In a naive implementation of an attributed structure tree the
tree nodes are records containing a component for each attribute instance. That
is not tolerable in practice because: On the one hand the number of tree no@es
and attributes is usually large, on the other hand the time between computation
and last use of an attribute value, ie. its lifetime, is often short. Hence one
tries to eliminate the storage for certain attributes from the tree and allocate
them as global variables or stacks instead. It must be ensured that these global
objects contain the correct attribute value at any time. On the base of lifetime
analysis one can decide for an attribute evaluator which attributes can be stored
globally and hence reduce its runtime storage requirements.

Different ways lead to a solution of this problem:

a) Consider a particular tree for a certain input and decide globali_zation
for the attribute instances of that tree. In this case decision analy§1s and
the consequences thereof are performed at attribute evaluator runtime.

b) Consider an attribute evaluator for an attribute grammar and decide

634 U. Kastens

globalization such that it is applicable for any tree. In this case decision
analysis is performed at generation time resulting in a modified attribute
evaluator (resp. its control tables)

¢} Consider an attribute grammar and a given set of attributes to be global-

ized. Then construct an attribute evaluator with an evaluation sequence
control which guarantees that the global variables are used properly —
if such an evaluation sequence exists.

From the view of generation of efficient attribute evaluators we prefer method
(b) because runtime is not burdened with additional analysis. In most cases
runtime even decreases. Method (c) is less automatical because it requires a
storage mapping given by the designer.

In this paper we first introduce a method for analysis of lifetime of attribute
instances. We assume that a tree-walking attribute evaluator is given by a set
of visit-sequences. For a large class of attribute grammars (simple-multi-visit
AGs, ordered AGs, and all pass-oriented AGs, cf. [1, 2]) they can be computed
from the attribute dependencies. The visit-sequences are transformed into a con-
text-free grammar. Its sentences describe the sequence of attribute accesses the
evaluator performs for any input. For this language one can decide whether
the lifetimes of certain attribute instances are disjoint and in consequence such
an attribute can be implemented by a global variable. Furthermore attributes
can be mapped to global stacks if certain criteria on the visit-sequences hold.

In contrast to the approach of Ganzinger [3] (which follows method (b)
too) we first decide for each attribute whether it can be implemented globally.
Then we map different global attributes onto single variables. As a side-effect
identical attribute assignments can be eliminated. We give an efficient algorithm
for the globalization decision whereas the optimal solution of all three problems
together (globalization, grouping, and identical assignment elimination) is shown
to be NP-complete in [3].

Rdihad presents in [4] a different method which requires a certain amount
of lifetime analysis to be done at runtime (combination of methods (a) and
(b)). For pass-oriented AGs techniques are wellknown which chose stack imple-
mentation for those attributes used in one pass only (method (b), [5, 6]). Our
stack conditions are applicable for a larger AG class. They yield the same results
in the special case of pass-oriented evaluation.

Knowing that there is some freedom in the construction of visit-sequences
one can apply certain strategies which improve the results of lifetime analysis.
e.g. “lazy evaluation” as described in [5] or for OAGs in [2] which shortens
the lifetimes and reduces the number of overlaps. In [7] the opposite direction
1s taken by method (¢): An intended mapping of attributes to global variables
is given. Certain sufficient conditions on the attribute dependencies decide wheth-
er an evaluation sequence exists for any input, which then is determined at
runtime.

The method presented here resulted from reasoning about the lifetime analy-
sis in the compiler generating system GAG [8]. The technique used there is
based on the same principle (analysis of visit-sequences), but it is less systematical
and the globalization conditions are more pessimistic. (See [6] for its comparison
with that used in a pass-oriented attribute evaluator.) In spite of that the practical

Lifetime Analysis for Attributes
635

results wit
h the GAG system are very encouraging for the planned substitution

Of L. .
t}I‘E (t}hi(? %ptlmlzatlon. (See [8] for measurements.)
ollowing we assume that the reader has a basic understanding of

attri . .

e ig:‘:sdir:emtr;:rs. ghe notions _used here are close to those of [2]. In Sect. 2

transformed in Seutn 3e§'lymg attribute e_valuato_r and visit-sequences. They are

conditions. for imC]. in order to desc_rlbe attribute lifetimes and to formulate

weaker eond:tion pfementan‘on of e.tttnbutes by global variables. Sect. 4 gives

We Use 4 runn s for mapping attrlbutfzs to global stacks. Throughout the text
nning example for explanation. The results for a more realistic but

sti ifici
ill artificial example are given in the appendix.

2. Visi . .
Visit-Oriented Attribute Evaluators

method of attribute lifetime
tion of attribute grammars
struction. The reader is referred to
and notation is close to that
d by an example AG which

aries for our

In thi - .
this section we introduce the prelimin
formal defini

analvsi) ,
an?ll)flz" We qmlt an introduction and a
the Tit iscussion of attribute evaluator con

erature on these topics. Our terminology

used j
ed in [2] and [8]. Our notation is introduce

We wi
e will refer to subsequently. We briefly explain the principle of attribute evalua-
ented in [2]- Finally a context-

tors ¢ ")
free ontrolled by visit-sequences which are pres
grammar is derived from the visit-sequences describing operation sequences

of the evaluator.
We introduce our terminology for AGs by reference t0 2 small artificial

AG in Fig, 1. It is a classical Lo can be cvaluated by visitoricnied
o parOt by pass-oriented evaluators. References €0 t tached
enthesis.

theAn AG is based on a context-free grammar G (in the exgmple given by
is thpm(_thFlons pl, p2, p3). It is augmented by a set of attributes A which
the ¢ disjoint union of the attribute sets Ax associated to e:ach symbol X of

vocabulary of G (A= Ay={ab, & 4y, As= D) The attributes of different
symbols are considered to be different elements of 4 regardless whether they

are named identically. If we want to Stress that aeAx W€ write X -a. Each
bsets ASx and Alx of synthesmed and

A 1 1 3 . + . -
x is subdivided into two disjomt st : '
a, c}). A set of attribute rules associated

$h°fited attributes (ASy = (b, d}, Al =1 r
ith each production of G defines the computation of attribute values.
es of symbols of

The X, in a production P- Xoi X, are occurrenc
{J Ax, are the attribu
ces Ad,=ASxo") Alx. 2

i=1 .
cAd, there is an attn

hat example are at

= L--

te occurrences of p. We distin-
"

G. Correspondingly 4,=
. nd applied 00CUr”

gui X i=0
sh between defining occurren

r " ‘oo
ences Aa,=Alx, v |J ASx.- For each a bute rule associat

ed to p defining a gyl a function depending O some attributes of Aa, (all
to a32 in Fig. 1). For eas¢ of presentation we assume the AGtobein E_Bochmann
Normal Form (i.e. the functions must not depend on Ad,). All conditions could

636 U. Kastens

Production Attribution Dependencies
(p1) S::=Y (all) Y.a:=1 S .
(a12) Y.c:=f,(Y.b) Y abcd
(p2) Yi:=xY (a2l) Y,.b:=f,(Y,.a) Y abcd
@2 Yaf(¥.0) /
(a23) Y;.c=/f4(Y;.b) //,-,,
(a24) Y d:=f5(Y,.d) xY abcd
(p3) Y=z (a31) Y.b:=f,(Y.a) Y aub cd
(a32) Y.d:=f5(Y.c) z

Fig. 1. An AG example with dependency graphs

Y.p

p-context
Pr Y:ii=uXv

R e i

J-context
q: X::=w

—— W .

Fig. 2. Adjecent p- and g-context

be rewritten such that the functions may depend on attributes of A,. The depen-
dencies between attribute occurrences of p are shown in dependency graphs
as in Fig. 1.

For our lifetime analysis we assume that attribute evaluation is performed
by visit-oriented evaluators based on the following principles: Let ¢ be a structure
tree for a sentence of L(G). Each node is labelled by a symbol of G and the
production applied for its derivation (see Fig. 2). For each attribute of Ay an
attribute instance is associated with each node labelled with X. The attribute
evaluator computes a value for all attribute instances in the tree. For that pur-
pose the evaluator walks through the tree controlled by some strategy. Visiting
a node labelled with production p it may compute the values of some attribute
instances corresponding to Ad, applying attribute rules associated to p. We
say the attribute evaluator is in a p-context. That means in Fig. 2 instances
of inherited attributes of X are computed in p-context while those of synthesized
attributes are computed in g-context. Hence such an evaluator performs three
kinds of operations at some node k representing X, in a p-context, where

p: Xpii=X,---X,:

flay, ...,a)—> X;.a evaluation of an attribute rule associated to p, i€{0, ..., n}
1 X; Jj-th visit to the i-th descendant node of k

T; J-th visit to the ancestor node of k,

Liletime Analysis for Attributes
637

n

Al
Vs X1

; l1X AIX,Z lzx AIX,3
D: Y::V
vs, ASy 4 i /Asx’2 fa...

g DIW

Fig. 3. Interaction of visit-sequences

i 1o Ya | Y (Y.l =Ye b

USpz: fZ(Yl .a)— Yl'bs Tla
LY.0)> Yy.a by Yo, oY) Yot da o s

o3t fe(Y.a)— Y.b, 1., fH(Y.0)— Y.d 1,

Fig. 4. Visit-sequences for example AG

vs

(Y,.d)— Y1.d, 12

Us

(simple-multi-visit AGs including
luator can be controlled by a
ch consisting of a sequence
d at evaluator generation
fied in the AG. They are

0 Al(:}(:r a large Subclas_s of well-defined AGs
et of v'a'nd all pass-oriented AGsS) such an eva
of the lsét'sequcnces. VS, one for'e?lch production p, €2
time above op.eratxons. The visit-scquences are ﬁxe.
. I_OH the basis of the attribute dependencies speci
bPP icable to the structure tree of any sentence in L(G). An evaluator controlled
¥ Visit-sequences performs a proper tree walk starting at the root of the tree
moving along its edges, evaluating all attribute instances, and finally returning

to the root
Typical for this class of evaluators is the interleaved execution of visit-
;eun:nces vs, and vs, for adjacent contexts as shown in Fig. 3. The node for
b with its attributes acts as an interface between evaluation of its subtree and
€ rest of the tree. The visit-sequences for our running example are given i

Fig. 4.

For the construction of visit-sequences W refer to [2] an@ [9]. Here oply
the underlying principle is explained. For all nodes of any attrlbutc?d tree which
are labelled with the same symbol X the interface behaviour 18 identical, indepen-
dent of its context. Such an interface is described by @ linear order over subsets

of the attributes Ay: Let Ax D¢ partitioncd into disjoint subscts Al ;and ASx.
for i=1, ..., my. (For ease of description the indices { used here differ from
Fhose in [2] the correspondence should be obvious.) Then the inherited attributes
in Al ; are evaluated before the i-th visit to a node labeliec_i .with X. Th.e
Synthesized attributes in ASy; are evaluated during the i-th visit. Hence 'thxs
linear order over the attribute. subsets defines 2 partial order over Ax- In Fig. 3
the subsets of Ay mark the sections of the visit-sequences where they ar¢ comput-
_oriented AGS there

ed.
For simple multi-visit AGs [1], OAGs [2], and all pass _
the following property: In any attributed tree

18 a partition of all Ax with

638 U. Kastens

the graph of the dependencies bctween the attribute instances overlayed by
those partial orders is acyclic. Given such partitions for all attribute sets it
is easy to compute a visit-sequence vs, for each production p from the attribute
dependency graph associated to p. An efficient algorithm for partition computa-
tion in the case of OAGs is given in [2]. In the case of pass-oriented AGs
that computation is trivial. The partition for 4y of our example is

Aly ={a} Aly ;={c}
ASY.lz{b} Asy,zz{d}'

It is a property of this particular example that each partition contains exactly
one attribute. Visit-sequences constructed by the above method ensure thb.lt
for an attribute computation all arguments are available. Each attribute a 13
available before (after) the j-th visit to its symbol node if aEAIXJ(aEASX,j)-
In some contexts it may be possible to evaluate a earlier; but due to the interface
concept no advantage would be taken from that — only its lifetime would be
lengthened. Hence we assume that each attribute is computed exactly in those
parts of visit-sequences determined by the attribute partitions.

3. Lifetime Analysis

In the following we analyze lifetimes of the attributes. So we transform the
visit-sequences such that they describe only begin and end of lifetime, i.e. defini-
tion and last use of attributes. The result is a new set of lifetime visit-sequences
denoted by vsl,e VSL.

We obtain the vsl, from vs, by three transformation steps:

1. The function and constant symbols are dropped from vs,. Instead of
fla, b, c)—d we get abc—d in vsl,, meaning that g, b, and c are used
(for some computation not of interest herc) and then d is defined. o

2. For each attribute of Aa, all applications except the last one are elimi-
nated, in order to mark only the end of its life time.

3. It may be that in certain vs, an attribute aeAa, is not applied at all
(consider d in vs,, of our example). In order to closc its life time properly
we introduce in vsl, an artificial last application: If ac ASy ;, a 1s compui-
ed in the j-th visit to its symbol X. Hence we insert that last application
immediately after that visit |;X — the earliest possible point in vsi,. I
acAly;, a is computed before the j-th visit to its symbol X=Xo- 'In
vsl, that visit reaches either the beginning of vs!, (if j=1) or the point
following the (j—1)-st ancestor visit. That is the earliest point where the
artificial last application can be inserted.

In our example each attribute of Aa, is used exactly once, except d which
is not used in vs,,. Hence an application of d is inserted in vsl,,. Fig. 5 shows
the vsl, for our example. .

An interpreter which is controlled by the so constructed lifetime visit-
sequences performs exactly the same walk through a given structure tree as
an attribute evaluator controlled by the ¥S does. Instead of computing attribute

Lifetime Analysis for Attributes 639

vslyy: —Y.a, LWL Y.b- Y 1,.Yd 1

vsly,: Yi.a— Y,.b, T1»
Y,.co V.0 |, Yo, Yo b V2.0 Lo Yo, Yaud = Y,.d, 1,

vsly: Y.a— Y.b, 1., Y.co Y.d 12

Fig. 5. Liletime visit-sequences for example AG

values t_his interpreter begins and ends lifetimes of attribute instances interpreting
a defining or the last applied occurrence respectively. One can imagine that
it allocates and frees storage for them. For each given structure tre¢ it performs
a certain sequence of these operations.

We do not suggest to run such an interpreter. But we want to study properties
of the complete set of operation sequences for all structure trees. Especially
the following question shall be answered: Can all instances of an attribute (or
the attributes of a set BE A) be implemented by a single global variable such
Fhat the correct value is available at any time. So for the operations of the
interpreter we do not distinguish different instances or different occurrences
of an attribute a. Hence the operations (apart from the tree moves) are

D, definingan instance of a,i.€. begin of its lifetime,
L, lastuseofan instance of a, i.e. end of its lifetime.

For our example one can easily deduce from the attribute dependencies that

for a tree of height n+1 the operation sequence is
(D, LDy Ly D L)' (Da Ly

Assume that an evaluator is given by 2 set VSL. For each tree representing
a certain input to the evaluator there is a certain operation sequence. Let SEQ
be the set of all operation sequences for any tree defined by the underlying
context-free grammar. SEQ is 2 language over an alphabet

T, = {D,lae A}V {L,laeA}.

In order to state the global variable condition for a certain set B of attributes
we define a projection of SEQ describing only the lifetimes of instances of attri-
butes in B:

_ Let SEQ be the set of operation sequences of a
lifetime visit-sequences VSL, and Bc A a set of attributes. Then pro j(s, By=sb

projects se SEQ to sbe{D, L}* such that cach element D,. L, of s is mapped
to D or L in sb respectively if @B, or to the empty string if a¢B. With the

mapping proj we get

n interpreter controlled by

SEQ®={sb|sb=proj(s, B), seSEQ} ={D; Ly

ences for a modified

SEQ® can be understood as the set of operation sequ
utes in B, and which

interpreter which takes care of only the instances of attrib

640 U. Kastens

does not distinguish between instances of different attributes in B. Some projec-
tions for our example are

SEQ®=(DLy® for B={a}, B={b}, B={c}, or B={d},
SEQ®=(DL)*" for B=1{u, b, c,d).

The attributes in B can be implemented by a single global variable if in
all sequences in SEQ® the lifetimes are disjoint.

Theorem 1. Let BEA and SEQ® be the projection of the operation sequences
Jor an interpreter controlled by a given set of lifetime visit-sequences. Then all

attributes in B can be implemented by a single global variable if and only if
SEQP=(DL)*.

Proof. The construction of VSL guarantees that a D-L-pair for any attribute
instance of B is contained in a sentence of SEQ®. If SEQ® =(DL)* holds, then
each L symbol refers to the same attribute instance as its immediate predecessor
D does. Hence the lifetime of all attribute instances for B are disjoint.

On the other hand assume that all attributes in B can be implemented l?y
a global variable. Then the begin of a lifetime (D) must be followed by its
end (L) before the lifetime for another instancc is opened. Hence SEQ® =(DL)*
must hold. [

In order to compute SEQ formally and to check the property of Theorem 1
efficiently the set of lifetime visit-sequences VSL is transformed into a context—f.ree
grammar G, such that L(G) contains SEQ. The basic idea of the transformatl'ofl
refers to the interleaved execution of visit-sequences (Fig. 3): A descendent visit
;X causes execution of a section of a visit-sequence ending with an ancestor
visit T; associated to a production with X on its lefthand side. All these sections
become productions of G, and the descendant visits are transformed into occur-
rences of suitable nonterminals of G, .

The transformation of the lifetime visit-sequences into a lifetime grammar
G.=(N,, T, B, S,) is defined by the following rules:

a) For each nonterminal X in G there are k nonterminals X!, ..., X* in

G, if X is visited k=m, times. N, = {X/|XeN,j=1, ..., my}
b) S, =S" (The start symbol is visited only once.)
¢) Each applied (defined) attribute occurrence of an attribute acA is trans-
formed into a terminal L,(D,) .
d) In vs!, associated to a production p: X,::=X,... X, each visit |; X; is
transformed into an occurrence of X/. .
¢) Let vsl,=u, T, u,7,...u. 1, be associated to a production of G as in
(d)- Then it is transformed into k productions of G L

Xoi=v, Xii=v,.. X%:=y,
Where the v; are the transformations of the u;, according to (c) and (d).

The grammar G, for our running example is given in Fig. 6. In this case
one easily verifies that L(G,)=(D, L, D, L, D, L_y(D, L,)" as stated above.

Lemma 1. Let G, be constructed from a set of lifetime visit-sequences VSL, and

let SEQ be the set of operation sequences of an interpreter controlled by the
same VSL. Then SEQ < L(G,) holds.

Lifetime Analysis for Attributes 64
1

S't:=D, Y'L,D YLy

vl:=L,D,
Y?:=L.D,Y'L,D. Y*LyD,
Y2::=L Dy

L(G)=(D, L, Dy Ly D Loy (Da La)"

Fig. 6. Lifetime grammar G, for the example AG

P, - .
roof. Assume that se SEQ is the interpreter sequence obtained for some tree t.
Then there is a derivation for Gy: SléquW$uUW;>S such that X/ corre-

ZP;:SS to the j-th descendent visit to a node labelled with X and derived by

vinit toufkt:on p. v describes the operatioqs of the interpreter performed for that

that dord at node controlled by the section of vls, which ends with ;. Hence
erivation exactly reflects the tree walk of the interpreter. [

analTh'e opposite direction L(G,)=SEQ does not hold in general. Hence lifetime
ysis bfased on G, can be pessimistic in cases where SEQ# L(G) which are
characterized in Lemma 2 below.
for E%e regult of L?mma 1 allows to efficiently check global variable conditions
CertainQ y checking tl}em for I(G,). In order to prove the condition for a
) set B€ A 9f a_ttnbutes we project G to Gebya mapping which corre-
ponds to the projection of SEQ to SEQ”:
ducfigr a glliven set Bc A GE=(T?, NL,.P,f’, S, T’fz {D, L}, and §,.=S"' the pro-
tion ns PB are constructed by replacing in the right hand side of each produc-
st ij P, the symbols D,, L, by D ot L respectively if ac B, and by the empty
ring if a¢ B.
Chefkro[?l]Eemma 1 immediately follows th
mar i (GL);(DL).*- The problem whether the language of a context-free gram-
that is contained in a given regular language is decidable. In tl}is special case
FIRSIflfOPCrty can be checked by a simple and efficient algorithm using the
and FOLLOW sets, well-known from grammar analysis. The conditions
a) FIRST (S,)={d}.
b) FOLLOW (D)= {L}, and
¢) FOLLOW (L)={D, ¢}
zre equivalent to L(G?)<(DL)*. Furthermore con
onsistency of the visit sequences.
torsFor pracqcal imglementation in a system which'
Aty gmomatlcally. (like GAG) one would proceed 1
it on ute acA a singleton set B={a} 1s considered, and ;
l'esulltl be implemented by a global variable using the above algorithm. The
are Is 2 set Glc A of global attributes. In the second step subsets of G!
COn;PPSldf?red as groups of attributes for onc global variable. For them the
o5 ition is checked again. (Of course no attribute not in GI can contribute
uch a group.) The grouping can either be given by design decisions of the
user which are checked by the system, OF it can be computed by an algorithm

at SEQP< L(GP). Hence we have to

dition (a) is implied by the

generates attribute evalua-
n two steps: First for each
it is decided whether

642 U. Kastens

of the system. (The GAG system comprises both facilities, but based on a more
pessimistic global condition than that presented here.) For the latter case we
got good results using a first-fit algorithm [8]. As an additional effect one can
climinate all identical attribute assigns between attributes of B,

It should be stressed that the more significant storage improvement is
achieved by the first step. Whereas the effect of grouping is rather low, because
only the number of global variables is reduced compared with the elimination
of many attribute instances from the tree. Hence we do not recommend an
algorithm which computes a storage optimal grouping in B. The more significant
effect of grouping is achieved by elimination of identical attribute assigns between
attributes of single groups in B. That is an even more complex optimization
problem (cf. [3]) which in practice will be solved by efficient but suboptimal
algorithms.

Now we have a closer look at the difference between SEQ?® and L(G¥), which
causes the global condition to be pessimistic in some cases: If an interpreter
of the lifetime visit-sequences visits a node more than once it will always resume
the same visit-sequence. On the other hand in a derivation according to G
at the corresponding places productions transformed from different visit-
sequences may be applied. That results in sentences se L(G? which are not
in SEQ®.

Lemma 2. Each of the following conditions implies that SEQ = L(G;) holds:
a) If B, of G, does not contain four productions of the form

Xii=s, Xlu=t result of the transformation of vsl,
Xin=s, Xii=t¢ result of the transformation of vsl,

where i%j, s+5s, and t+t. p and D’ have the same left hand side.

b) If for each symbol XeN which is visited more than once there is exactly
one production in P.

¢) The AG is a simple-one-visit AG (or a subclass thereof, e.g. LAG(1),

AAG(1)), and the (canonical) visit-sequences are chosen for VSL resulting
Jrom the check of the grammar class.

Proof. For (a) the proof is obvious since a sitnation as described above can
only arise from a derivation in G, of the form

* . .
Si=>x Y"y=>qu‘vX’wy=xusvt'wy=>...,

It applies productions of different visit-sequences in the same context. A lifetime
interpreter controlled by VSL however applies sections of the same visit-sequence
at one tree node. Hence the derived terminal string z¢ SEQ. Furthermore condi-
tions (c) implies (b), and (b) implies (a). [

In some of the cases where L(G?) is pessimistic compared to SEQ® we can
deduce from G? that the global variable condition fails due to sentences not
in SEQ®. We can eliminate some of these sentences (not all) by lengthening
the lifetime of attributes in certain contexts. Consider the following subsets of
productions in some G? (productions in the same line are derived from the

Lifetime Analysis for Attributes 643

same vsl,. We assume that u, v, w derive to (DL)*, ie. they do not violate the
global condition.

a) Z'u:=DX'uX? (vslyy)
Xli=vp X?u=L (vsl,,)
X'u=L X%=w (vsly3)
Z, derives to DvuL and DLuw but also to DLulL and Dvuw
b) Z'n=X'uX? (vslyy)
X';:=DY' X2:=Y? (vsly2)
Xti=v X2:=DY'w¥?2 (vsl,3)
Y!l::i=s Y2::=L (sl
Z1 derives to Dsul and vuDswL but also to DsuDswL and vulL
<) Zla=X'uX? (vsl,1)
Xl::=Y'L X2=v (vsly)
X'u=wY?! X2:.=L (vsl3)
Y'::=D (vsl)

Z1 derives to DLuv and wDuL but also to DLuL and wDuv.

s does not have a correspondence
n to fail. The following informally
Consider a set of productions with
d side. For an inherited (syn-

~In each case the second pair of string
in SEQ® and will cause the global conditio
stated transformation rules eliminate them:
S})’lmbols X', X2, ... X* 2<kZm, on their lefthan
txfslzed respectively)attribute of X determine the largest (smallest) index isuch that
i t=pLg(X'::=pDg). Eliminate L(D) from all productions for X/ with j#i.
usert L in front (D at the end) of all productions for X' which do not yet
contain L(D). By this means the L and D symbols are adjusted to the same
Zecnon of the visit-sequences enlarging the lifetime of the corresponding attri-
bute. (For ease of description we here assumed that only one L(D) symbol
IS contained in the productions derived from one visit-sequence. In fact one
has to consider separately the symbols corresponding to different attribute occur-

rences.) The above examples are then transformed to

a) Z'u=DX'uX?
Xlo=v X2:=L
le:zg X222=LW
Z' derives to DvulL, DuLw, Dvulw, DulL
b) Zlu=X"uX?
X'::=DY? X2:=Y?
Xl::=vD X2:=Y'wY?
Yii=s Y=L
Z?! derives to DsuL, vDuswL, DsuswL, pDulL
9 Z'i=X'uX?
Xto=Y! X?:=Lv
Xli=wY! X2:=L

Y!::=D

g

644 U. Kastens

Z! derives to DuLv, wDulL, Dul, wDuLv

Again neither of the last two strings corresponds to SEQ®. But now D and
L symbols are paired, and if the symbols are not “shifted over strings” which
produce non-empty strings, then the result will be less pessimistic.

Finally we show that the class of languages SEQ defined by a visit-oriented
evaluator (e.g. our lifetime interpreter) is greater than the class of context-free
languages. In other words: It is an intrinsically context-sensitive property of
the evaluator operating on the tree structure. Hence Lemma 1 cannot be
strengthened by a more sophisticated construction of G, in order to achieve
L(G.)=SEQ in general.

This property is easily demonstrated by an evaluator producing
SEQ=a"b" c". Let the original grammar G be

Sii=X Xu=tX X:=¢

Assume that there are visit-sequences (omitted here) which are turned by our
transformation into G, :

Sto=XxtXx? (vslyy)
X'u=aX'b X?u:=cX? (vsl,;)
X2i=¢ X2::=¢ (vsl,3)

with some terminal strings for a, b, and c¢. Obviously L(G,)=a'b™c", but

SEQ=a"b"c". Of course any context-free language can be produced by a trivial
one-visit evaluator.

4. Conditions for Global Stacks

If the conditions for mapping an attribute to a global variable fail one can
check whether the lifetimes of its instances are not overlapping, i.c. they are
cither disjoint or properly included. In that case the attribute instances can
be implemented by a global stack. The storage for the sum of all instances
of that attribute in a tree is then reduced to the amount needed for the maximum
number of instances existing at the same time — the depth of the stack. We
present a sufficient condition based on the lifetime visit-sequences of Sect. 3.
It is shown that all attributes for which the stack condition holds can be imple-
mented by one single stack or any groups of attributes mapped to several stacks.

In contrast to the global variable condition of Sect. 3 we can not base the
stack condition on the language of the grammar G,: The marks for begin and
end of lifetime (D, L) are not distinguished for different instances. Hence for
two instances i, j one can not decide whether u DDLLveL{(G) has to be interpret-
ed as uD; D; L; L;v (properly included lifetimes) or as uD; D; L; L;v (overlapping
lifetimes). Figure 7 demonstrates this situation by an example for a visit trace
which reaches two tree nodes i and j twice. In other words: By context-free
means one can not distinguish whether attribute evaluation performs a tree

walk from a tree node i labelled X to a different node j with the same label
or back to the same node j.

Lifetime Analysis for Attributcs 645

i
or L J

AVANS

Di Dj
visit trace

Fig. 7. Example for DDLL caused by nested or overlapped lifetimes

tree nodes

Hence a more pessimistic condition on the structure of the lifetime visit-
sequences is stated. The basic idea is best explained by comparing it with the
well-known principle of runtime stacks for recursive procedure calls:

{\ visit-sequence vs,, associated to a production P: X o= X X, 08 separated
into sections cach ending with an ancestor visit. Such a section is considered
as a procedure called by corresponding descendant visits. Within the procedure
storage is allocated for local entities —~ the stack attributes of visited symbol
occurrences X, ..., X, — and released after being used. Hence an attribute can
be implemented by a global stack if the lifetime of its instances does not exceed
such a section. This property is easily checked using the lifetime visit-sequences.

The placement of the allocation and deallocation operation within one sec-
FiOn enlarges the duration of space allocation for the attribute compared with
its lifetime. This will cause the stack to be deeper than necessary in some cases.
(This technique is called “stacking from above” in [6]) On the other I}and
it relaxes the stack condition (some overlaps are turned into proper inclusions)
and allows to combine arbitrary stackable attributes on onc stack. Fprthermore
the pairs of corresponding push- and pop-operations are contained in the same
context of one visit-sequence. Up to now in the GAG-System these operations
are associated with thc exact lifetime. (The consequences for GAG are more
but smaller stacks and violations of the stack condition in some¢ more cases
as discussed e.g. in [6]))

For pass-oricnted AGs this method is well-known: Attributes used gnly

). Here it is generalized

n g single pass can be implemented by a stack (cf. [5] :
to visit-oriented evaluators for larger AG-classes: Attributes used only during

one visit of a subtree are stackable.
We first give an outline of the problems tO be solved subsequently:
a) Decide whether a given attribute X.a can be implemented by a stack.
b) Insert operations for allocation (4) and release (R) of stackspace for X .a
into visit-sequences containing visits to an occurrence of X. The lifetime
of X .a in that context has to be bracketed by 4 and R.
¢) Assure stack discipline and proper access to stack elements in cases wh?re
more than one attribute occurrence is stacked in the same context (i.€.
X occurs more than once on the right hand side of a production).
d) Map different attributes to the same stack.
Let us first demonstrate the problem by 2 modification of out'examplc gram-
mar before we present a general solution: If we replace the attribute rule (a 24)

646 U. Kastens

K AlKe) Dkl X R(Xa) [ox L{X.b) R{X.D)
.a

AX.D)

. 1

vsl /D(X'D) T /X \Tz T
0(

X-a},L{¥.2) denste definition and ast use of X.a
Fig. 8. Insertion of stack operations A and R

in Fig. 1 by
(a24) Y, .d:=fs(Y;.c, Y,.d)

then lifetime of Y.c is lengthened. vs,: and vsl,. are modified correspondingly.
In the lifetime grammar G, of Fig. 6 the first production for Y2 is replaced
by

Y2::=D,Y'L,D,Y*L.L,D,.

Now the language of G, is

L(GL) =(D, L, D,L,D) Lc Dd(l‘c Ld Dd)n_ ! Ly

Hence L(G})=D"L" for B=c¢, and the global variable condition does not
hold for ¢ (globalization of a, b, and d is not affected).

Now consider the lifetime visit-sequences with respect to Y.c only (the poten-
tially stackable attribute). One verifies that the lifetime of Y.c does not exc?cd
a single section of vsl,, or vsly, tespectively. Hence we can insert allocation
operations 4 and R as follows (attributes g, b, and d are omitted):

vslyy |, Y A(Y.c), > Y., |, Y, R(Y.c), 1,
Uslyy: Ty, 1 Vs, A(Ys.0), = Y, 0, 1,Y,, R(Y,.0), Y;.¢, T,
vsl3:1,,Y.¢ 1,

Obviously the allocation operations include the lifetimes of Y.c instances, and
stack discipline is obeyed.

We now consider the general case. For ease of presentation we first considt?r
a single attribute X.a for globalization. Furthermore we assume that there 1S
no production with more than one occurrence of X on the right hand side.
The simplest way to solve problem (a) is to insert A(X.a) and R(X.a) in.tO
the visit-sequences, and then check whether the pairs lie each in one visit-
sequence section.)

Lifetimes of instances of X.a are determined by references to X .a within
pairs of visit-sequences associated to productions p: Y::=uXv and g: X::=W,
as shown in Figs. 2 and 3.

Figure 8 contains one complete section of vsl, interacting with three secti_ollS
of vsl,. Definition and use of an inherited attribute X.a and a syntheSI?ed
X .b are shown. If X.a is stackable and its lifetime is included in that section
of vsl, the allocation operations will be inserted there. »sl, contains defining

Lifetime Analysis for Attributes 647

%lpplllled) occurrences of X.a (X.b) and vice versa for vsl, (if the AG is in
. r:)f) rI(;lcarntno I:Inzr;ntahlelii?g?; oiherwlise both may .contain applied occurl‘-ences).
e e me to vsl, we say a visit |;X references X .a if there
q such that 1ts_ j-th section contains a reference to X.a. By that means
:;’]Cg ianssll:,re that our lifetime considerations for vsl, hold for any possiblc interact-
For an inherited (synthesized) attribute X .a and all productions of the form
z c:]etermlne the srpal]est number k (and the largest number 1) such that the
-th (the I-th) section of a vsl, contains a reference to X.a. Then the visits
AlkX upto |,X must be included by the A—R pair in vsl,. Now in each vsli
insert A(X..a) as late as possible but not after the first reference to X.a ancli,
1X; and insert R(X.a) as early as possible but not before the last reference
to X.aand |; X.
] _The global stack condition is stated on the modified visit-sequences: X.a
1 lmpl(fmented by a global stack if each pair of corresponding A(X.a) and R(X .a)
operations is contained in one visit-sequence section.
the Zhs condition ensures that dur.ing the allocation time of an instance of X .a
| ubtree of the associated node is not left by an ancestor visit. If the condition
oes not hold the A- and R-operations are removed and X.a is discarded for
globalization.
. ~Obviously the stack condition holds
visit to each symbol. This result correspon
evaluators for attributes used only in one pass.
. For the s.olution of problem () we assume that X .a is stackable and there
s a production p where X occurs more than once on the right hand side,
€g. p: Yii=u, Xu, Xv. In order to ensure the stack discipline we distinguish
three cases:

1) Corresponding A- and R-operatio
tained in different sections of vslp,
antained in different sections. In this case s
without modification.

2) No modification is needed too, if corresponding A- and R-operations
are contained only in one section and if they are properly bracketed.

3) If some A and R pairs in on¢ section arc not properly bracketed we
can lengthen the allocation time for certain attributes: In order to avoid
overlapping allocations: A-operations can be shifted to the left and/or
R-operations can be shifted to the right until stack discipline is achieved.

In the above cases (2) and (3) there are areas within the visit-sequence section

where more than one stack element ¢an be referenced.

Let vsl, be for example the sequence

for all attributes if there is exactly one
ds to stack allocation in pass-oricnted

ns for both occurrences of X are con-
ie. cach set of visits LX to X is
tack discipline is achieved

D A(X,.a) v, | X, vs A(X2.0) 04 L1 X205 L2 X1 s 1, X, 07 R(X;.0) R(X,-0) s-
. Then references to X,.4 within v, or vz access top of stack. If they occur
ny,, ... v, top of stack minus one has to be accessed. For X,.a always top
of stack has to be accessed. In any ¢ase for references within vsl, the relative
stack position can be determined statically.
renMOFC care ha's to be taken for reference

ces of X: Within visit-sequences 4 reache

s reached by the visits to the occur-
d by those visits the particular

648 U. Kastens

stack context of p can not be distinguished (e.g. |, X; and |, X, in the above
example). For these references it is assumed that X.a is on top of the stack.
Hence we have to adjust the stack within vsl, before and after visits referencing
an X.a which is not on top of stack (], X, in the example). We can do that
by simply pushing a copy of the referenced attribute before the visit and popping
it afterwards. (If the visit references a defining occurrence the original stack
element has to be assigned from the copy after the visit.) This technique allows
to stack attributes whose lifetime does not span an ancestor visit according
to the global stack condition.

Now the combination of stacks for different attributes (problem (d)) can
be achieved rather easily: Consider two arbitrary stackable attributes X .a and
Y.b. In order to combinc the two stacks we can ensure stack discipline and
proper stack access by the same means as we presented for different occurrences
of one attribute in (c).

A special situation arises if we combine the stacks for two attributes X.a
and X .b of one symbol X: The assumption for visit-sequences g to access the
attribute from top of the stack can not be true for X.a and X.b if both are
referenced in one visit-sequence section. In that case we can conclude that all
visits referencing X.a or X.b always occur in one section. Otherwise either
X .a or X.b could not be stackable. Hence we can fix a certain order on the
stack for instances of X.a and X.b (e.g. X.a on top and X.b on top minus
one). This order is then established in vs! » €ither by shifting 4- and R-operations
or additional copies as discussed above.

Finally it should be mentioned that for storage savings achicved by attribute
stacks a price has to be paid: Runtime and code length is increased by the
introduced stack operations. (That is not the case for global variables.) However,
in certain situations identical attributes assignments between topmost stack ele-
ments and the inserted stack operations can be eliminated.

5. Conclusion

In this paper we presented a method for storage improvements for attribute
evaluators. Since the lifetime analysis is based only on statically determinablf:
properties of the AG the method is well suited for generating systems, i.e. attr-
bute evaluator generators.

In the GAG-System [8] an attribute optimization phase is implemented
which is based on the underlying idea of the method presented here. There
the visit-sequences are analyzed directly without a transformation into contex.t-
free grammars. (The latter idca is roughly presented in a system overview 1n
[10].) Whereas the conditions used in that implementation are even strongef
than those presented here it yields significant storage reductions (see [8].) Apart
from the additional improvements expected in practical cases this method basffd
on language analysis is more comprehensible and provable. The method will
be used in the implementation of a successor system for GAG. Besides the

more systematic technique it will aliow to quantify the improvement for realistic
AGs.

Lifetime Analysis for Attributes 649

We did not discuss the aspect of modification of visit-sequences in order
to improve attribute globalization. It would be beyond the scope of this paper
and is a topic of further research. A different application of a simplified version
of our lifetime analysis method is presented in [11]: For a set of mutually
recursive procedures it is decided which paramcters can be allocated statically.

References

1. Engelfriet, J., File, G.: Simple multi-visit attribute grammars. J. Comput. Syst. Sci. 24, 283-314

(1982)
2. Kaste.ns, U.: Ordered Attribute Grammars. Acta Inf 13, 229-256 (1980)
3. Ganzinger, H.: On Storage Optimization for Automatically Generated Compilers. Lect. Notes
C(fnput. Sci. Vol. 67, pp 132-141. Berlin, Heidelberg, New York: Springer 1979
4. Rijhi, K.-J.: Dynamic allocation of space for attribute instances in multi-pass evaluators of
attribute grammars, in Proc. SIGPLAN Symp. Compiler Construction, SIGPLAN Notices 14,
26-38 (1979)
. Jazayeri, M., Pozefsky, D.: Space-Efficient Storage Management in
tor. ACM TOPLAS 3, 388404 (1981)
Farrow, R., Yellin, D.: A Comparison of Storage O
Attribute Evaluators. Acta Inf. 23, 393427 (1986)
. Sonnenschein, M.: Global Storage Cells for Attributes in an Attribute Grammar. Acta Inf. 22,
397-420 (1985)
Kastens, U., Hutt, B., Zimmermani, E.: GAG
Computer Sci. Vol. 141. Berlin, Heidelberg, New York: Springer 1982
Waite, W.M., Goos, G.: Compiler Construction. Berlin, Heidelberg, New York: Springer 1983
10. Kastens, U.: The GAG-System — A Tool for Compilar Construction. In Lorho, B. (cd) Methods

and Tools for Compiler Construction, pp. 165-181. Cambridge: University Press
in European Symposium

an Attribute Grammar Evalua-

w

ptimizations in Automatically-Generalcd

@

3

. A Practical Compiler Generator. Lect. Notes

i

o

11. Kastens, U., Schmidt, M.: Lifetime Analysis for Procedure Parameters,
of Programming. Lect. Notes Computer Sci. Vol. 213. Berlin. Heidelberg, New York: Springer
1986

Appendix

The following attribute grammar defines a smail block structured and expression
entrate upon results of lifetime

oriented example language. In order to conc
analysis syntax and static semantics are reduced to a skeleton defimtion only.
ification.

The attribute rules shall give a rough idea of scope rules and typing specti
They are not completely claborated and explained here because only their struc-
ture is important.

The following attributes are used:

symbols attributes

Prog

Block env p
Decls dec env

Decl dec env
Body env tp
Expr env tp
Term env ip

650

U. Kastens

env describes the set of definitions valid in the environment of the symbol
dec describes the set of definitions introduced in the subtree of the symbol
tp describes the type of the construct represented by the symbol

(pl) Prog::=block (all)
(p2) Block::=(Decls Body) (a21)
(a22)
(a23)
(p3) Decls,::=Decls, Decl; (a3l
(a32)
(a33)
(p4) Decls::= (ad1)
(p5) Decl::=typeid id = Expr (a51)
(a52)
(p6) Body,::=Expr; Body, (a61)
(a62)
(a63)
(p7) Body::=Expr (a71)
(a72)
(p8) Expr,::=FExpr, + Term (a81)
(a82)
(a83)
(pY) Expr::=Term (a91)
(a92)
(p10) Term::=id (a101)
(p11) Term::= Block (alll)
(al12)

Block.env — (&

Decls.env <« Decls.decw Block.env
Body.env < Decls.dec v Block.env
Block.tp < Body.tp

Decls, .dec « Decls,.decw Decl.dec
Decls,.env < Decls, .env
Decl.env« Decls, .env

Decls.dec — &

Decl.dec « def (id, typeid)
Expr.env« Decl.env

Expr.env <« Body, .env
Body,.env — Body, .env
Body, .tp — Body,.tp

Expr.env«— Body.env
Body.tp«— Expr.tp

Exprz Lenv «— E)cprl .env

Term.env < Expr,.env

Expr, .tp « oprid (Expr,.tp, Term.tp)
Term.env «— Expr.env

Expr.tp < Term.tp

Term.tp « ident (id, Term.env)
Block .env « Term.env
Term.tp < Block.tp

In the following visit-sequences the env and tp attributes are computed in
one visit. For Decls and Decl a preceeding visit is needed collecting the local
definitions. (For better readability all indices 1 are omitted if no corresponding

2 exists.)
{vsy)

(vs))
(vs3)
(vs4)

(vss)

(vse)

& — Block.env, | Block, 1

Ly Decls, Decls.dec Block .env — Decls. env, |, Decls,

Decls.dec w Block.env — Body.env, | Body, Body.tp — Block.tp. 1

Ly Decls,, | Decl, Decls,, decu Decl.dec — Decls, .dec, 14,

Decls, .env — Decls, .env, |, Decls,, Decls, .env — Decl.env, |, Decl, 12

& — Decls.dec, 14, 1,

def(id, typeid) — Decl.dec, 1,, Decl.env — Expr.env, | Expr, 1,

Body,.env — Expr.env, | Expr,
Body,.tp— Body, .tp, 1

Body, .env — Body,.env, | Body,,

Lifetime Analysis for Attributes

(vs;) Body.env — Expr.env, | Expr, Expr.tp—> Body.tp,1

(vsg) Expr,.env— Expr,.env, | Expr,, Expr,.env— Term.env, | Term,
oprid (Expr,.tp, Term.tp) — Expry .tp, T

(vss) Expr — Term.env, | Term, Term.tp — Expr.tp,T

(vsy0) ident (id, Term.env)— Term.tp, 7

Lifetime analysis according to the previous sections yields the following results:

The global variable condition holds for

Term.env, Decl.env, Decl.dec, Decls.dec, Term.1p, Body.ip, Block.tp

For all other attributes the global stack condition holds.
The sets {Term.tp, Body.tp, Block.tpy and {Term.env, Decl.env} can be
mapped to a single variable each. Then the attribute rules (a23), (a63), (al12)

can be omitted (identical assigns).

™

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19

