Skip to main content
Log in

Statistische Eigenschaften der Neuronaktivität im ascendierenden visuellen System

  • Published:
Kybernetik Aims and scope Submit manuscript

Zusammenfassung/Summary

  1. 1.

    The activity of single nerve cells in the visual system of cats (curarized or encéphale isolé preparations) was investigated. Records were sampled from units in the optic tract, the lateral geniculate body, and the striate cortex. The non-sequential interval distribution and the mean discharge rate of spontaneous activity and of that during stimulation of the retina with continuous light was analysed over long periods. An interval analyser was used.

  2. 2.

    The mean discharge rate of spontaneous activity is highest in the optic tract and decreases significantly towards the visual cortex. The mean values are: 35.5 per sec in the optic tract (13 units), 14.0 per sec in the lateral geniculate (24 units) and 5.7 per sec in the visual cortex (145 units).

  3. 3.

    The variety of possible interval distributions was reduced to 3 characteristic types. As belonging to type I those distributions were classified which showed exponential form. Only the frequency of short intervals was reduced, so that the distribution had a peak at 8–10 msec. The joint interval histogram showed that the successive single discharges were independent from each other. From this it could be assumed that spike generation in these cells occurs according to a Poisson-type process. The initial dead time can be explained by the excitability cycle of the units or by recurrent or collateral synaptic interactions. — Bi- or trimodal interval distributions were labelled as type II. The different peaks were attributed to different activity determining factors. A third group (type III) is found by those distributions which show transitional characteristics between the other two. Only one peak of short intervals is distinguishable and flanked by a wide and unsystematic distribution of longer intervals.

  4. 4.

    In the optic tract mainly type I, in the lateral geniculate mainly type II and in the visual cortex almost always type III distributions were found.

  5. 5.

    The interval distribution from each unit in darkness remained essentially the same under continuous illumination, even though the average discharge rate of optic nerve fibers was considerably changed by stimulation. In cortical cells only little changes of discharge rate were induced by continuous illumination of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Arden, G. B., and U. Söderberg: The transfer of optic information through the lateral geniculate body in the rabbit. In: Sensory communication, edit. W. A. Rosenblith, p. 521. New York: M. I. T. Press and Wiley 1961.

    Google Scholar 

  2. Arduini, A., and L. R. Pinneo: The tonic activity of the lateral geniculate nucleus in dark and light adaptation. Arch. ital. Biol. 101, 493 (1963).

    Google Scholar 

  3. Baumgartner, G.: Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast. In: Neurophysiologie und Psychophysik des visuellen Systems, p. 296. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  4. Baumgartner, G., O. Creutzfeldt, and R. Jung: Microphysiology of cortical neurones in acute anoxia and retinal ischemia. In: Cerebral anoxia and the electroencephalogram, edit. H. Gastaut and J. S. Meyer. Springfield: Thomas Publ. 1961.

    Google Scholar 

  5. Bernheimer, S. C.: Die Wurzelgebiete der Augennerven, ihre Verbindungen und ihr Anschluß an die Gehirnrinde. In: Handbuch der gesamten Augenheilkunde (Graefe-Saemisch), 2. Aufl., Bd. I, Abt. 2, VI. Kap. S. 1–115 (1931).

  6. Bishop, P. O., W. Burke, and R. Davis: The interpretation of the extracellular response of single lateral geniculate cells. J. Physiol. (Lond.) 162, 451 (1962).

    Google Scholar 

  7. Bizzi, E., and D. L. Brooks: Functional connections between pontine reticular formation and lateral geniculate nucleus during deep sleep. Arch. ital. Biol. 101, 666 (1963).

    Google Scholar 

  8. Creutzfeldt, O.: General physiology of cortical neurones and neuronal information in the visual system. In: Brain and behavior, edit. M. Brazier, vol. 1, p. 299. Washington 1961.

  9. Creutzfeldt, O.: Die normale, pathologische und Reizphysiologie corticaler Nervenzellen. Habil.-Schr. München 1962.

    Google Scholar 

  10. Creutzfeldt, O., F. R. Bell, and W. R. Adey: The activity of neurones in the amygdala of the cat following afferent stimulation. Progress and Brain Res. 3, 31 (1963).

    Google Scholar 

  11. Ditchburn, R. W., and B. L. Ginsborg: Involuntary eye movements during fixation. J. Physiol. (Lond.) 119, 1 (1953).

    Google Scholar 

  12. Fuster, J.: Excitation and inhibition of neuronal firing in visual cortex by reticular stimulation. Science 133, 2011 (1961).

    Google Scholar 

  13. Fuster, J., u. O. Creutzfeldt: Intracelluläre Ableitungen von Neuronen des visuellen Cortex und des Corpus geniculatum laterale beim Kaninchen. Pflügers Arch. ges. Physiol. 278, 67 (1963).

    Google Scholar 

  14. Fuster, J., A. Herz, and O. Creutzfeldt: Intervall analysis of cell discharge in spontaneous and optically modulated activity in the visual systems. (In Vorbereitung.)

  15. Gerstein, G. L.: Mathematical models for the all-or-none activity of some neurones. In: IRE Trans, Inform. Theory 1, T-8, 137 (1962).

    Google Scholar 

  16. Grossmann, V. and V. Viernstein: Discharge patterns of neurons in chochlear nucleus. Science 134, 99 (1961).

    Google Scholar 

  17. Grüsser, O. J., K. A. Hellner u. U. Grüsser-Cornehls: Die Informations-übertragung im afferenten visuellen System. Kybernetik 1, 175 (1962).

    Google Scholar 

  18. Grüsser-Cornehls, U., u. O. J. Grüsser: Mikroelektrodenuntersuchungen am Geniculatum laterale der Katze: Nervenzell- und Axonentladungen nach elektrischer Opticusreizung. Pflügers Arch. ges. Physiol. 271, 50 (1960).

    Google Scholar 

  19. Hagiwara, S.: Analysis of interval fluctuation on the sensory nerve impulse. Jap. J. Physiol. 4, 234 (1954).

    Google Scholar 

  20. Herz, A., u. J. Fuster: Beeinflussung der Spontanaktivität von Neuronen des visuellen Cortex durch Barbiturate und Amphetamin. (In Vorbereitung.)

  21. Hubel, D. H.: Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. (Lond.) 150, 91 (1960).

    Google Scholar 

  22. Hubel, D. H., and T. N. Wiesel: Receptive fields, binocular interactive and functional architectures in the cat's visual cortex. J. Physiol. (Lond.) 160, 106 (1962).

    Google Scholar 

  23. Jenik, F.: Electronic neuron models as an aid to neurophysiological research. Ergebn. Biol. 25, 206 (1962).

    Google Scholar 

  24. Jung, R.: Neuronal integration in the visual cortex and its significance for visual information. In: Sensory communication, edit. W. A. Rosenblith, p. 627. Cambridge, Mass.: Technology Press 1961.

    Google Scholar 

  25. Jung, R., R. v. Baumgarten u. G. Baumgartner: Mikroableitungen von einzelnen Nervenzellen im optischen Cortex der Katze: Die lichtaktivierten B-Neurone. Arch. Psychiat. Nervenkr. 189, 521 (1952).

    Google Scholar 

  26. Jung, R., O. Creutzfeldt u. O. J. Grüsser: Die Mikrophysiologie corticaler Neurone und ihre Bedeutung für die Sinnes-und Hirnfunktion. Dtsch. med. Wschr. 1957, 1050.

  27. Katsuki, Y., T. Watanabe, and N. Mabuyama: Activity of audi tory neurones in upper levels of the brain of cats. J. Neurophysiol. 22, 603 (1959).

    Google Scholar 

  28. Keidel, W. D.: Grundprinzipien der akustischen und taktilen Informationsverarbeitung. Ergebn. Biol. 24, 213–246 (1961).

    Google Scholar 

  29. Kuffler, S. W., R. Fitzhugh, and H. B. Barlow: Maintained activity in the cat's retina in light and darkness. J. gen. Physiol. 40, 683 (1957).

    Google Scholar 

  30. Lux, H. D., u. M. R. Klee: Intracelluläre Untersuchungen über den Einfluß hemmender Potentiale im motorischen Cortex. I. Wirkung elektrischer Reizung unspezifischer Thalamuskerne. Arch. Psychiat. Nervenkr. 203, 648 (1962).

    Google Scholar 

  31. Mountcastle, V. B., G. F. Poggio, and G. Werner: The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. J. Neurophysiol. 26, 807 (1963).

    Google Scholar 

  32. Murata, K., and K. Kameda: The activity of single cortical neurones of unrestrained cats during sleep and wakefullness. Arch. ital. Biol. 101, 306 (1963).

    Google Scholar 

  33. Poggio, G. E., and V. B. Mountcastle: The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J. Neurophysiol. 26, 775–806 (1963).

    Google Scholar 

  34. Riggs, L., F. Ratcliff, J. C. Cornsweet, and T. N. Cornsweet: The disappearance of steadily fixated visual objects. J. opt. Soc. Amer. 43, 495 (1953).

    Google Scholar 

  35. Rodieck, R. W., N. Y. S. Kiang, and G. L. Gerstein: Some quantitative methods for the study of spontaneous activity of single neurones. Biophys. J. 2, 351 (1962).

    Google Scholar 

  36. Susuki, H., N. Taira, and K. Motokowa: Spectral response curves and repetitive fields of the pre- and postgeniculate fibres of the cat. Tohoku J. exp. Med. 11, 401 (1960).

    Google Scholar 

  37. Viernstein, L. J., and R. G. Grossman: Neural discharge patterns in the transmission of sensory information. In: Informative theory, 4th London Symposium, p. 252. London: Butterworth 1961.

    Google Scholar 

  38. Werner, G., and V. B. Mountcastle: The variability of entrai neural activity in a sensory system, and its implications for the central reflection of sensory events. J. Neurophysiol. 26, 958 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nach einem Vortrag, gehalten auf der Tagung der Deutschen Arbeitsgemeinschaft Kybernetik in München am 30./31. Okt. 1963. Über einen Teil der Ergebnisse wurde auf der 28. Tagung der Deutschen Physiologischen Gesellschaft, Köhl, Juni 1963 berichtet [Pflügers Arch. ges. Physiol. 278, 77 (1963)].

Wissenschaftlicher Gast als Career Investigator (M-3756) des National Institute of Mental Health, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herz, V.A., Creutzfeldt, O. & Fuster, J. Statistische Eigenschaften der Neuronaktivität im ascendierenden visuellen System. Kybernetik 2, 61–71 (1964). https://doi.org/10.1007/BF00288559

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288559

Navigation