Skip to main content
Log in

Zum Mechanismus der biologischen 24-Stunden-Periodik

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

The biological 24-hour-periodicity is based upon an endogenous (self-sustained) oscillation which is synchronized with the earth's rotation by periodically changing factors of the environment, primarily by the alternation of light and dark. These external „Zeitgebers” affect the phase of the endogenous oscillation. Theoretically, there are four different simple types of phase-control; all complicated types are combinations of these four types. In model experiments the behaviour of an oscillation in each of the four cases of phase-control is clearly demonstrated.

The comparison of model experiments and biological experiments suggests that in organisms a specific combination-type of phase-control occurs. In this combination-type, a change in frequency is always positively correlated with a change in average level of the oscillation. Both parameters of the oscillation increase in light-active organisms and decrease in dark-active organisms with increasing light-intensity (“circadian rule”). In organisms both parameters are coupled by means of non-linear elements.

The differential equation describing the 24-hour-periodcity is characterized by certain non-linearities. One of these makes the oscillation self-sustained and simultaneously couples the frequency of the oscillation to the average level, in the sense postulated by the circadian rule. The magnitude of the non-linearity is such that the resulting oscillation is intermediated between a harmonic and a relaxation type of oscillation, but has more characteristics of a harmonic oscillation. A second non-linearity which also couples frequency and level positively concerns the energy of recoil.

All general properties of the biological 24-hour-periodicity can be reproduced by the described oscillator model. Some special properties (e.g. “pattern”) are more easily understood by the assumption of two coupled oscillators; the second oscillator, following the same general laws described above, is controlled by the first one. The oscillator hypothesis can be applied to biological periodicities with other frequencies; in general, the higher the frequency of a system the more the oscillation tends towards a relaxation type of oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Aschoff, J.: Aktivitätsmuster der Tagesperiodik. Naturwissenschaften 44, 361–367 (1957); - Periodik licht- und dunkelaktiver Tiere unter konstanten Umgebungsbedingungen. Pflügers Arch. ges. Physiol. 270, 9 (1959a); - Zeitliche Strukturen biologischer Vorgänge. Nova Acta Leopoldina, Halle 21, 147–177 (1959b); - Exogenous and endogenous components in circadian rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 11–27 (1960).

    Google Scholar 

  • Aschoff, J., u. K. Honma: Art- und Individualmuster der Tagesperiodik. Z. vergl. Physiol. 42, 383–392 (1959).

    Google Scholar 

  • Aschoff, J., u. J. Meyer-Lohmann: Die Schubfolge der lokomotorischen Aktivität bei Nagern. Pflügers Arch. ges. Physiol. 260, 81–86 (1954).

    Google Scholar 

  • Aschoff, J. Aschoff, J., u. R. Wever: Beginn und Ende der täglichen Aktivität freilebender Vögel. J. Ornithol. (im Druck).

  • Bruce, V.G.: Environmental entrainment of circadian rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 29–47 (1960).

    Google Scholar 

  • Bruce, V.G., and C.S. Pittendrigh: Resetting the Euglena clock with a single light stimulus. Amer. Naturalist 92, 295–306 (1958).

    Google Scholar 

  • Bünning, E.: Die biologische Uhr. Berlin 1958.

  • DeCoursey, P. J.: Daily activity rhythms in the flying squirrel glaucomys volans. Ph.D.Thesis, University of Wisconsin 1958; - Effect of light on the circadian activity rhythm of the flying squirrel glaucomys volans. Z. vergl. Physiol. 44, 331–354 (1961).

    Google Scholar 

  • Hildebrandt, G.: Grundlagen einer angewandten medizinischen Rhythmusforschung. Heilkunst 1958, 1–19.

  • Holst, E.v.: Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebn. Physiol. 42, 228–306 (1939).

    Google Scholar 

  • Jekelius, K.: Die Untersuchung nichtlinearer Systeme mit einem oder zwei Energiespeichern. NTF 21, 93–97 (1960).

    Google Scholar 

  • Pittendrigh, C.S.: Circadian rhythms and the circadian organization of living systems. Cold Spr. Harb. Symp. quant. Biol. 25, 159–182 (1960).

    Google Scholar 

  • Pittendrigh, C. S., and V. G. Bruce: Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism, S. 475–505, in: Photoperiodism and Related Phenomena in Plants and Animals, ed. Withrow. Washington 1959.

  • Pittendrigh, C.S., V.G. Bruce and P. Kaus: On the significance of transients in daily rhythms. Proc. nat. Acad. Sci. (Wash.) 44, 965–973 (1958).

    Google Scholar 

  • Pol, B. van der: Über “Relaxationsschwingungen”. Jb. drahtl. Telegr. u. Teleph. 28, 178–184 (1926); - Über “Relaxationsschwingungen”. II. Jb. drahtl. Telegr. u. Teleph. 29, 114–118 (1927); - The nonlinear theory of electric oscillations. Proc. I.R.E. 22, 1051–1086 (1934).

    Google Scholar 

  • Rawson, K.: Homing behaviour and endogenous activity rhythms. Ph.D.Thesis, Harvard University 1956.

  • Schunck, H., u. J. Zenneck: Über Schwingungskreise mit Eisenkernspulen. Jb. drahtl. Telegr. u. Teleph. 19, 170–194 (1922).

    Google Scholar 

  • Tribukait, B.: Die Aktivitätsperiodik der weißen Maus im Kunsttag von 16–29 Stunden Länge. Z. vergl. Physiol. 38, 479–490 (1956).

    Google Scholar 

  • Wagner, K. W.: Einführung in die Lehre von den Schwingungen und Wellen, S.489ff. Wiesbaden 1947.

  • Wever, R.: Possibilities of phase-control, demonstrated by an electronic model. Cold Spr. Harb. Symp. quant. Biol. 25, 197–206 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wever, R. Zum Mechanismus der biologischen 24-Stunden-Periodik. Kybernetik 1, 139–154 (1962). https://doi.org/10.1007/BF00289033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00289033

Navigation