
Computer Science Department

TECHNICAL REPORT

AN APPROACH TO AUTOMATING THE VERIFICATION

OF COMPACT PARALLEL COORDINATION PROGRAMS

I

By B. D. Lubachevsky

Computer Science Dept.
New York University

251 Mercer St., N.Y., N.Y. 10012

February, 1983
ULTRACOMPUTER NOTE #45
Technical Report - # 60

NEW YORK UNIVERSITY

OL

^
Department of Computer Science

Courant Institute of Mathematical Sciences

251 MERCER STREET, NEW YORK, N.Y. 10012

UCN #45

AN APPROACH TO AUTOMATING THE VERIFICATION

OF COMPACT PARALLEL COORDINATION PROGRAMS.

I

By B. D. Lubachevsky

Computer Science Dept.
New York University

251 Mercer St., N.Y., N.Y. 10012

February, 1983
ULTRACOMPUTER NOTE #45
Technical Report - # 60

This work was supported in part by the Applied Mathematical
Sciences Program of the U.S. Department of Energy under
Contract No. DE0AC02-76ER03077 , and in part by the National
Science Foundation under Grant No. NSF-MCS79-21258

.

-2-

Ultracomputer Note #45 August 1982

AN APPROACH TO AUTOMATING THE VERIFICATION

OF COMPACT PARALLEL COORDINATION PROGRAMS. I

B. D. Lubachevsky

Abstrac t - A class of parallel coordination programs for a shared

memory asynchronous parallel processor is considered. They use the

primitive operation Fetch&Add and differ in various respects from those

which use basic P and V operations. The F&A is the basic primitive for

the "NYU-Ultracomputer". A correctness proof for the considered

programs must be done for arbitrary number N of processing elements

since the Ultracomputer design includes thousands of PEs

.

A so-called reachability set description (RSD) is introduced, in

which all reachable states of a program (exponential function of N) are

collapsed into a fixed number of "metastates". The transitions between

these "metastates" are also specified. By using such a notation it

becomes feasible to prove the absence of livelock and other temporal

properties of a parallel program. The concept of a compact parallel

program is introduced. Roughly speaking a parallel program executed by

N PEs is compact if there exists a boundary T independent of N such

that any state of this program is reachable within time T. Compactness

may also be understood as the uniform over N finiteness of the

expansion for the strongest invariant in the least fixpoint theory. A

program that builds RSDs for compact parallel programs and examples of

proofs generated by this program are discussed.

-3-

Typographical conventions

Due to a limited type font on the device that printed this

manuscript, the following conventions are used:

Symbol in
============

-4-

Contents

1. Introduct ion 5

2. Verif ier-l 1

1

2.1. Ultracomputer and primitive Fetch&Add 12

2.2. "Naive" semaphore 14

2.3. Eeachability graph. Example of the "naive" semaphore 16

2.4. Indivisible operations and the serialization principle 17

2.5. Bose and Boltzmann semantics 19

2.6. Uvelock 2 2

2. 7. Fetch&Funct ion-programs 2 3

2.8. Example of verification of a program with P and V operations 26

2.9. Reachability graph and progress functional 29

2.10. Invariants and the fixed-point theory 33

2.11. Infinite loop property 35

2.12. Eliminating private variables 38

2.13. Indivisibility by virtue of the program 42

3. Verif ier-2 45

3. 1 . Go rrect semaphore 46

3.2. Keachability set description 47

3.3. Proof of correctness of the semaphore program 49

3.4. Comparison with the method of verification by Owicki and Cries. . .53

3.5. Keachability tree and forest 56

3.6. A geometric interpretation of the reachability tree

and the RSD. 59

3. 7, Compactness property 6 3

3.8. An example of a non-conpact F&A-program 65

3.9. Neither a PV-skeleton nor a Petri Net can simulate

a general F&A-skeleton 67

3.10. Classes of parallel programs to which verifier-2
may be applied 70

4. Examples of programs proved correct using verifier-2 77

4. 1 . Readers and writers 77

4.2. Reader^optimized version of "Readers and writers" 80

4.3. Detecting cessation of parallel activity 82

4. 4. "Busy-wait" synchronization 85

-5-

1. Intrcduct ion.

The programs developed for the "NYU-Ultracomputer", a shared

memory asynchronous parallel processor [6], are characterized by the

following two properties: 1) they are to be executed by a large system

(the parallel computer might include thousands of processing elements);

2) they use the basic primitive Fetch&Add which enables efficient

parallel programs to be written for such systems [5, 17].

As a price for the efficiency of a F&A-program the possibility of

making a specific time-related mistake in such a program is seemingly

greater when comparing it not only with a serial program (which is not

surprising) but even when comparing it with a conventional PV-program

of the same length. (In a PV-program the only coordination primitives

are P and V operations on semaphores.)

The difference in the complexity of a F&A-program and a PV-program

manifests itself in the fact that the skeleton of a PV-program is

equivalent to both a Petri Net and to a vector-addition system (VAS)

[7, 9], whereas the skeleton of a F&A-program is generally not

equivalent to a Petri Net, and a generalization of the notion of VAS is

required for its description (such a generalization, called controlled

VAS, will be described in part II of this paper).

-6-

A skeleton of the "naive" semaphore (see section 2.2) is a

classical example of the complexity of a F&A-program. These 3 lines of

code (each line with one assignment) contain an inadmissible livelock

which is not readily discernible .

We have tried to apply the assertional approach [1, 11, 13, 14] to

automating the debugging and correctness proof for the considered class

of programs. In this approach an assertion about the program state

(augmented by a number of auxiliary variables when necessary) must be

supplied. From this assertion desired properties of the program are

supposed to follow. The predicate that expresses the assertion must be

proven true for the initial state and the true value of this predicate

niist be proven invariant for any program transition. If such a proof

holds then this predicate is true for any reachable state of the

program and it is called an invariant of the program.

The task of proving the invariance of a given assertion does not

present a difficulty for all the considered examples. The task of

supplying the auxiliary variables and of generating the invariant

appears to be more difficult. A method for the invariant generation,

The livelock was not recognized by anyone shown the program for the

first time by the author. This bug was exposed by Dijkstra ([4],
p. 122). Since on basis of this livelock existance primitive F&A was
rejected in [4] as unappropriate to solve the mutual exclusion problem
(swap-operation was suggested instead), Dijkstra seemingly did not

realize the fact that only one extra checking statement eliminates the

livelock (see section 3). All these facts confirm the point that it is

difficult to obtain an "insight" of a F&A-program. Note that this

difficulty is only inherent to coordination routines, written in an

unstructured F&A-style. The latter take a small fraction of an
application code, but an essential part of the operating system.

-7-

suggesced in [8] for PV-programs , can be generalized to include

F&A-programs . However, the invariants supplied by this method are not

strong enough to prove, for example, the absence of a deadlock in some

cases [2].

There is yet another difficulty in using the assertional method

for F&A-programs. Namely, this method (at least as presented in

[13, 14]) does not help to prove the absence of blocking for some of

these programs. (See section 3.4 for an example.)

Facing these difficulties the author decided to examine a method

based on an explicit presentation of the graph A of all the program

states and state transitions. Generally large size of A is considered

to be the major obstacle in using this method. The size of A depends

on the length of the analysed program and on the number N of executing

processing elements (PEs). Although the length of the considered

F&A-programs is small, the size of A grows very quickly with N.

It was observed, however, that in most cases it is not essential

which PE executes which statement but rather how many PEs execute each

statement. The consequent symmetrization thus reduces the growth of A

from exponential with respect to N to polynomial with respect to N.

A program, called verifier-1 (see section 2), was created that

capitalizes on these advantages. Verifier-l first builds the

(symmetrized) description of the reachability graph and then answers

various questions about this graph.

The general types of questions which appear useful are:

Is there a reachable state satisfying a given predicate?

Is there a strongly-connected component of reachable states satisfying

a given predicate and a special infinite loop property? (This property

relates to the well-known finite delay and fairness properties. The

discussion follows in section 2.11.)

Verifier-1 builds A for fixed moderate values of N. The

correctness of a property established by verifier-1 does not

automatically mean that this property is true for arbitrary N. (The

case of interest for the Ultracoraputer .

)

To verify correctness for arbitrary N another program, called

verifier-2, was created. Verifier-2, if terminated, produces the

so-called reachability set description (RSD) for the analysed parallel

program. In the RSD graph A is represented in a form even more

aggregated than the symmetrized form produced by verifier-1. All

reachable states of the analysed program are collapsed into a fixed

number of the so-called metastates. Each metastate is a set in the

state-space of the program, represented by a conjunction of a fixed

number of inequalities, which are linear with respect to the

state-space coordinates. The transitions of the analysed program are

also represented in an aggregated form as transitions between these

metastates.

-9-

Since all the states represented in the union of these raetastates

are reachable, the RSD serves as a solution to the problem of invariant

generation. Namely, one can view the disjunction of descriptions of

the metastates as the strongest invariant for the analysed program.

Mareover, proving the absence of blocking becomes feasible in the RSD

notation. Namely, from the RSD one can produce a compact description

of all strongly-connected components in A satisfying a given predicate,

then by studying these components one can check if any of them generate

a blocking or not. Examples in sections 3 and 4 demonstrate such a

verification scheme.

A necessary condition for the termination of verifier-2 when

building a RSD for a parallel program is the compactness of this

program. Compactness with respect to the set V„ of initial states of

the program means that there exists a boundary Tq (independent of N)

such that any state is reachable from a state of Vq within time Tq.

Compactness may also be understood in terms of the expansion for

the stroagest invariant in the least fixed-point theory [2]. This

expansion has the form

(1.1) R(Vn) = U TkVn),
"

j>0
"

where R(Vq) is the reachability set of the program or else the carrier

of the strongest invariant; F is the progress functional which can be

obtained from the text of the program (see section 2.9)

.,, Df . n Df
Fl+^(x) == F (fJ(x)), f"(x) == X.

-10-

Compactness requires that the expansion (1.1) contain a fixed

(finite) number of terms independent of N.

Normal programs, a restricted class of parallel programs (that

still includes many interesting examples) are specified in section 4.

It will be proven in part II that if a program is normal then

conpactness is sufficient for verifier-2 to produce the RSD in a finite

time (if enough memory is available to the verifier).

The example in section 2.8 shows that the verifiers do not only

work for F&A-programs. Programs using P and V operations on semaphores

may be verified as well. However, the following restrictions on the

analysed program must be satisfied even when using the less restrictive

verif iet^l:

(vl) the code of the analysed program must be the same for all N

processing elements (PEs);

(v2) private variables for each PE may take only a fixed number of

different values independent of N;

(v3) there is only a fixed number of pubKc variables each of

which takes a finite number of values (the latter number may depend

on N).

Property (vl) seems to be least restrictive, whereas properties

(v2) and (v3) are restrictive. In particular, they infer finiteness of

the reachability graph for any given N.

-11-

Despite these restrictions the author tends to consider these

verifiers to be successful. For some of the programs verified by this

method, no other formal proof technique known to the author seems to

work.'^

In this, part I of the paper, an introduction to this method is

given. Several examples of its application are demonstrated.

2. Verifier-1.

In this section the theoretical background of the algorithm,

called verifier-1, is described . We first briefly discuss the

Ultracomputer (for a more extended discussion see [6, 18]). Then the

work of verifier-1 is demonstrated in the verification of a simple but

an instructive F&A-prograra. A general class of parallel programs to

which this verifier may be applied is then introduced and an example of

the verification of a non-F&A-program is presented. In discussing

these examples, several notions relevant to verification are

introduced. Only those constructions and notions introduced in

sections 2.5, 2.7, 2.13, and, possibly, 2.12 sean to be novel. The

''Although the temporal logic approach [15, 16, 18] may help in studying
various properties of the considered programs for fixed moderate values
of N, this approach does not address the case in which N is a

parameter. In general going from N = 2 to arbitrary N is non-trivial
for F&A-programs.

-*Verifier-l has been implemented as a FORTRAN program. We will not

discuss aspects of its programming implementation since they are

obvious.

-12-

others are known from elsewhere and a discussion of them is included to

faciliate reading by someone not familiar with the subject.

2.1. Ultracomputer and primitive Fetch&Add .

An ideal parallel processor, dubbed a "paracomputer" by Schwartz

[18], consists of identical PEs sharing a common memory. The

individual PEs may also have attached local memory, which we refer to

as their "private" memories; the memory shared by and common to all

processors is called "public", and variables stored there are called

"public variables". The PEs can simultaneously read any public cell in

one cycle. Moreover, simultaneous writes (including the F&A operation)

are likewise effected in a single cycle and a memory cell to which such

writes are directed will contain some one of the quantities written

into it. Note that simultaneous memory updates are not serialized; in

fact they are accomplished in one cycle.

The programmer may view the Ultracomputer as a paracomputer and we

will treat the Ultracomputer this way in our subsequent consideration .

'^Paraccmputers mist be regarded as idealized computational models since
physical fan-in limitations prevent their realization. Ultracomputer
is a realizable approximation to a paracomputer in which each PE can
directly access its private memory and can access the public memory via
a (multicycle) interconnection network. In this more realistic
architecture a public memory access may require several PE cycles.

-13-

The code of an Ultracomputer program looks like one of an ordinary

serial program. Each PE "sees" the public memory and executes the

program code. In this paper only the case when this code is identical

for all tte PEs is considered. The speed of these executions may be

different for different PEs. Fetch&Add is the primitive to coordinate

PEs.

The format of the F&A operation is F&A(c,i), where c is a variable

and i is an expression. This indivisible operation yields c as its

value and replaces the contents of storage location c by c + i. In

this paper only the case when variable c is pubKc integer and i is an

integer constant is considered.

The following principle of serialization of operations F&A takes

place:

Assume that several (possibly very many) F&A operations

simultaneously address c. Then the effect is as though these operations

occurred in some (unspecified) serial order, i.e. c receives the

appropriate total increment and each operation yields the intermediate

value of c corresponding to its position in this order.

For example, if PEl executes p, <- F&A(c,i^), and if PE2

simultaneously executes p- <- F&A(c,i2), and if c is not simultaneously

updated by another PEk (k * 1,2), then either p, <- c, po <- c + ii, or

p^ <- c + ±2, P2 <~ c, and, in either case, the value of c becomes

c + ij + ±2. The first possibility corresponds to the serialized order

-14-

in which PEl executes its F&A and then PE2 executes its F&A; the second

possibility corresponds to the opposite serialization.

It is also possible to have loads, stores, and F&As all

concurrently directed at the same memory location. The effect is as

though these operations occurred in some serial order. (In [5, 6] a

hardware design is presented in which the F&A operation requires

essentially the same execution time as a load or store and in which

many simultaneous F&As updating the same variable are processed

particularly efficiently.)

2.2. "Naive" semaphore .

Following [A] we will try to write a F&A-program which provides a

nutual exclusion. More specifically, our parallel program has the

form:

Program 2.1

cycle: entry

{critical section; executed for a finite time}

exi t

{remainder of cycle; executed for a finite time}

Codes for "entry" and "exit" ought to be programmed so that the

following two properties are satisfied:

(CSe) No more than 1 PE can be in the critical section (CS) at any

one time.

-15-

(CSr) For any time t there exists a time t ' _> t such that some PE

is in the CS at time t'.

Above CSe stands for Critical-Section-exclusion, CSr stands for

Critical-Sect ion-readiabili ty. (Note that we are not concerned here

about the possible starvation or busy-waiting of a particular PE.)

The Program 2.2 is a "naive" solution to the above problem, since

it contains a blocking. We will use this example to demonstrate the

work of verifier-1.

COMMENT sem is public; initially sem = 1;

no {...} section accesses sem

PI: if F&A(sem, -1) > 1 then go to P3

P2: E&A(sem, 1)

go to PI

Program 2.2

entry

P3: {critical section; executed for a finite time}

F&A(sem, 1)
'

|

exi t

{remainder of cycle; executed for a finite time}
go to PI

Assuming-' that both sections enclosed in {...} in Program 2.2 are

basic blocks, i.e. each has a single entry and a single exit, we will

treat these sections as null statements. Thus, we consider the

skeleton Program 2.3.

-16-

Program 2.3

COMMENT sem is public; initially sem = 1.

PI: if F&A(sem, -1) > 1 then go to P3

P2: F&A(sem, 1)

go to PI

P3: F&ACsem, 1)

go to PI

2.3. Eeachabili ty graph. Example of the "naive" semaphore .

The code of the skeleton of an analysed program and a number N of

PEs in the Ultracomputer are inputs to the verlfier-1. For Program 2.3

and N = 2 the verifier produced the output shown in Fig. 2.1.

In Fig. 2.1 all states s,,...,sr of the program are presented, one

state per row. Each state s is characterized by four integer numbers,

s = (n,, n2 , n3 ; sem), where nj_ is the number of PEs at position Pi,

sem is the corresponding value of the public variable. For example,

s, = (2,0,0; 1), For each state all possible state transitions when one

PE is moving are specified. For example at state S2 a PE may move from

^The code of "entry" in Program 2.2 might be rewritten in a more usual

'"while"-style without explicit labeling:

while (F&A(sem, -1) < 1)

F&A(sem, 1)

For the purposes of verification we expose labels in the "goto"-style

as in Program 2,2 and even insert the unreferenced label P2. Section
2. A explains the reason for this insertion.

-17-

two positions: PI and P3. Hence two transitions are possible. One is

generated by a PE moving from P3 to PI, the corresponding entry in the

table is "P3->P1". This transition leads to state s^. The other is

generated by a PE moving from PI to P2, the corresponding entry in the

table is "P1->P2". This transition leads to state s^.

Fig. 2.1 describes the reachability graph A of the program, i.e.

the graph of all program states and state transitions (Fig. 2.2). A

state in Fig. 2.1 corresponds to a node in A and a transition in

Fig. 2.1 corresponds to an arc in A.

states

PI 1 P2] P3 1 sem

-18-

most one public memory reference. (This is the reason to insert an

unreferenced label P2 in Program 2.2.)

Let a program be written and labels Pi be inserted according to

this rule. Then the verifier will ignore states in which a PE has

executed part, but not all, of a statement Pi. In other words,

statements Pi are considered as indivisible (i.e. atomic) operations.

For example, if V is a public variable, and P is a private

variable, then statements such as V <- 1 , P <- V, F&A(V,P) are

considered as indivisible operations whereas statements such as

V <- f(V), F&A(V,-V) are not. In particular, since execution of

F&A(V,-V) might be interleaved with other statements which reference

location V, F&A(V,-V) might not yield as the computed value of V.

Now we formulate the so-called serialization principle :

Suppose a program is partitioned into atomic operations. (These

operations may be high level language statements as statements Pi in

Program 2.3; or they may have finer granularity, e.g. machine

instructions may be considered as atomic operations.) Then effect of an

execution of the program is the same as if each PE executed one atomic

operation at a time and the executions of these atomic operations

formed some (unspecified) serial order.

As mentioned above, we assume that each statement Pi which

contains at most one public memory reference may be treated as an

-19-

atomic operation. This implies the "statement-level" serialization

principle.

The notion of the "effect of execution" will be used unformally,

hence no rigorous proof of the "statement-level" serialization

principle will be presented. The following heuristic argument suggests

its validity by reducing it to the "instruction-level" serialization

principle.

Suppose that "effect of execution" is defined somehow (in

accordance with the common sense) and that the "instruction-level"

serialization principle is guaranteed. Let y = ...Ik, I(k+1),... be

the sequence of indivisible machine instructions (each instruction is

executed by one PE), such that the "effect" of serial execution of Y is

the same as one of the original parallel program. Such a y exists by

virtue of the "instruction-level" serialization principle. (If the

definition of the "effect of execution" is "good", then) it must be

clear that without changing this "effect" one can interchange any two

neighbors in y providing that at most one of them references a public

variable. There exists a sequence of such interchanges that yields an

execution order in which each statement Pi is indivisibly executed.

2.5. Bose and Boltzmann semantics .

The representation of A in Fig. 2.1 is symmetrized in the

following sense. A node in A indicates how many PEs are at each

position Pi in the program but it includes no identification of these

-20-

PEs. In statistical physics there exist Bose statistics and Boltzmann

statistics to describe ensembles of particles. The difference between

these two statistics is similar to the difference between the two ways

of representing a state of a parallel program. Bose statistics

corresponds to the symmetrized description, Boltzmann statistics

corresponds to the other (refined) description. We will use the same

nomenclature with respect to the program states.

Programs we consider do not include a PE identification. Such a

program can not distinguish PEs. During execution it may assign an

identification to the process carried by a PE. For example in

Program 2.2 one may speak of a PE that is in the CS but there is no way

to find out which PE this is. Note that the representation of A in

Bose semantics may hide the so-called starvation of an individual PE,

when this PE can never get access to some program section. We do not

care about this kind of starvation." The starvation of a process is

only of interest to us and it may be identified in Bose semantics if

one separates the program section under question by replicating the

code of this section as discussed in section 2.12.

•^In fact, even Program 3.1 which will be considered in section 3.1 as a

solution to the mutual exclusion problem satisfying properties (CSe)

and (CSr) can starve a PE and hence its process. However, there are
many applications in which the possibility of such starvation is not
dangerous. An efficient starvation-free F&A solution of the mutual
exclusion problem can be built as well [17].

-21-

We now give a rough estimation of the complexity of A under the

two ways of representation of A. The number of all possible

distributions of N "particles" (PEs) among k possible "states"

(statements of a program) in "Boltzmann statistics" is k^ or else the

sum of terms N! /(n^ ! . . .nj^!) extended to all (integer non-negative)

solutions of the equation

(2. 1) n^ +. ..+ nj. = N,

i.e. it is exponential with respect to N, given a fixed k (size of the

program). In "Bose statistics" (with indistinguishable particles) all

states corresponding to a solution (2.1) reduce to a single state.

Hence their total becomes number of different solutions of (2.1), i.e.

(N + k- D! _
Nl^-l

^o(j,k-2).
N! X (k - 1)! (k - 1)!

This is a polynomial with respect to N given a fixed k.

It will be shown in section 2.10 that graph A for Program 2.3 has

2N + 1 states in Bose representation and N x 2'^~-'- + 2^ states in

Boltzmann representation.

-22-

I
+ 1-

I
LIVELOCK

I I I

••!•••••«
V V

I
•

I

s^ >S2 >S3 >S4 >S5
A I

• A
III •

I I

H [. • + -(-

Fig. 2.2. Reachability graph for Program 2.2 and its livelock.

2.6. Livelock .

Given Fig. 2.1 verifier-1 checks property (CSe) (and finds it

true) by examining all states s,,...,s5.

To check property (CSr), a subgraph of A generated by the

predicate n, = is examined. In this subgraph only the cycle

s^->S5->S4 exists. This cycle is produced by verifier-l as a possible

scenario of blocking in which no PE can access statement P3 (in the

skeleton Program 2.3 statement P3 represents a CS of the concrete

Program 2.2). In this cycle each of the two PEs executes loop

P1->P2->P1 and prevents the other PE from entering the CS. This

situation may regenerate itself infinitely many times.

Such blocking is similar to a deadlock. The difference between

this blocking and a deadlock is the following. There exists a

possibility to quit this blocking cycle (from state s^ to state s^ if

one PE slows down its execution at PI), whereas in the deadlock type of

-23-

blocking there is no way to quit without terminating execution. Such

blocking is called a livelock in the existing literature (see [10]).

For natural assumptions about the distribution of execution times

it can be shown that as N increases the probability to enter this

livelock increases and the probability to quit it decreases. In

practice this livelock for large N is equivalent to a deadlock and the

suggested solution to the mutual exclusion problem is not acceptable.

2.7. Fetch&Function-programs .

A general skeleton-program for which verifiei— 1 can build the

reachability graph is defined by the following:

- a directed graph G (which represents the "body" of the analysed

program), the vertices of which are called positions . Let

{Pi
I

i = l,...,k} be the set of positions of G; G has two kinds of

positions: interior and exterior , described below. As usual we say

that Pj follows Pi, if G has an arc (Pi,Pj);

- a set {c} of counters , such that to each interior position Pi

there is associated a counter c = c., so that j = j(Pi). Note that one

counter c. can be associated with several Pi's. Set {c} corresponds to

the public variables in the concrete program. The analysed programs

are supposed to have no private variables. (A program with a limited

number of bounded private variables may be reduced in this manner as

-2A-

will be shown in section 2.12.) Therefore {c} coincides with the set of

all program variables;

- a set {d.} of directing functions ; d^ assigns to each value of

c./p-N a position that follows Pi. Each interior position has its own

directing function. If no position follows Pi then ^iCc-j^pj, •)) is the

empty set.

- a set {fj,} of replacing functions , f^^ maps Range(c^/pj^\) to

itself. Each interior position has a unique replacing function.

The distinction between interior and exterior positions is that

the former usually represent the control flow of a concrete program

represented by the skeleton program; whereas the latter represent the

control flow of other "exterior" concrete programs. (Program 2.3 has

no exterior positions, examples of exterior positions will be supplied

by programs below.)

Now we wish to present our skeleton program in a form closer to

the usual representation of a concrete program. We will use the

expression F&f(c) for the function or procedure (this depends on

context) with the side-effect that fetches the old value of c and

replaces c by f(c). In this new representation, the program will be

written as an unordered set of statements each of which corresponds to

a position of G. There are two kinds of statements: for each interior

position Pi the corresponding statement is

-25-

(I) Pi: go to d^(F&fi(cj(pi))),

for each exterior position Pi the corresponding statement is

(E) Pi: go to Pj^ or Pjo or. ..or Pj^,

where P j, ,Pj^^^ follow Pi. The expression "go to empty", that occurs

when no position follows Pi, should be understood as the empty

statement "do nothing".

In the example programs we consider, the statement order is

significant because we adopt the usual convention that if no "go to"

appears in the statement corresponding to Pi, a "go to the statement

corresponding to P(i+1)" is assumed. The following statement forms

(all are special cases of (I) and (E)) are used in the examples.

(II) Pi: counter <- constant

(12) Pi: counter <- constant
go to Pj

(13) Pi: if predicate (counter) then go to Pj

(14) Pi: if predicate (counter) then go to Pj-,

go to PJ2

(15) Pi: F&f .(counter , cons tant

)

(16) Pi: F&f .(counter ,constant

)

go to P

j

(17) Pi: if predicate (F&f .(counter .constant)) then go to Pjj^

(18) Pi: if predicate (F&f .(counter .constant)) then go to Vj-^

go to PJ2

(El) Pi: go to Pj

(E2) Pi: go to Pj^ or PJ2

-26-

2.8. Example o f verification of a_ program with P_ and V operations .

Consider the problem of simulating a general semaphore using

binary semaphores. More specifically "entry" and "exit" routines for

Program 2.1 have to be written so that at most K PEs may stay in the

CS. ffere K is a positive integer parameter. The only operations

referencing common memory may be read, write and also P and V

operations on binary semaphores.

Program 2.4 is a solution for this problem proposed in [20],

p. 7 8. Note that in the subsequent edition of this book the program

was modified. Our code is close to the original ALGOL-like program,

labels Pi are inserted according to the rule in section 2.4. Note that

we treat statements g <- g-1 and g <- g+1 as indivisible. Their

indivisibility must be proven first, and it can be done using the

resolution rule discussed in section 2.13. However we need not present

the proof since we are going to expose a bug in this program.

-27-

Program 2. A

COMMENT g, m, d are pubKc; m stands for mitex; d stands for delay;

g simulates a general semaphore variable, integer;

g can take negative values (unlike a genuine semaphore variable);

m and d are binary semaphores, i.e. they take only values or 1

;

initially g=K, m= 1, d =0;
no {...} section accesses g, m or d.

PI: P(m); P2 : g <- g-1 ; P3: if g < -1 then
begin PA: V(m); P5 : P(d) end

else P6: V(m);

P7: {critical section; executed for a finite time}

P(m); P8: g <- gf 1 ; P9: if g < then PIO: V(d);

Pll: V(m);

{remainder of cycle; executed for a finite time}

go to PI

entry

exit

The Fetch&Funct ion model of section 2.7 can represent this

program. To follow the Fetch&Funct ion style one should replace each

occurrence of P(seraaphore) and V(semaphore) , respectively, by

statements

(2.2p) Pi: if F&f (semaphore, -1) < then go to Pi

(2.2v) Pi: F&f (semaphore, 1)

where the function f is defined by the formula

f (semaphore, increment) = min (max (semaphore + increment, 0), 1).

Verifying this program, we pick values N = 3, K = 2. Verifier-1

first produces the reachability graph A . A contains 61 nodes. Then

verifier-1 is asked whether there are states violating property (CSe)

of section 2.2. No such state is found. Then it is asked to produce a

loop which generates blocking like the one in section 2.6 (when all PEs

-28-

exeoite but no one can get into the CS). No such loop is found. Thus,

property (CSr) of section 2.2 is confirmed.

A general semaphore program must also possess the following

general reachability property:

(CSGr) For any k < K, if k PEs are in the CS, then any number up

to K-k PEs which start executing the entry-section will eventually

enter the CS, ard the delay of these PEs will not depend on how long

those k PEs remain in the CS.

Note that (CSr) in section 2.2 may be considered as a particular

case of (CSGr) when K = 1, and k = 0. To check (CSGr) the following

question was asked: is there a loop wherein one PE is in the CS and the

other two PEs execute but can not get into the CS? To answer this

question verifier-1 examines the subgraph A' generated in A by the

predicate {ny = 1}. Then verifier-1 produces a loop in A' consisting

of a single blocking state s^. In s^^ one PE is in the CS (position P7

of the program) and the other two PEs are waiting at the closed

semaphore d at P5: s^ = {n5 = 2, ny = 1, g = -1 , m = 1 , d = 0}. (More

accurately, the two PEs at P5 are not waiting but are executing a

busy-waiting loop like (2.2p).)

Then verlfier-l is asked to produce a scenario of this bug, i.e.

a path in A starting from the initial state in which all three PEs are

at P 1 and terminating at s, . This scenario consists of 2 1 steps, where

one step corresponds to a PE completing execution of a statement Pi.

-29-

Here are these steps:

At first, (steps 1 to 4) one PE is advanced to P7. Then (steps 5

to 8) another PE is advanced to P7. Now g =0,m= 1, d =0. When the

last PE tries to gain access to the CS it is forced to stop at

statement P5 (steps 9 to 12), since at P3 the value of g is -1. One PE

then leaves the CS and returns to starting position PI (steps 13 to

17). Now the general semaphore g is "closed", i.e. g = 0, one PE is

at PI, one PE is at P5, one PE is at P7 , m = 1 , d = 0. Then the PE at

PI tries to get to the CS for the second time (steps 18 to 21) but is

forced to stop at P5 after step 21, since at P3 the value of g is -1.

Thus we obtain the blocking state s, .

In the following table number of states reachable by the program

is given for various N and K. This table demonstrates a A of moderate

complexity for small N.

\Nl

K\l

8

-30-

exeaitlon state (or simply the state) of a program is declared as the

vector

(2.3) s = (nj^,...,!!^; c^,...,c^),

where n. is the current number of PEs at position Pi, i = l,...,k;

N = n, +. . .+ nj. is the total number of PEs; c^ is a counter; and r is

the number of distinct counters.

As it follows from section 2.7 that to know the text of the

program without private variables is the same as to know the set

C = (G, {c}, {fj^}, {d^}), we will not distinguish between thera.

Given a program text C we define the progress functional F = F„ as

follow. If s is a program state as in equ. (2.3), then F(s) denotes

the set of all states reachable from s when each PE executes at most

one statement. If argument of F is a set U{s.} of program states, then

Df ^

the value of F is defined as F(U{sj}) == U F(s^).

For Program 2.3, whose five states are presented in Fig. 2.1, one

has:

F(sp = {s^, S2, S3}, F(s2) = {sj, S2, S3, s^},

^(83) = {s;^, S2, S3, S4}, F(s4) = {sj, S2, S4, S5}, F(s5) = {s^, S5},

Note that F(s) always includes s, all states that directly follow

s in A , and it may include some other states. For example, S3 does not

directly follow s, in graph A. However, F(s|) contains S3, since moves

-31-

of one PE from PI to P3 and of the other PE from PI to P2 generate s^.

Altkjugh these moves are simultaneous one may serialize them so that

the latter move follows the former.

Starting with a given initial state s, of Program 2.3 the verifier

generates a raonotonically increasing sequence of sets F(sj), F (s^,

F-^(s,), and terminates after it recognizes that this sequence

stabilizes at F^Cs^ (i.e. F^(s^) =f'^(s^) =f^(s^) =...).

Df n

R(sj^) == F-^(sp is the reachability set of this program.

Though the term "reachability set" has been used several times in

this paper, it has not been yet formally defined. Now we can do this

since the necessary preliminary definitions have been given.

Let Vq be a set of states (2.1) of a skeleton program C. The

reachabili ty set R=R(Vq) for the set of initial states Vq is defined

Df . .

either by expression (1.1) or by R(Vq) == limit fJ(Vq) (since FJ(Vq)

raonotonically increases with j). All elements of R(Vq) are called

reachable (from Vf^) states.

Note that sequence F^(Vq), i = 1,2,... might not stabilize. For

example, this sequence will not stabilize for Program 2.5 when Vq is

finite

.

Program 2.5

PI: F&A(c,1)
go to PI

-32-

In the case when Vq is finite (in particular, if Vq reduces to a

single initial state s,) sequence
^'''(^o^

stabilizes if and only if

graph A is finite. Graph A is finite if and only if all counters c^

may take only a finite number of values. This is property (v3) of the

introduction.

In particular, if all c.'s are integers then the latter condition

is equivalent to the boundedness of the counters. When working only

with integer counters, bounds on the counters are inputs for

verifier-1. They must be supplied by the programmer.

If when developing the reachability set a state s^ which violates

these bounds is generated, then the process of generating the

reachability set terminates. As a diagnostic, verifier-1 produces a

sequence of states beginning with one of the initial states and leading

to the state s^. Note that bounds on the counters might constitute one

of the possible expectations of the programmer about the program

behavior. Hence their violation might be interpreted as a program bug.

The reachability directed graph A = ^(Vq) is defined as follows:

the node set of A is R(Vq) and the arcs are the possible transitions ,

i.e. all pairs of reachable states (s,s') such that s' may be obtained

from s by moving one PE from the statement Pi to the corresponding next

statement Pi'

.

-33-

2,10. Invariants and the least fixed -point theory .

Let V^ be a set of states (2.3) of a F&f-program and pr(s) be a

predicate on program state s. We call pr(s) a program invariant with

initial states drawn from the set V^ (or simply an invariant) iff the

Df
,carrier S of pr(s), S = carrier (pr) == {s
|
pr(s) = true}, satisfies

the properties

(2.4) F(S) « S, Vq << S.

It is always true that S << F(S) (because progress functionals

include the identity mapping, which corresponds to no progress).

Therefore the first relation (2.4) may be replaced by equality:

F(S) = S.

For example, the following predicate pr^(s) is an invariant for

Program 2.2 with initial states s drawn from the set

Vq = {s = (n^ ,n2,n3;sem)
|
n2 = n3 = 0, sem = 1}:

(2.5) pr2^(s) = {sem = 1 - n2 - ng}.

(We imply that n^ _> 0, i = 1 , 2, 3 and that n^ and sem are integers.)

To prove this, one takes arbitrary state s = {n, , n2 , n^; sem}

satisfying pr^ and verifies the fact that every PE move generates a

state satisfying pr,

.

-34-

If set S satisfies condition F(S) = S then it is called a

fixed-point of the functional F. We will only consider fixed-points S

satisfying the additional condition Vq << s and will not distinguish

between fixed-points of the progress functional and the program

invariants. Since F(S) monotonically increases with S, if sets S, and

S2 are fixed-points of F, then S-^ ^82 is a fixed-point of F.

Therefore, given Vq the strongest invariant exists uniquely and is the

conjunction of all possible invariants. The carrier of this invariant

is the least fixed-point of F.

The following predicate pr^ represents the strongest invariant for

Program 2.3 with the single initial state s, = (N, 0, 0; 1),

N = 1,2...:

(2.6) prjt(s) = {s
I
sem = l-n2-n3, nj+n2+n3 = N, n3£l}.

N in equ. (2.6) is the total number of PEs. Both expressions for the

size of A given in section 2.5, polynomial and exponential, follow from

equ. (2.6). For a fixed value of N equation (2.6) is not a unique

expression for pr^,.. For example if N = 2 then another valid expression

is:

(2.7) pr*(s) = {s = s^} OR. ..OR {s = S5},

where the s. are states of Program. 2.1 as in Fig. 2.1.

-35-

In this example, the carrier of the strongest invariant is equal

to the reachability set. This is true in general case [2].

Comparing (2.6) with (2.7) we indicate that expression (2.6) has

an obvious advantage over (2.7) in that the length of representation

(2.6) is independent of N. A mechanical way of producing expressions

like (2.6) will be discussed in section 3.

What is usually implied by the term "program invariant" is a

compact presentation, like equ. (2.6) in our example. However one

should realize that for finite fixed reachability sets there is no

formal difference between these two presentations.

2.11. Infinite loop property .

Cycle T = {s^->s5->S4} constitutes blocking in Program 2.3

because:

(a) the programmer has chosen a subgraph A' << A such that no

execution is intended to stay in A' forever (in this example A' is

generated by the predicate {n^ = o});

(b) T is a cycle in A';

(c) one may arrange that the time spent by each PE at any

statement Pi is finite during execution of cycle T.

Note that (c) expresses a variant of the well-known finite delay

property (FDP) and fairness property.

-36-

Cycle T, = {su->s^j} constitutes blocking in Program 2.4 for the

similar reasons. In this case, the subgraph A' in (a) is generated by

the predicate {ny = 1} and the FDP in (c) is to be applied to PEs at ^

all positions Pi, except for those PEs at position P7.

We wish to formulate (c) in a form generalizing both program

examples above. To do this, we introduce the notion of an enabled

position as follows:

Let T and A', T << A', be subgraphs in A. Position Pi is said to

be enabled on T with respect to A\ iff there exist a state s (i.e. a

node) in T with n- > and an arc in A' starting at s whose

corresponding transition is a move from Pi.

Examples: for Program 2.3 positions PI and P2 are enabled on T

with respect to A', position P3 is not; for Program 2.4 the only

position enabled on T^^ with respect to A' is P5.

We now reformulate (c) as the following infinite loop property

(ILP):

Cycle T in a subgraph A' of the reachability graph A satisfies the

ILP with respect to A', iff each position Pi wich is enabled on T with

respect to A' is also enabled on T with respect to T.

Now we discuss a possible way to test these properties

algorithmically.

-37-

Note that the skeleton code includes no indication to a choice for

A' in (a). For Program 2.3 subgraph A" generated by the predicate

{n2 = 0} contains cycle T' = {s2->S2->Si} which satisfies (b) and (c).

This "blocking" by no means bothers the programmer. But from the text

of Program. 2.3 it is not clear why A' was prefered over A". Thus an

indication of subgraph A' should be supplied by the programmer. The

latter is supposed to have a semantical reason for this indication. If

this indication is in a form of a computable predicate, then A' may be

generated by known methods once A is given. Finding cycles as in (b)

is also a standard computational problem.

We formulate a condition of non-fulfilment of the (ILP) for an

irreducible cycle T.

The ILP fails for an irreducible cycle T if:

(non-ILPl) the length of T is greater than 1 and there is a position Pi

such that n. is a positive constant during execution of T,

or (non-ILP2) the length of T is 1 (i.e. it consists of a single state

looping to itself) and there are at least two different positions Pi

and Pj such that both n. and n- are positive constant during execution

of T.

The above defined ILP expresses the FDP in Bose semantics.

Indeed, let be the canonical mapping from the Boltzmann

representation to the Bose representation. (0(s') = s, iff each state

coordinate n. of s represents number of PEs at Pi as indicated by s'.)

Given a cycle T = {Sj^, S2, • . . } of the program execution in Bose

semantics satisfying the ILP, one can arrange a cycle of the program

-38-

execution T' = {s^, S2,...} in Boltzmann semantics satisfying the FDP

and such that 0(spS2,...) << (sj^, S2,..0' (Note that several nodes

in T' may correspond to a single node in T, since T' might make several

convolutions over T in order to force each PE at each enabled position

to move.)

2.12. Eliminating private variables .

Given a program with private variables which can take on only a

fixed number of distinct values, we show how to define a new program

without private variables equivalent to the first one.

We assume that our skeleton program has a fixed number £ of

private variables ft =
{pj^ , . . . ,p£} . In addition to statements (I), (E)

as in section 2.7 the program might have (interior) statements of the

form

(1^) Pi: go to di(F&fi(Tr))

where d- and fj, are some directing and replacing functions as in (I).

The execution state of such a program is the vector

(2.8) s = (Tfl, Pil,...,TrN, PiN; c^,...,c^),

where N is the total number of PEs , ttJ is the current value of it and

Pi J is the current executable statement for PE., the counters c^ are as

above. Note that the execution state is represented here in Boltzmann

semantics.

-39-

Let z be the total number of distinct values of "u , and let G be

the graph of the program as in section 2.7. Then the node set of the

graph G' of the new program (without private variables) is

{the node set of G} X {set of possible values of TT}.

The node set of G' may be thought of as z copies of the node set of G.

We call each such copy a slice . The slices are naturally enumerated by

values of Jv , and a node of G' (a position of the new program) may be

written in the form Pi x it , where Pi is a node (a position) of the old

program and 71; is a value of the vector of private variables. To each

(I) or (E) statement Pi from the old representation there correspond z

copies {Pi X -ji } in the new representation, one copy per slice. To a

statement (I) in the old representation (when a PE replaces value TV of

its private variables by f.(x) and moves from Pi to P(d^(n)) there

correspond z statements of the form

(2.9) Pi X ;;: go to P(d.(r,))X fi(7r).

where 7^ runs all z possible values. Statement (2.9) means: jump from

the node representing Pi in slice 7; to the node representing P(d^(ii))

in slice f^(n).

The arcs of G' are: 1) inside each slice all one-to-one copies of

arcs corresponding to (I) and (E) statements in the old representation;

2) arcs between slices corresponding to statements (3.3) defined as it

was explaned above.

-40-

Note that reductions in the obtained skeleton program are

possible.

As an example consider a busy-wait synchronization routine,

suggested by Kalos and Lubadievsky [12], This routine has application

in the following situation:

Program 2.6

cycle: {working; executed for a finite time}

synch

The purpose of the "synch "-routine is to trap PEs until all of them

complete a previous asynchronous section and then to release them for

execution of the next asynchronous section.

In Program 2.7 counters count (1) and count (2) are used to

calculate the number of PEs trapped by the routine. They work in a

flip-flop manner so that count (1) / count (2) is used by all odd / even

invocations of the routine. The private variable index is 1 (2) for

odd (even) invocations. (Note that obvious one-counter solution is

incorrect.)

-41-

Program 2.7

COMMENT initially count(l) = count(2) = 0, index = 1.

PI: {working; executed for a finite time}

if F&A (count (index), 1) ^ N-1 then go to P3

COMMENT all PEs but the last one are busy-waiting

P2: if count(index) >^ 1 then go to P2
index <- 3-index
go to PI

COMMENT the last PE releases all PEs

P3: count (index) <-

index <- 3-index
go to PI

synch

Note that Program 2.7 does not completely correspond to the

language described in section 2.7. In particular, the use of variable

index is not supported in this language. One may view Program 2.7 as

an abbreviation for the (more lengthy) code, written according with the

rules of section 2.7. For example the following fragment in the short

code

Pi: s em (index) <-

Pj: ...

will be rewritten in the long code as follows:

Pi' : go to Pi. ,° index

Pi^: sem(l) <-

go to Pj'

Pi2: sem(2) <-

Pj':...

-42-

Here new labels Pi', Pj' correspond to the old labels Pi, Pj

respectively

.

The procedure *of eliminating private variables suggests a

duplication of the (long) code, since each private index takes on two

values. Statement index <- 3-index of the old code is to be replaced

by two copies in the new code, one copy per slice, each of which is a

null statement followed by a "go to" to its brother in the opposite

slice. There are several statements in each slice which will never be

executed (for example, statement sem(2) <- in the slice corresponding

to index=l). If one eliminates these dead statements and merges null

statements with their successors then the following skeleton program is

obtained:

Program 2.8

PI: if F&A (count(l),l) > N-1 then go to P3

P2: if count(l) > 1 then go to P2
go to P4

P3: count (1) <-

P4: if F&A (count (2), 1) > N-1 then go to P6

P5: if count (2) ^ 1 then go to P5
go to PI

P6: count (2) <-

go to PI

2.13. Indivisibility by virtue of the program .

A classical example of indivisibility by virtue of the program is

presented by the CS in Program 2.1, if property (CSe) is satisfied.

-43-

Any public memory reference executed within the CS is indivisible by

virtue of this program providing that there is no reference to the same

public memory location outside the CS. Another example is statements

P3 and P6 in Program 2.8. It can be proven [12] that no more that 1 PE

can execute P3 or P6 at a time and that statement PI (PA) can not occur

simultaneously with P3 (P6). Note that the Ultracomputer supports

indivisibility of write 's and F&As which concurrently reference a

public variable. But even if a parallel computer does not support such

indivisibility, ani only combinations of concurrent F&As and

(separately) read's and a single write are supported, the semantics of

execution of Program 2.8 are still adequately represented by the

F&f-model.

We now generalize these two examples. We say that a computer

supports the total i ndi vi sibili ty (of shared memory references

)

for a

given F&f -program if any combination of F&f -references to the same

memory location is executed by the computer in a way equivalent to some

serial execution of these references. Thus for any non-negative n^^,

ni n2 n2
^2, and n3 the serialization of any combination PI P2 P3 of

executions of statements PI, P2, and P3 in Program 2.8 must be

supported in the case of total indivisibility.

Let p = p(s) be a predicate on a program state s as in (2.3) and

let our computer only support indivisibility in those combinations of

F&f-statements for which the state s satisfies the predicate p. Then we

say that the computer supports the partial indivisibility (of shared

-44-

meraory references) with respect to the predicate £. Such a predicate p

for Program 2.8 might be p = {n^ X 03 = n^ x ^5 = 0, n3 < I, n^ _< 1}.

Note that when trying to verify a program under the assumption of

partial indivisibility, one should first check the consistency of the

proposed F&f-model of the program, i.e. indivisibility of each

F&f -statement. It is possible, for example, to encounter a reachable

state s in which one PE is attempting to write a private value into a

public location c and another PE is concurrently attempting to

increment c by a private value, without indivisibility of concurrent

write and increment being supported by the computer. In this case

either one can not build the reachability graph, or the graph, built

under t)rB assumption of indivisibility of concurrent write and

increment, will not cover all the possibilities of the real parallel

execution. It is very easy to prove the following

Proposition . Let A be the reachability graph of a F&f-program

built under the assumption of total indivisibility, and let p be a

predicate valid for any reachable state in A. Then it is possible to

build the reachability graph A' of this program under the assumption of

partial indivisibility with respect to p and A' =A.

Ihis simple proposition has one important application as a

resolution rule for verifying critical sections . We will describe this

rule in the example of Program 2.4. The computer which is supposed to

execute Program 2.4 is responsible only for the indivisibility of P and

V operations. Indivisibility of accesses to location g (in statements

-45-

P2, P3, P8, and P9) nust be proven before attempting to establish any

other property. One method of constructing such a proof ,might be to

ignore the contents of these statements as was done with the CS in

Program 2.2. in rewriting the code in the form of Program 2.3. This

method does not work here since Program 2. A contains test-branching of

g (in statements P3 and P9). Assuming references to g to be

indivisible a priori is seemingly circular reasoning (their

indivisibility is what we are trying to prove). Nevertheless,

according to the above Proposition we may temporarily accept this

unproved assumption and then prove either it or its negation as in the

following procedure:

Step 1. Build the reachability graph under the assumption of total

indivisibility.

Step 2. Verify the predicate p = {no more than 1 PE may access the

critical sections in question} in the reachability graph. (Note that

in Program 2.4 the predicate p may also be expressed as: {no more than

1 PE may access g}.)

Step 3. If there is a state which violates property p then the

required indivisibility is not obtained (and one should fix the bug

before verifying any other property). Otherwise, the indivisibility is

supported by virtue of the program itself.

3. Verifier-2 .

The algorithm called verifier-2 helps to prove the correctness of

parallel coordination programs for arbitrary number N of PEs. This

algorithm is rather complex (a FORTRAN program which implements only a

-46-

subset of it contains about 4000 lines) and it will be described in

part II of this paper. Nevertheless proofs produced by verifier-2 may

be understood arri checked without a knowledge of its workings. In

particular, these proofs are valid even though verlfier-2 itself may

contain bugs. In this section an example of verification using

verifier-2 is discussed and several basic notions concerning verifier-2

are introduced.

3,1. Correct semaphore .

The following code presents a correct solution to the problem

stated in section 2.2.

Program 3.1

COMMENT sem is public; initially sem = 1;

no {...} section accesses sem

PI: if sem < then go to PI

P2: if F&A(sem, -1) > 1 then go to P4

P3: E5,A(sem, 1)

go to PI

entry

P4: {critical section; executed for a finite time}

F&A(sem, 1)
|

exit

{remainder of cycle; executed for a finite time}

go to PI

Observe by comparison with the "naive" Program 2.2 that this

program contains an extra checking (statement PI).

-47-

Verifier-1 was applied to this program for various N to check

properties (CSe) and (CSr) stated in section 2.2. All these trials

acknowledged properties (CSe) and (CSr). This increased a

psychological confidence in the program correctness but did not

constitute a mathematical proof valid for any N.

3.2. Reachability set description .

Descr. 3.1 was produced by verifier-2. It is a compact

description of the reachability graph A of Program 3.1 and it is valid

for arbitrary N. Vfe will call Descr. 3. 1 a reachability set descripti

(RSD) for the program.

on

Descr. 3.1

A n^ + n2 = N, sem = 1

mo\res from PI to P2 lead to A

moves from P2 to P4 lead to B

B n, + n2 + n^ + n^ = N, sem = 1 - n3 - n^

,

TI4 < 1,

ng + n^ > 1,
^

"1 + "4 > 1

moves from PI to PI lead to B

moves from P2 to P3 lead to B

moves from P3 to PI lead to B (if n, = 1 or n^ > 1)

moves from P3 to PI lead to A (if no = n4 = 0)

moves from P4 to PI lead to B (if ng >_ 1)

moves from P4 to PI lead to A (if n^ = 0)

In Deer. 3.1 the reachability set R(s,) for the initial state

^1 ~ ^"1 = N, n^ = 0, i = 2,3,4; sem = 1} is represented as the union

of two metastates A and B. Each of them is a set of states described by

a number of equalities or inequalities relating the coordinates of the

-48-

state-space vector s = (n^, T12, n3, n4; sem). (We imply that i^ >^ 0,

i = 1, 2, 3, 4 and that n^ and sem are integers.)

A = A(s) and B = B(s) may be thought of as predicates on a state

of the program. For example, A(s) = {n, + no = N} & {sem =1}. It

will be proved that predicate [A(s) OR B(s)] is the strongest program

invariant. As in sections 2.5, 2.10 the sizes of A in Bose and

Boltanann semantics may be computed given the expression above for

[A OR B] : the size in Bose semantics is N'^ + N + 1 , the size in

Boltzmann semantics is Nx 3^^" ^+3^-2^+1.

The phrases listed under the formulas for the raetastates are

called directing phrases . A directing phrase represents a class of

moves "f rem Pi to Pj". A particular move represented in a directing

phrase can be identified with a pair (s^jSo) of states of the program,

or else it can be identified with an arc of A.

Note that for given Pi and Pj and a given metastate, "moves from

Pi to P j" indicated for this metastate as the source (if any such moves

exist) may direct to different destination metastates. For example two

classes of "moves from P3 to PI" are indicated for metastate B in

Descr. 3.1. Moves of the first class "lead" to B, moves of the second

class "lead" to A. Branching conditions written in parentheses after

the two directing phrases distinguish these two classes. Note that the

predicate on the program states which expresses the branching condition

is understood for states resulting from the move. For example, if

n^ = 1 or no >^ 1 for the state s obtained after the move of a PE from

-49-

P3 to PI and starting at a state s' << B, then s << B. Otherwise (i.e.

if no = n^ = for state s) , s << A.

3.3. Proof of correctness of the semaphore program .

Proof of the fact that Descr. 3.1 correctly represents the graph A

follows in section 3.5. We now assime that Descr. 3.5 is correct and

derive from it a proof of properties (CSe), (CSr) of Program 3.1.

Since Descr. 3.1 represents the graph A for arbitrary N, this proof

will be valid for arbitrary N as well.

Property (CSe) is immediate from Descr. 3.1.

Let us show property (CSr). First, we derive from the RSD a

compact description of the subgraph A ' generated by the predicate

P = {n^ = 0}. The latter expresses the condition of "being out of the

critical section" in the considered program. We will use the notation

S&p for the intersection in the state-space of set S and the carrier of

the predicate p. S&p may also be understood as the conjuction of two

predicates: p and {being an element of S}.

A' is presented in Descr. 3.2.

Descr. 3.2

A&p n^ + n2 = N, sem = 1

moves from PI to P2 lead to A&p

B&p n^ + n2 + ng = N, n^ 2. ^» "3 2. •^> ^^™ ~ ^""3
moves from PI to PI lead to B&p
moves from P2 to P3 lead to B&p
moves from P3 to PI lead to B&p (if n^ > 1)

moves from P3 to PI lead to A&p (if no = 0)

-50-

Descr. 3.2 was obtained from Descr. 3.1 by following

transformations

:

1) form the conjunction of sets A and B with p;

2) since n^ = 0, eKminate all directing phrases which contain

references to PA;

3) form the conjunction of branching conditions with p.

Our next goal is to derive from Descr. 3.2 a compact description

of all cycles in A ' . To any set description like Descr. 3.1 or

Descr. 3.2 we associate an auxiliary graph r as follows. The nodes of

r are metastates and the arcs of T are associated with directing

phrases. A directing phrase of the form "moves. . .lead to Y" attached

to the description of metastate X corresponds to an arc X -> Y, We

call graph T the associated graph. To Descr. 3.2 there corresponds a

graph r with 2 nodes (A&p and B&p) and 4 arcs (A&p->A&p, B&p->B&p

,

B&p->B&p, B&p->B&p and B&p->A&p).

There are two cycles in T (A&p->A&p and B&p->B&p). Below we

represent fragments of Descr. 3.2 to which each of these cycles

corresponds.

The first cycle in F corresponds to the following fragment:

Descr. 3.3

A&p n, + n2 = N, sem = 1

moves from PI to P2 lead to A&p

-51-

The second cycle in T corresponds to the following fragment:

Descr. 3.4

B&p n, +n2 + n3 = N,n^>^l, n3>^l, sein= l-n3

moves from PI to PI lead to B&p

moves from P2 to P3 lead to B&p

moves from P3 to PI lead to B&p, if n, >^ 1

Observe that there exists a standard mapping from the original

graph A ' (with which Descr. 3.2 is associated) to the associated graph

r.

In an obvious sense this mapping agrees with the representation of

A' by Descr. 3.2. To each node (arc) of A' there corresponds a node

(an arc) of T, which is itself associated with the metastate (directing

phrase) that represents this node (arc) of A '
. Each a cycle in A ' must

correspond to a cycle in T . Therefore a description of a cycle in A

'

(if any such cycle exists) mist be contained completely in one of the

two fragments above. In other words the states of this cycle may not

jump from one fragment to the other.

Descr. 3.3 does not describe any cycle in A'. (Since graph P1->P2

contains no cycle.)

-52-

Descr. 3. A contains a class of cycles in A' presented in

Descr. 3.5.

Descr. 3.5

B&p n^+n2 + n3 = N, n2^>^l, n3>^l, sem = l-n3
mo\7es from PI to PI lead to B&p

Descr. 3.4 does not describe any cycle different from those

presented in Descr. 3.5 for the following reason. Consider the graph

G' = {P2 -> P3 -> PI -> PI}. G' represents a fragment of the skeleton

program such that each PE which executes along a cycle in A ' can not

leave G'. The only possibility for such a PE is that it moves along

some cycle in G' . But {P1->P1} is the only cycle in G'. Thus

Descr. 3.5 presents the only type of cycles in A '

.

Now to prove (CSr) one should check these cycles with respect to

the ILP. Observe that each individual cycle in A ' presented in

Descr. 3.5 is irreducible and that condition (non-ILPl) from

section 2.11 is met with the two positions mentioned in (non-ILPl)

being PI and P3.

' Since ILP can not be satisfied, property (CSr) is fulfilled.

-53-

3.4. Comparison with the method of verification by Owicki and

Cries .

A referee mentioned that it is easy to prove all properties of the

considered programs using the method of Owicki and Gries[13, 14]. This

section is included in order to compare their method with ours in the

verification of a parallel program.

First, we give here an outline of a proof of (CSe) using the

method of [13, 14]. Program 3.1 possesses an invariant

q = {sem = 1 - n^ - n^}. (Note that this q may be generated

mechanically using the generalization [2] of the semaphore invariant

method [8].) Property (CSe) may be expressed as the predicate

r = {n, < 1} and it may be derived from existence of q by observing

that q & r is also an invariant. Finally, q & r implies r which is

(CSe). This concludes the proof.

But this method does not explain how to find a proper q for a

given r in a general case. The invariant q which appeared helpful in

this particular case may not work in other cases.

For example, suppose one tries to prove the property "it is not

possible for all the PEs to simultaneously execute statement P3". This

property may be expressed by the predicate r, = {no t N}. Now the

invariant q does not work, since q & r, is not an invariant. The

strongest program invariant q^^ is the ultimate solution. Namely, were

q* & r^ not an invariant, the required q would not have existed and

-54-

r,(s) would have been false for some reachable state s. Verifier-2

supplies RSD and q*(s) = [A(s) OR B(s)]. Since [A(s) OR B(s)] & r^(s)

is an invariant, property r, is proved true.

One may object to the latter example in that property r^ presents

no semantic interest in Program 3.1. As a counter-objection we suggest

one consider the program in [2] p. 344. It is not possible to prove

one semantical ly meaningful property of the considered form for this

program, if one only uses the invariant produced by [8].

Proving properties like (CSe) or r, is just a minor task the RSD

helps to perform. We now compare the two methods in verifying (CSr),

when the RSD works in "full capacity".

Note that Program 3.1 is not supposed to terminate, and the method

[13, 14] is not formally applicable to this program. We can easily

rewrite Program 3.1 in a "terminating" form by eliminating the

"go to PI" in statement P4 and adding a "no-operation" statement P5 at

the end of the program. Program 3.2 is the skeleton of the resulting

code.

-55-

COMMENT sera is public; initially sem = 1;

PI: if sera _< then go to P

1

P2: if F&A(sem, -1) > 1 then go to P4

P3: F&A(sem, 1)

go to PI

PA: F&A(sem, 1)

P5:

Program 3.2

Our method still works for this modified program. For the set of

initial states SI = {n^ + n3 = N} verifier-2, produces the RSD as in

Descr. 3.6.

Descr. 3.6

A nj^ + n2 + n5 = N, sem = 1

moves from PI to P2 lead to A
moves from P2 to P4 lead to B

B Hj^ + n2 + n3 + n^ + n5 = N, sem = 1 - n3 - n/j,

"4 + "5 > 1«

ng + n4 >^ 1

moves from PI to PI lead to B

moves from P2 to P3 lead to B

moves from P3 to PI lead to B (if n, = 1 or no > 1)

moves from P3 to PI lead to A (if n^ = nA = 0)
~

moves from P4 to P5 lead to B (if n, > 1)

moves from P4 to P5 lead to A (if n, ^ 0)

Using this RSD it is easy to prove the termination for Program 3.2 in

the way similar to our proof of absence of livelock for Program 3.1.

-56-

The sufficient condition of termination of [13] is formally

applicable to the Program 3.2. It states that this program terminates

if each process "can be proved to terminate under the assumption that

it does not become blocked." To prove termination of each individual

process under this assumption, [14] suggests constructing an integer

non-negative function t, such that executions decrease value of t. (It

is not explained how to construct such a function.) Note that the

non-blocking assumption is always fulfilled in our examples. In fact,

a F&f-program has neither AWAIT nor similar constructs which would

allow a PE to await a condition. Each PE always executes.

3.5. Reachability tree and forest .

The assertion that Descr. 3,1 represents the reachability graph A

for any N must be proved. Such a proof consists of establishing the

validity of the following two statements: (i) any reachable state lies

in a set of the RSD (either in A or in B); (ii) any vector presented in

the RSD (i.e. that from A or from B) is a reachable state.

Property (i) will be proved if we establish that [A(s) OR B(s)] is

an invariant with the initial state

(n^ = N, n2 = n^ = n^ = 0, sem = 1).

Descr. 3.1 itself contains enough information to make a proof of

(i) just a mechanical task. In fact, it is immediate that the initial

state belongs to A. Since the RSD contains description of all possible

moves and all moves are to sets given in the RSD, (i) may be checked on

-57-

the case-by-case basis given the RSD. In this sense we say that the

RSD is^ a proof of (i).

Similarly, we say that the proof of (ii) ±s_ Descr. 3.7,

representing the so-called reachability tree for Program 3.1.

Descr. 3.7

51 n, = N, sem = 1

moves from PI to P2 lead to S2

52 n,+n2=N, sem = 1

moves from P2 to P4 lead to S3

53 n,+n2+n^=N, sem =

n^ = 1

moves from P2 to P3 lead to S4

54 n, + n2 + nn + n^ = N, sem = 1 - no - n^

"4 = 1

moves from P4 to PI lead to S5

S5 nj^ + n2 + n3 + n^ = N, sem = 1 - n3 - n^,

^4 < 1,

n3 + n4 >_ 1,

^1 + "4 >. 1

This description was mechanically produced by verifier-2. It has the

following meaning. Like the RSD above it lists some metastates (here

SI, S2, S3, S4, and S5) and some moves. However Descr. 3.7 has a

different overall structure.

The metastates Si can be viewed as the nodes of a directed tree

(sequence in this example). SI is the root and consists of a single

element which is the initial state of the program. Each new Si down

the tree adds up some new states and any set Si can be reached from its

ancestors in the tree.

-58-

For example (we consider the hardest case), let us prove that any

state s of S5 either lies in one of the metastates

Si, i = 1, 2, 3, A, or can be obtained as a result of a move of one or

more PEs from P4 to PI at a state that lies in S4.

Let the state s = (ni, n2 , no, n^; sem) be an element of S5.

According to the description of S5 there are two possibilities: either

n^ = or n^ = 1

.

If n^ = 0, then "i 2. ^ ^^^ state

s = (n,, no, no, 0; l~no) can be obtained by a move of a PE from P4 to

PI at state (n,-l, n2, no, 1; -n^) which lies in S4. If n^ = 1, then

state s = (n,, no, no, 1; ~no) belongs to S4.

Now we show (ii). First we see that any state s from the union

Df
R == SI U S2 U S3 U S4 U S5 is reachable. Second we observe that

R « A U B (in fact, one has SI « S2 = A, S3 << S4 << S5 = B). Hence

(ii) is proved.

In the example of Program 3. 1 the metastate SI reduces to a single

initial state. In the example of Program 3.2, the metastate SI

contains more than one state. Generally we allow SI to be expressed in

a disjunctive normal form of atomic predicates each of which is a

linear inequality of the form

<
(3.1) s^n^ +...+ s^^n^ { } b

on state coordinates. We discuss restrictions on coefficients of (3.1)

in section 3,10.

-59-

In such a general cases one might have a forest instead of a tree

as abo\^. Each conjunction in SI will then correspond to a root of a

tree of this forest. This forest is called a reachabili ty forest.

V

3.6. A geometric interpretation of the reachability tree and the

RSD .

For a given N consider the 3-dimensional grid H formed in the

4-dimensional space of vectors (n-^ ,n2,n3,n^) by all non-negative

integer solutions of the equation

n, + n2 + n^ + n^ = N.

Since Program 3.1 possesses the invariant q = {sem =1 - n^ - n^}, a

state (in Bose semantics) of this program may be uniquely identified by

a point of H. (It is difficult to draw the graph of this 3-dimensional

construction. A simpler example in which H is 2-dimensional will be

presented in section 3.8.)

We introduce the bundle of possible transitions (or simply the

bundle) corresponding to each s << H. This bundle will be denoted as

C(s). C(s) is a set of transitions . A transition of C(s) may be

thought of as a A-dimensional integer vector t such that vector s+t is

a state resulting from a PE completing execution of a statement, if the

starting state was s. We denote by t. . the transition vector

corresponding to a PE moving from Pi to Pj. Hence t. . = and if

i * j, t^ . is a vector all of whose components are zero save the i-th

which is -1 and the j-th which is 1.

-60-

We now investigate the reasons why the bundles C(s) of different

states s can differ. It follows that if there is no PE at Pi in state

s (the i-th coordinate of s is 0), then C(s) contains no t. . for any j.

This is one reason why C(s') can differ from C(s"), Were this the only

reason, then our geometrical construction might be qualified as a

vector addition system (VAS).

In a VAS a state freely migrates from a grid point s' to a grid

point s" providing vector s"-s' is a multiple to a transition from a

bundle. The only obstacle which may prevent such moving is an "outside

boundary" which represents the condition of non-negativity of a

coordinate of the state vector.

There exists another reason why C(s') can differ from C(s") in the

system we describe. This reason may be interpreted geometrically as an

"inside boundary". This "boundary" may be thought of as a plane L with

the equation n^ + n, = 1/2. L divides H into two re gi ons , region HI,

inside which no + nA < 0, and region H2, inside which no + n^ >_ 1.

If s << HI then sem ^1. This means that no PE can move from P2

to P3, or else C(s) cannot contain vector too (but may contain vector

t24).

If s << H2 then sem < 0. This means that no PE can move from P2

to P4, or else C(s) cannot contain vector toA (but may contain vector

t23).

-61-

The structure thus obtained is an example of a controlled vector

addition system (CVAS). The notion of a CVAS will be formally

introduced and studied in part 2 of this paper. A state may move in

the state-space H of the CVAS along a given direction defined by a

transition until an "obstacle" is met.

If the obstacle is an "outside boundary" then further moves in

this direction are impossible. If the obstacle is an "inside boundary"

then one more transition is effected in the given direction. If the

bundle of the current point of the new region does not include this

transition then further moves in this direction are impossible.

Now we can give the following geometrical interpretation of the

process of producing Descr. 3.7 by verifier-2.

Metastate SI reduces to a single state s,. C(si) contains the

only transition t2^2« Ths state moves along tio as far as possible and

this creates metastate S2.

Bundles of the states of 82 contain at most two transitions: t^n

and t24. Verifier-2 checks transition tj^2 although it says nothing

about this transition, since it generates no new state. When

verifier-2 tries to apply transition t24 to the states of S2, the

moving states immediately cross L and since bundles in H2 do not

include t2/j the moving stops. As a result, metastate S3 is generated

in H2.

-62-

Bundles of the states of S3 contain t^^, t23, t^^. Verifier^2

first tries tj^
j^
which does not produce anything new. Then it tries to

apply transition too to states of S3, and the moving states produce S4

without crossing L. Verifier-2 realizes that S3 << S4, Hence it does

not try the remaining t^^^ for metastate S3 but instead starts working

with S4.

Bundles of the states of S4 contain t^j^, t23, t^j, t^j.

Verifier-2 tries ^n, t2 3, tg ^ without producing anything new. When it

tries to apply transition t^, to the states of S4, the moving states

produce S5 without crossing L.

Working with all possible transitions at S5, verifier-2 realizes

that no more states can be produced. This terminates the phase of

building the reachability tree.

Once the reachability tree is produced, verifier-2 reduces the set

of all metastates as follows. It scans each metastate Si and discards

it if Si is a subset of the union of other metastates remaining at the

time of this scanning. (This is an easier way to think about this

reduction. In the existing program, however, this reduction

interleaves the process of building the reachability tree.)

Two metastates, S2 and S5, remain after the reduction. Verifier-2

completes the obtained description with all possible directing phrases

by trying all possible transitions for both S2 and S5 and thus produces

the RSD.

-63-

3.7. Compactness property .

A reachability tree or forest is the initial structure used to

produce the RSD. Considering the problem of building the reachability

forest, we note that the finiteness of such a forest infers a special

compactness property for the program. We discuss this property in the

context of the reachability tree of Descr. 3.7.

Consider any metastate S(i+1), i >^ 1, on the reachability tree in

Descr. 3.7. Any state s << S(i+1) is either a state of some Si' for

i' _< i or it may be obtained from a state s ' << Si by several PEs

moving simultaneously from one position to another according to the

directing phrase attached to the description of Si. In the latter

case, s <:< F(s').

Df
In other words, S(i+1) « SI U. . .U Si U F(Si) == Ki. Since

S << F(S) for any S, one has Ki << F(S1) U...U F(Si) and

SI U. . .U S(i+1) « F^CSl). Since SI U...U S5 = R(S1) (this was proved

in section 3.4), one has

(3.2) R(S1) « F^(Sl).

To express (3.2) in words: any reachable state of Program 3.1 may be

reached from the initial state in 4 executional steps. Here

"executional step" is a synonym for "application of the progress

functional". More detailed analysis of this example shows that 4 in

-64-

(3.2) may be decreased to 3 since S4 U S3 << F(S2), i.e. any reachable

state may be reached in 3 steps.

Remember from section 2.9 that any state s of a parallel program

may be reached from the initial state s, in a number of executional

steps bounded by a number independent of s if and only if the

reachability graph is finite. Therefore it follows from (3.2) that the

reachability graph A for our program is finite for any number N of

executing PEs . Moreover, since (3.2) is true for any N, any state of

the program may be reached from the initial state in at most 4

executional steps and this does not depend on how many PEs execute .

We can state this property in another way. Suppose that each

statement Pi is effected in a single cycle by the parallel computer.

At every cycle each PE either delays or executes its current statement.

It follows that there is a time Tq independent of N such that any state

of the semaphore program can be reached from SI within time Tq,

This property is inherent to the program and does not depend on

the method by which we study the program. We call it compactness of a^

program (with respect t o the set SI) .

Conpactness may also be understood as finiteness of the expansion

(1.1) or as finite convergence of the sequence F-^(Sl) in the limit

i -> oo , if both these properties of finiteness take place uniformly

with respect to N.

-65-

3.8. An example of a non-compact F&A-program.

Program 2.5 is not compact for the obvious reason that it has an

unbounded counter c. For any fixed number of PEs , N, reachability graph

A of this program is infinite. Below a less trivial example is

presented.

Consider Program 2.3 and take sem = N-1 as the initial value for

sem (instead of sem =1). The example obtained possesses a finite A

for any fixed N but is non-conpact.

Fig. 3.1 presents the reachability graph A for this program for

N = 4. Grid H in this example is a planar triangle and contains all

(non-negative integer) solutions of the equation n, + no + no = N. In

this case, the invariant {sem = 1 - n2 - n3} allows one to exclude sem

from the description of a state. As is seen from Fig. 3.1 the graph A

consists of all points of H except for the unreachable point (0,0,N).

The "inside boundary" L indicated in Fig. 3.1 with stars divides H into

two regions, HI (the points below L) and H2 (the points above L)

.

The bundles are shown for points of each region. Note that those

points which lie on the "outside boundary" might not have some of the

transitions from the corresponding bundle. For example, the

transitions t2]^ and t3^ are not included in C(N,0,0).

-66-

(0,4,0)
A

* V
* (1,3, OX (0,3,1)

A

V *

(2, 2, OX -XI, 2, IX (0,2,2)
*

1 A
*

I

*

V *

12

t3i<-

21

to,<~+—>t,o (3,1, OX >(2,1,1)< *-->(l,l,2)< (0,1,3)13

21

V
(4,0,0)<-

*

*

V V * V

->(3,0,1)< >(2,0,2)<~* ^>(1,0,3)

Fig. 3.1. The reachability graph for a non-conpact program.
(Program 2.2 with the initial value for sem = N-1. Here N = 4.)

-67-

Df
Let s. == {0,j,N-j}. Observe from Fig. 3.1 that s.^.j^ not<< F(s.)

and that any path from s, to Sjg contains $2, • • "Sj^.j^. Therefore

Sj, nofJ^ F^'-^Csj^). It is clear from Fig. 3.1 that every path from

(N,0,0) to Sj^ contains s^. Therefore Sjj not<< F^"-^(N,0,0)

.

In other words, there exists a reachable state s^ that cannot be

reached within N-1 steps. This implies the non-compactness.

A more detailed analysis of this example shows that

Sjj not<;< F^^~^(N,0,0), but that the reachability set R(N,0,0) is

exhausted by F^'^'^CN.O.O). Note that if the initial state is (0,N,0),

then this example becomes compact.

3.9. Neither a PV-skeleton nor a Petri Net can simulate a general

F&A-skeleton .

We first describe the meaning of "program A simulates program B"

.

Since the detailed formal definition of that appears too large, we will

substitute it with a somewhat intuitive definition (hopefully the

reader could complete it with the necessary details).

Consider two F&f-programs, A and B. We say that program A

simulates program B if there are two correspondences fl and f2, such

that f 1 maps the code of B into the code of A and f2 maps the

-68-

reachability graph for B into the reachability graph for A, subject to

two following conditions:

1) if s is an initial state of B then f2(s) is an initial state of

A;

2) let P be an atomic statement of B. To each indivisible

execution of statement P by a PE there corresponds an indivisible

sequence of executions fl(P) of one or more atomic statements of A by a

PE so that the following diagram is commutative:

I
executing of an atomic

| f^ | executing of one or morel

I
statement of B by a PE| >| atomic statements of A

|

1 I
Iby a PE

I

I

I

V

I moving from a state

I
to an immediately

I
neighboring state

I
in the reachability

I
graph of B

I
moving from a state

£2 I
to a state through

>|a sequence of states

I
in the reachability

I
graph of A

In the above diagram the arrows pointing down represent the standard

mapping from moving a PE between statements in the program code to the

corresponding transition between states in the reachability graph.

If A simulates B, then in general A is more complex than B. And we

will also indicate the fact that A simulates B by saying that B

approximates A.

-69-

Note that if A simulates B and A is compact then B is compact.

We now wish to compare the expressive power of a F&A-program and a

PV-program. We remind the reader that in a F&A-program (PV-program)

the only indivisible operations on public variables supported by the

computer are read, write, and F&A (P and V). Clearly any F&A-program

may be simulated by a PV-program. Indeed, each occurrence of

p<-F&A(c,i) may be replaced by the string

P(sem); p<-c; c<-c+i; V(sem),

where sem is a binary semaphore and p is a private variable.

We will therefore compare not the programs themselves but their

skeletons, which are obtained by eliminating all operations except

basic synchronization primitives.

Thus, a F&A-skeleton (a PV-skeleton) is a F&f-program in which

only F&A-operations (P and V operations) are allowed on public

variables (neither read nor write is allowed). Here we imply general P

and V operations defined by statements (2.2p) and (2.2v), respectively,

with the function f (m,h) = max (m + h, 0).

It is known that a PV-skeleton thus defined is equivalent to a

Petri Net [10] and to a (restricted) VAS [7]. It will be proved in

part II of the paper that a PV-skeleton is always compact. Therefore

none of a PV-skeleton, a Petri Net, or a VAS may simulate a general

F&A-skeleton. For example, the non-compact F&A-program described in

section 3.9 can not be simulated in any of these ways.

-70-

3.10. Classes of parallel programs to which verifler-2 may be

applied.

It is difficult to give a formal definition of a class of programs

to which the proposed method of verification is applicable. Once such

a definition is fixed, programs beyond the scope of the definition for

which the method still works may emerge.

We can not, however, avoid giving a definition (though possibly

too restrictive) for a class of parallel programs to which verifiers

apply, since the verifiers are computer programs and their inputs must

be specified precisely.

The input of verifier-1 is specified by the definition of a

F&f -program in section 2.7 and by properties (vl), (v2), (v3) stated in

section 1. The class of programs to which verifier-2 may be applied is

more restrictive. In fact, we describe several classes of parallel

program. As more is required from the class of programs, more is to be

expected from the verifier. In the rest of this section, k denotes the

total number of statements Pi in a F&f-program in question.

A F&f-program, as defined in section 2.7, is called a

counter-conservative programs (a CC program) if, for each counter c.,

there exists a conservative function Y ^ (n, , » , . ,n.) such that for any

reachable state (2.3) of the program one has

(3.3) c^ = Yi(nj, . ..,n^^)

-71-

For example, Program 3.1 is a CC program since the invariance of

p(s) = {sem = 1 - rio - n^} implies that the relation

(3.4) sera =1 - n^ - n^

holds for any reachable state of this program. Note that relation

(3.3) needs not be an invariant in order to hold for any reachable

state of the program.

The state-space of a CC program can be simplified by eliminating

the counters, and such a program can be rewritten in the variables n^.

For example, the skeleton of Program 3.1 can be rewritten as presented

below.

Program 3.3

PI: with n, ,n2,n2,n^ when n^ + n^ <^ do
n, <- ni - 1 , n2 <- n2 + 1

P2 : with n^,n2,n3,n^ when nj + n^ ^ do

"2 ^~ "2 ~ ^' "4 "^~ "4 *" ^

P3 : with n, ,n2,n2,n^ when true do

no <- no - 1, ni <- ni + 1

P4 : with n, ,n2,n3,n^ when true do

^^4 <- "4 - 1, n^ <- n^ + 1

Program 3.3 may be thought of as the result of collapsing N copies

of Program 3.1, one copy corresponding to one PE. We call Program 3.3.

a collapsed (presentation of the original) program. The predicates in

statements PI and P2 in Program 3.3 are obtained from the corresponding

-72-

predicates in Program 3.1 by replacing occurrences of sem with the

expression (3.4).

The semantics of Program 3.3 are as follows. A (serial) computer

picks ar^^ one of the statements P1-P4 and tries to execute it over the

state vector s = (n,, no, no, n^). If the vector of the so obtained

state, s' = (np 02, n^, n^), satisfies the conditions n^ 2. 0»

i = 1,...,4, then the state s is set equal to s ' . Otherwise the state

does not change. The four statements in Program 3.3 do not imply any

order. Any of them may be chosen to be executed at any time.

The collapsed code consisting of statements of the form

(3.5) with s when COND(s) do OPER(s)

may be written for any CC program. We introduce the following

restrictions on COND(s) and OPER(s) in each statement of the collapsed

code:

(nl) COND(s) is a truth combination of atomic linear predicates of

the form (3.1), where s. are or 1, and b is integer.

(n2) OPER(s) is an addition of a transition vector to the state.

A collapsed program whose statements satisfy (nl) and (n2) is a

particular case of a linear simple concurrent language program (linear

SCL program) considered in [2].

-73-

Note that unlike [2] where no parameter dependence was assumed, we

consider a linear SCL program depending on a parameter. In our case

this circumstance requires special consideration.

In general, OPER(s) and COND(s) may depend on N. For example, this

may be the case if the conservative functions in (3.3) depend on N. The

set of initial states of the collapsed program also depends on N.

We call the original F&f -program normal if it is a CC program (and

hence allows collapsing as explained above) and if the following

properties hold for statements of the form (3.5) of the collapsed code:

Properties (nl) and (n2);

(n3) Neither OPER(s) nor COND(s) depend on the number N of PEs

;

(n4) The set of initial states SI is the carrier of the

conjunction of the predicate

(3.6) n-^ +. . .+ nj^ = N,

with a predicate q(s) which has the same foirm as COND(s) in (nl) and

which (like COND(s)) does not depend on N.

Note that COND(s) does not depend on N provided that the

conservative functions in (3.3) do not depend on N. But we do not

impose this requirement in our definition as it might prove too

restrictive in some cases: conservative functions for the "readers and

writers" programs described in sections 4.1 and 4.2 depend on N, but

these programs are normal.

-74-

Thus vertfier-2 may start to produce a RSD for any normal program.

It will be proved in part II of this paper that if the normal program

is compact then verifier-2 will eventually terminate and produce a RSD

provided that sufficient memory is available to the verifier.

Verifier-2 will sometimes produce a RSD for a non-normal program.

We will describe a class of programs broader than normal which may

still allow verifier-2 to build a RSD.

We wish to introduce a class of programs close to CC programs,

that we will call almost CC (ACC) programs. To do this, we first

mention that, for a quite general class of programs that are not

CC programs, one may express counters in a more general form than

equiation (3.3), namely

(3.7) c^ =Y^(q; n^,...,nj^),

where q is an element of some abstract set of auxiliary variables Q,

introduced to verify such a program. During execution of the program,

these auxiliary variables may change along with the program variables

c. . Each statement Pi of the program may be augmented by an assignment

of the form

(3.8) q <-e^ (q; c^,...,c^).

We treat a so augmented Pi by executing the statement (3.8) alongside

and indivisible from the old containment of Pi. We should stress that

-75-

neither the variables q nor the assignment (3.8) exists in the real

program residing in the computer. They are imaginary and are

introduced to analyze the behavior of the program.

By eliminating the c^ in equ. (3.8) in favor of the n^ as given in

equ. (3.7), one is led to the form

(3,9) q <-
(t> (q; n, , . . .,n^).

If one imposes no restriction on Q, its constructing may be done

trivially: take as Q the set of histories of the values of all the

counters. Such "auxiliary" variables do not simplify the analysis.

A F&f -program, as defined in section 2.7, is called an

ACC program, if q in equ. (3.7) is an element of a finite set Q.

We leave the construction of the set Q and the functions 6 ^ in

equ. (3.7) to the discretion of the programmer. Note, however, that in

the particular case when the set of program counters may be split into

two subsets so that for each counter c of the first subset there exists

a conservation function (3.3) and the counters of the second subset

take only a fixed number of values (like binary semaphores), q may be

'^Augmenting the state by a number of auxiliary variables is a quite

usual method for studying properties of dynamical systems, of which

parallel programs are a special case.

-76-

defined to include all the counters of the second set. In order to

make the RSD simpler, one should try to make dimension of q smaller.

We now mention that N copies of an ACC program may be collapsed

into a single program as is done for a CC program. The state of the

collapsed program is s = (n, n^,q). The first k coordinates of

this s will be refered to as the n-coitponent , and the last coordinate

as the q-conponent

.

We introduce the properties (anl)-(an4) analogous to (nl)-(n4),

with the following differences:

the coefficients s. and b of the atomic formulas (3.1), which

constitute PRED(s), may depend on the q-component (As in (nl) and (n3)

these formilas are linear inequalities on the n-component and do not

depend on N.

)

OPER(s) may include a statement of the form (3.7) (As in (n2) and

(n3) OPER(s) includes addition of a transition vector to the

n-component and does not depend of N.)

The set Q does not depend of N.

If the collapsed program satisfies the properties (anl)-(an4),

then the original program is called an almost-normal program.

o
Verifier-2 also can be applied to an almost-normal program. A

^s the author knows no example of a compact almost-normal program for

which verifier-2 does not terminate, it may be a reasonable conjecture
that compactness is a sufficient condition for the termination of the

verifier-2 when applied to an almost-nonnal program; however, no proof

is known to the author.

-77-

metastate in the RSD for such a program is characterized by the set of

inequalities (3.1), as before, and additionally by a value of q.

4. Examples of programs proved correct using verif ier-2 .

4.1. Readers and writers .

The following program was suggested in [5] as a solution for the

readers/writers problem [3] . The code below is written in the

"goto"-style with labels Pi inserted according the rules of

section 2.4.

Program 4.

1

COMMENT sem is public; initially sem = N;

no {...} section accesses sem

PI: {exterior code; executed for a finite time}
go to P2 (to read) or to P6 (to write)

P2: if sem < then go to P2

P3: if F&A(sem,-l) > 1 then go to P5

P4: E&A(sem, 1)

go to P2

read entry

P5: {critical read section; executed for a finite time}

F&A(sem, 1)
|

read exit
go to PI

P6:

P7:

P8:

P9:

if sem <^ N-1 then go to P6

if F&A(sem, -N) _> N then go to P9

E&A(sem,N)
go to P6

write entry

{critical write section; executed for a finite time}

F&A(sem,N)
|

write exit
go to PI

-78-

Note that the statement PI in Program 4.1 is an example of an exterior

position (cf. section 2.7). Also note that both the read and write

sections of this code begin with extra checking statements, P2 and P6,

respectively. Their inclusion in the code is inspired by the necessity

of the similar extra checking statement in Program 3.1.

The following properties were proved correct using verifier-2:

(RWe) No more than 1 writer can write (i.e. stay in P9); while

the writer is writing no reader can read (i.e. stay in P5).

(RWRr) Suppose no PE ever attempts to write. For any k < H, if k

PEs are in the reader CS (i.e. staying at P5) , then any number up to

N-k PEs which start executing their reader entry section will

eventually enter the reader CS, and the delay of these PEs will not

depend on how long those k reader PEs remain in the CS.

(RWWr) Suppose no PE ever attempts to read. For any time t there

exists a time t' 2 t such that a PE is in the write CS at time t'.

(RWr) For any time t there exists a time t ' _> *^ such that a PE is

in one of the two CSs (i.e. at P5 or at P9) at time t'.

-79-

(RWe) stands for Reader-Writer-exclusion and is simular to

property (CSe) in section 2.2. (RWRr) and (RWWr) stand, respectively,

for Reader^Writer-Reader-readiability and -Writer-reachability. (RWr)

stands for Reader-Writer-readiability. (RWRr), (RWWr), and (RWr) are

similar to (CSr) in section 2.2.

All these properties were proved using the RSD produced by

verifier-2. Note that (RWr) reduces to (RWWr) if there are no readers.

An alternative way of proving (RWe) might be to take the invariant

Pj^ = {sem = N - n^ - n3 - N x (ng + ng)} and prove that

{tic X ng = 0} & Pj^ is an invariant (cf. proof of (CSe) by Owicki and

Gries method in section 3.3). Property (RWRr) can be proved quite

easily without using the RSD. The author does not, however, know of

any proof of (RWr) except for that using RSD. This proof is given in

[12].

Note that Program 4.1 is normal. Although the conservative

function supplied by the invariant p depends on N, the conditions on

sem in statements P2, P3, P6, and P7 may be rewritten in the collapsed

code without N. For example, sem 2 N is the same as

n^ + n5 + ng + ng _< 0. The predicate p;^
= {sem _< 0} is slightly weaker

than P2 = {ng + ng >^ 1} : a state s with n4 + n5 = N satisfies pj not

P2. Nevertheless p^ can be replaced by P2 in statement P2, since for

such an s no one PE is at P2.

-80-

4.2. Reader-optimized version of "Readers and writers" .

One advantage of our method is that one can easily check the

effect of various changes to a parallel program code. One such

modification to Program 4.1, the elimination of the extra checking

statement P2, was proposed by Allan Gottlieb. Since the RW-primitive

is expected to be heavily used in the Ultracomputer operating system

this elimination may gain an essential economy. The modified code is

Program 4.2.

Program 4.2

COMMENT sem is public; initially sem = N;

no {...} section accesses sem

PI: {exterior code; executed for a finite time}

go to P2 (to read) or to P5 (to write)

P2: if F&A(sem, -1) > 1 then go to P4

P3: F&A(sem, 1)

go to P2

read entry

P4: {critical read section; executed for a finite time}

F&A(sem, 1)

go to PI

read exit

P5: if sem < N-1 then go to P5

P6: if F&A(sem, -N) > N then go to P8

P7: F&A(sem,N)
go to P5

write entry

PS: {critical write section; executed for a finite time}

F&A(sem,N)
go to Pi

write exit

-81-

A summary of the proof of property (RWr) for the obtained program

is given below.

This code is a normal program. The program invariant

p = {sem =N-n2-n^-Nx (ny + no)} supplies the conservative

function to eliminate sem from the collapsed program. After such an

elimination a reachability tree consisting of 24 metastates, and a RSD

consisting of 7 metastates were produced by verifier-Z.

Next, the description of the subgraph A' of the reachability graph

generated by the predicate {n^ = ng = 0} was obtained from the RSD. To

produce this description the following operations over the text of the

RSD were executed: "delete all strings with an occurrence of a given

pattern", "replace all occurrences of a given pattern by another

pattern". Such patterns were symbols n. and Pj. (Cf. procedure in

section 3.2.) The resulted description consists of 4 (reduced)

metastates. The reachability tree, the RSD, and the description of A'

are given in Appendix.

The following description of all cycles in A ' was obtained next:

-82-

S19 Uj + n2 + n^ + ng + ny = N
n-j >^ 1, ni + n2 + nc >^ 1, sem = N x (I-dt)

moves from P2 to P3 lead to S2 2

moves from P5 to P5 lead to S19

S2 2 n, + n2 + no + nc + n^ + riy = N
n-j >^ 1, no >^ 1, sem = N x (l-n^) - n3

moves from''P2 to P3 lead to S22
moves from P3 to P2 lead to S22 (if n^ >^ 1)

or lead to S19 (if n^ = 0)
moves from P5 to P5 lead to S22

It is easy to see that none of the presented cycles satisfies

(ILP), since n^ >^ 1 but ny PEs at P7 never move.

4,3. Detecting cessation of parallel activity .

Here we analyse the subroutine which detects the situation in

which a shared queue is and will remain empty: when all the PEs are

trying to delete from an empty queue. The type of applications for

which such a detection might be necessary is discussed in [5]. In such

an application, multiple PEs, each acting as both a producer and a

consumer, use a global queue to buffer data items which they pass among

themselves.

-83-

Program 4.3

COMMENT e is the flag of emptiness of the queue;

e = 1, if the queue is empty, e = 0, otherwise;
initially e = 0;

w is number of PEs waiting to signal
cessation of activity; initially w = 0.

PI: go to P2 (to produce) or go to P3 (to consume)

P2: (produce an item and insert it into the queue;
the queue becomes non-empty) e <-

go to PI

P3 : if e = 1 (the queue is found empty)
then go to P6 (invoke detection subroutine)

P4: (the queue is found non-empty;
if not the last item remains in the queue,
then delete this item and) go to P

1

or (the last item remains in the queue) go to P5

P5: (delete the last item from the queue and
signal this deletion) e <- 1

go to PI

P6: F&A(w,l)

P7: if e = 1 then go to P9

P8: F&A(w,-l)
go to P3

P9: if w _< N-1 then go to P7

PIO: (state T is achieved)

detection
subroutine

We interprete Program 4.3 as follows. The queue empty condition

(e = 1) is not sufficient to signify task completion since inserts may

still occur even after the empty condition has been raised. Thus,

after a queue empty occurs (statement P3) this program increments the

counter w (statement P6) to detect a state in which all PEs are trying

to delete from an empty queue (we denote this state T). Then w is

-84-

conpared with the total number N of PEs (statement P9). If w and N are

equal, the test in P9 fails and the state T has occurred. If not, the

test succeeds and the PE loops until it either finds the queue

non-empty (at statement P7) , in which case w is decremented

(statement P8) and ttK deletion is retried (starting from

statement P3) , or until w equals N, in which case state T has occurred.

Note that Program 4.3 approximates (in the sense of section 3.9)

the actual queue insertion and deletion subroutines. The complete code

of the latter routines is given in [5].

We did not specify statement PIO in this code. The programmer may

instruct the parallel computer in any appropriate fashion at PIO,

although PIO must not contain a "goto" directing to any of the

statements P1-P9. One possibility is to call the synchronization

routine considered in section 2.12 and then start executing another

task.

It must be proved that once a PE achieves statement PIO, the

cessation of activity is detected. More specifically, the following

properties of the above code are to be established:

(CAl) If there is no one item on the queue (i.e. e = 1) for any

time t >^ t,, then there exists such a time t2 that for all t ^ t2 all

PEs have detected the cessation of activity (i.e. they have passed

PIG),

-85-

(CA2) If there is a PE which has detected cessation of activity at

time tj^ (i.e. this PE has passed PIO), then there is no one item on

the queue (i.e. e = 1) for all t > t,

.

This is not a normal program, since a conservative function for

counter e does not exist. For example, if N = 2, one PE is at P2 and

one PE is at P3, then two states, one with e = and the other with

e = 1, are both reachable. Hence e can not be a function of n. 's.

Nevertheless the invariant {w = n^ + n© + ng + n-in} provides a

conservative function independent of N for the counter w, and the

counter e takes only a fixed finite number of values. Therefore this

program is almost-normal.

A RSD for this program produced by verifier-2 and the proof of

properties (CAl) and (CA2) using this RSD are given in [12].

4.4. "Busy-wait" synchronization .

Program. 2.7 satisfies the following properties:

(SEe) No one PE can enter the next asynchronous section (i.e. PI)

while some PE is still in the previous asynchronous section.

(Sle) No more than one PE can execute statement P3 at a time.

-86-

(Sr) No one PE can be trapped in the synchronization routine (i.e.

at P2) for ever.

(SEe) stands for Syndironization-Exterior-exclusion and (Sle)

stands for Synchronization-Interior-exclusion. Both these properties

are simular to property (CSe). (Sr) stands for

Synchronization-reachability, and is similar to property (CSr).

To prove these properties the skeleton Program 2.8 was used. This

code is not a normal program. For example, if N = 2 , one PE is at P2

and one PE is at P3, then two states, one with count (1) = 1 and

count(2) = and the other with count (1) = and count (2) = 1, are both

reachable.

However, we can express count(l) and count(2) as function of n.'s

and a two-valued counter q, which is equal modulo two to the number of

invocations of this routine. For example

n2 + n^, if q = 1

count (1) = {

0, if q =

Initially q = 1, and q changes its value (from 1 to and from to 1)

during execution of statements P3 and P6. Note that unlike the example

in section A. 3, in which an existing program counter e was taken as the

auxiliary counter, in this example the auxiliary counter q did not

exist in the original program but was introduced to analyze it.

-87-

Acknowl ed geme nt

Verifier-2 makes use of a projection algorithm contributed by

Robert Thaw [21]. This algorithm will be described in part II of this

paper. I would like to thank G. 0. Williams and P. J. Teller for

reading the manuscript.

-88-

Appendix

Notes: To economize on space, branching conditions are omitted,

and each group of directing phrases of the form

"moves from Pi to Pj lead to Sk" for fixed i, j and k = kl , k2 , . . . are

written as a single directing phrase "moves. . .lead to Ski Sk2. . .".

The value of sem is not specified in these figures for the same

reason. The formula sem =N-n^-nA-Nx (ny + no) serves in all

cases.

There exists a directing phrase, "leading" to S23 in the

reachability tree, but the metastate S23 is not presented there, since

before S23 was printed verifier-2 had realized that S23 could be

eliminated. This does not prevent proving the reachability of all

metastates of the RSD.

REACHABILITY TREE

SI nj = N

moves from PI to P2 lead to S2

S2 n^ + nj = N
moves from PI to P5 lead to S3

S3 n^ + n2 + n5 = N
moves from P2 to P4 lead to SA

moves from P5 to P6 lead to S5

S4 n^ + n2 + n^ + n^ = N

"4 > 1

S5 n, + n2 + nc + n^ = N
moves from P2 to P4 lead to S6

moves from P6 to P8 lead to S7

-89-

S6 n, + no + n/^ + ric + n^ = N

n^ > 1

moves from P6 to P7 lead to S8

S7 n, + no + nc + n^ + ng = N

ng = 1

mo-wes from P2 to P3 lead to S9

moves from P6 to P7 lead to SIO

SB n, + n2 + n^ + n^ + n^ + ny = N

ny > 1

n^ > 1

moves from P2 to P3 lead to Sll

S9 n, + n2 + n-j + n^ + n^ + ng = N
ng = 1

ng > 1

moves from P6 to P7 lead to S12

SIO n, + no + TI5 + n^ + ny + ng = N

ng = 1

moves from PS to PI lead to S13

SI 1 n, + no + n3 + n^ + n^ + n^ + ny = N

ny > 1

"4 > 1

moves from P4 to PI lead to S14

S12 n, + n2 + no + nc + Tigi + ny + ng = N

ng = 1

moves from PS to PI lead to S15

S13 n, + n2 + n^ + n^ + ny + ng = N

"8< 1

ny + ng >^ 1

n, + ng >^ 1

ves from PI to P2 lead to S16mo

SI 4 n, + n2 + n3 + n^ + n^ + n^ + ny = N
ny > 1

n^ + n^ >^ 1

n^ + n^ ^ 1

moves from PI to P2 lead to S17

-90-

S15 n, + nj + n^ + n^ + ng^ = N

moves from PI to P2 lead to S18

S16 n^ + n2 + n5 + n^ + ny + ng = N

ng < 1

n-y + no >^ 1

n-] + n2 + ng >^ 1

mows from PI to P5 lead to SI

9

S17 n^ + n2 + n3 + n^ + n5 + n^ + ny = N

"7 > 1

n, + n^ >^ 1

n, + n2 + n^ >^ 1

moves from PI to P5 lead to S20

S18 n^ + n2 + n3 + n5 + n^ = N

"3 > 1

n^ + n2 >^ 1

moves from PI to P5 lead to S21

S19 nj^ + 02 + n5 + n^ + ny + ng = N

"8 < 1

ny + ng >^ 1

n, + n2 + n^ + ng >^ 1

moves from P2 to P3 lead to S22

S20 n^ + n2 + n3 + n4 + n5 + n^ + ny = N

^7 > ^

no + n^ >^ 1

nn + n2 + n^ + n^ >^ 1

moves from P7 to P5 lead to S23

S21 n^ + n2 + n3 + n5 + n^ = N

"3 1 1

n, + n2 + n^ >^ 1

moves from P2 to P4 lead to S24

S22 n^ + n2 + n3 + n5 + n^ + ny + ng = N

^8 < 1

ny + ng >^ 1

"3 > 1

-91-

S24 n, + no + no + n^ + Tir + n^ = N

n, + n2 + n^ + ric >^ 1

REACHABILITY SET DESCRIPTION

S5 n, + n2 + n^ + n^ = N
mo\7es from PI to P2 lead to S5

moves from PI to P5 lead to 85
moves from P2 to P4 lead to S6

moves from P5 to P6 lead to S5

moves from P6 to P8 lead to 819

S6 nj + n2 + n/j + nr + n^ = N
n^ > 1

mo\es from PI to P2 lead to 86

moves from PI to P5 lead to 86

moves from P2 to P4 lead to 86
moves from P4 to PI lead to S6

moves from P4 to PI lead to 85

moves from P5 to P5 lead to S6

moves from P6 to P7 lead to 820

519 n, + n2 + nc + rig^ + ny + no = N

^8 < 1

ny + ng >^ 1

n, + n2 + nc + no >^ 1

mo-ves from PI to P2 lead to 819
moves from PI to P5 lead to 819
moves from P2 to P3 lead to 820 822
moves from P5 to P5 lead to 819
moves from P6 to P7 lead to 819
moves from P7 to P5 lead to 819
moves from P7 to P5 lead to 85

moves from PS to PI lead to 819
moves from PS to PI lead to 85

-92-

520 n, + n2 + no + n- + ric + n^ + n^ = N

no + n^ >^ 1

n, + nn + n/ + nc >^ 1

moves from PI to P2 lead to S20 S22

moves from PI to P5 lead to S20 S22

moves from P2 to P3 lead to S20 S22

moves from P2 to P3 lead to S20 S22

moves from P3 to P2 lead to S20 S22

moves from P3 to P2 lead to S19
moves from P4 to PI lead to S20 S22

moves from P4 to PI lead to S19
moves from P5 to P5 lead to S20
moves from P6 to P7 lead to S20 S22

moves from P7 to P5 lead to S20 S22

moves from P7 to P5 lead to S6 S21 S24

521 n, + n2 + no + nr + nc = N
ng > 1

n, + no + nc > 1

moves from PI to P2 lead to S2 1 S24

moves from PI to P5 lead to S2 1 S24

moves from P2 to P4 lead to S24
moves from P3 to P2 lead to S21 S24

moves from P3 to P2 lead to S5

moves from P5 to P5 lead to S21

moves from P6 to P7 lead to S20 S22

522 n, + no + no + nc + n^ + ny + ng = N

"8 < 1

ny + no >^ 1

"3 > 1

moves from PI to P2 lead to S20 S22

moves from PI to P5 lead to S20 S22

moves from P2 to P3 lead to S20 S22

moves from P3 to P2 lead to S20 S22

moves from P3 to P2 lead to S19
moves from P5 to P5 lead to S22
moves from P6 to P7 lead to S20 S22

moves from P7 to P5 lead to S20 S22

moves from P7 to P5 lead to S2

1

S24

moves from P8 to PI lead to S20 S22

moves from P8 to PI lead to S21 S24

-93-

S24 n^ + n2 + nj + n^ + n^ + n^ = N

"3 > 1

n, + n2 + n^ + n^ >^ 1

mo\es from PI to P2 lead to S21 S24
moves from PI to P5 lead to S21 S24
moves from P2 to P4 lead to S24
moves from P3 to P2 lead to S6 S21 S24
moves from P3 to P2 lead to S5

moves from P4 to PI lead to S2 1 S24

moves from P5 to P5 lead to S24
moves from P6 to P7 lead to S20 S22

DESCRIPTION OF THE SUBGRAPH GENERATED BY PREDICATE p = {n^ = 03 = 0}

S5 n, + no T nc -r nc
moves from PI to P2 lead to S5

moves from PI to P5 lead to S5

moves from P5 to P6 lead to S5

S19 n^ + n2 + n3 + n^ + ny = N

"7 > 1

n, + n2 + n^ >^ 1

moves from PI to P2 lead to S19
moves from PI to P5 lead to S19
moves from P2 to P3 lead to S22
moves from P5 to P5 lead to SI 9

moves from P6 to P7 lead to SI 9

moves from P7 to P5 lead to S19
moves from P7 to P5 lead to S5

S22 n^ + n2 + n2 + n^ + n^ + ny = N

"7 > 1

"3 > 1

moires from PI to P2 lead to S22
moves from PI to P5 lead to S22
moves from P2 to P3 lead to S22
moves from P3 to P2 lead to S22
moves from P3 to P2 lead to S19
moves from P5 to P5 lead to S22
moves from P6 to P7 lead to S22
moves from P7 to P5 lead to S22
moves from P7 to P5 lead to S24

-94-

S24 n. + no + Tio + nc + n^ = N

n, + n2 + n^ >^ 1

mo-ves from PI to P2 lead to S24

moves from PI to P5 lead to S24

moves from P3 to P2 lead to S24

moves from P3 to P2 lead to S5

moves from P5 to P5 lead to S24

moves from P6 to P7 lead to S22

-95-

References.

1. Ashcroft, E.A.:. Proving assertions about parallel programs.

Journ. Comp. Syst. Sciences 10, pp. 110-135 (1975).

2. Qarke, E.M.: Synthesis of resource invariants for concurrent programs.

ACM Trans. on Programming Languages and Systems, Vol.2, No. 3,

July 1980, pp. 3 38-358.

3. Gourtois, P.J. , Heymans, F., and Parnas, D.L. : Concurrent control with

'readers' and 'writers'. Comm. ACM 14, pp. 667-778, 1971.

4. DLJkstra, E.M.: Hierarchial orderings of sequential processes. Acta

Informatica, Vol.1, pp. 115-138 (1971).

5. Gottlieb, A., Lubachevsky, B.D. , and Rudolph, L. : Basic techniques for

the efficient coordination of very large numbers of cooperating

sequential processors. ACM Trans. on Comp. Lang. Sys. , to be

published in 1983.

6. Gottlieb, A., Grishman, R. , Kruskal, C.P. , McAuliffe, K.P. , Rudolph, L.

,

and Snir, M. : . The NYU Ultracomputer - designing a MIMD, shared memory

parallel machine. Ultracomputer Note #40, Courant Institute, New York

University, April, 1982.

7. Ifeck, M.: The equality problem for vector addition systems is

undecidable. Theoretical Comp. Sci. , Vol.2 (1976), pp. 77-95.

8. Ifebermann, A.N. : Sjmchronization of communicating processes. Comm. ACM,

Vol. 15, No. 3 (March 1972), pp. 176-176.

9. Karp, R.M. , and Miller, R.E.: Parallel program schemata. J. Comp.

Syst. Sci. 3., 147-195 (1969).

10. Kwong, Y.S.: On the absence of livelocks in parallel programs. In:

G. Goos, J. Hartmanis (eds.): Semantics of Concurrent Confutation.

Proc. of the Int. Symp. Lecture Notes in Computer Science 70,

Berlin-Heidelberg-New York: Springer 1979, pp. 172-190.

11. Lamport, L. : Proving the correctness of multiprocess programs. IEEE

Trans. Softw. Eng. 3, 125-143 (1977).

12. Lubachevsky, B: Verification of several parallel coordination programs

based on descriptions of their reachability sets. Ultracomputer Note

#33, Courant Institute, New York University, July, 1981.

13. Owicki, S., and Gries, D. : Verifying properties of parallel programs:

an axiomatic approach. Comm. ACM 19, No. 5, p. 279-285 (May 1976).

14. Owicki, S., and Gries, D. : An axiomatic proof technique for parallel

programs. I. Acta Inf. 6, p. 319-340, (1976).

-96-

15. Owicki, S. and Lamport, L. : Proving liveness properties of concurrent
programs. ACM Trans, on Prog. Lang, and Syst. , 3, vol.4, (July
1982).

16. Pnueli, A.: The temporal semantics of concurrent programs. Theoretical
Cojup. Sci. , Vol.13 (1981), p. 45=60.

17. Budolph, L, : Sof&?are structures for ultraparallel computings.
Ph.D. Thesis, Gourant Inst., NYU, 1982,

18. Schwartz, J.T.: Ultracomputers. kOi Trans. on Prog. Lang. Sys. ,

1980, pp. 484-521.

19. Schwartz, R.L. , and Melliar-Smlth, P.M.: Tenporal logic specification
of distributed systems. Proc. 2=Tid Int. Conf. on Distributed
Computing Systems , Paris, April 1981, pp. 446-454,

20. Shaw, A.C.: The logical design of operating systems (1974 ed.).

Prentice-Hall.

21. Thau, R. : Private communication.

NYU c . 2
Comp. sci. Dept.
TR-6 Lubachevsky
An approach to automating
the verification of compact,

^c^
c . 2

:omp. Sci. Dept.
TR-60 Lubachevsky

, i

AUTHOR
n An approach to automating

TITLE
. .

the verification of compact

DATE DUE BORROWERS NAME

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012

This book may be kept

FOURTEEN DAYS
A fine wiU be charged for each day the book is kept ov«

