Skip to main content
Log in

Zum Mechanismus der biologischen 24-Stunden-Periodik

III. Mitteilung Anwendung der Modell-Gleichung

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

Using the physical and mathematical basis given in two foregoing papers, a differential equation is proposed for a model of the biological 24-hour-periodicity. This oscillation equation contains two characteristic non-linearities describing the self-sustaining property and the “circadian rule”. The right side of the equation (“external force”) represents the controlling environmental conditions, mainly the intensity of illumination. Solutions were obtained for different environmental conditions using a digital computer.

Under “constant conditions” the solution of the equation describes oscillations self-sustained within a certain range of environmental conditions. In this range the oscillations fulfil the circadian rule, e.g. for light-active organisms: The frequency and the mean value of the oscillation increase with increasing light intensity; with an additional (arbitrary) threshold separating activity time and rest time for describing an activity rhythm, the α∶ρ (activity time ∶ rest time) ratio and the total amount of activity also increase.

Under periodically changing environmental conditions five properties of the “Zeitgeber” used (two distinct intensities with twilight transitions) are variable and varied: The range of oscillation of the Zeitgeber, its frequency, its mean value, its LD ratio (time relation of light time and dark time), and the duration of the twilights. The most important of the examined properties was the phase angle difference between the (forced) oscillation and the (forcing) Zeitgeber. The general result for light-active organisms was: The phase of the oscillation advances relative to the Zeitgeber (in sofar as the oscillation is synchronized) if the period of the Zeitgeber, or its mean value, or its L∶D ratio, or the duration of the twilights increase. In dark-active organisms, the relation between phase angle difference and the mean value or the L∶D ratio is reversed. Exceptions to this general rule exist in the relation between phase angle difference and L ∶ D ratio if the “free running” period of the oscillation deviates too much from the period of a “weak” Zeitgeber (mainly in dark-active organisms) or if the duration of the twilights is too short (especially if the transitions are rectangular).

Single exposures to light (or darkness) during constant conditions result in phase shifts depending in direction and amount on the phase of the oscillation at which the disturbance occured. The resulting response curves depend in range and form on the one hand on the time of measuring the phase shifts (either immediately or after several periods — in the steady state — following the disturbance) and, on the other hand, on the intensity of the initial illumination, on the duration, and on the intensity of the exposures, each in a different manner. Moreover, response curves effective in LD conditions deviate from those measured under constant conditions; the reason being the difference in the energy state of the oscillations in the two conditions. Therefore, it is impossible to derive the phase angle difference between the oscillation and a Zeitgeber in self-sustained oscillations from the measurement of response curves alone.

The oscillation equation used contains only one free parameter, the frequency coefficient. If this coefficient is changed, the equation describes other biological rhythms. For instance, with a high value it describes the behaviour of single nerve cells, and that not only in cases of spontaneous rhythmicity (e.g. receptor cells) but also in cases of reactions to single or rhythmic stimuli. Moreover, the derived characteristics of the equation — especially the non-linearities — seem to be significant for other biological problems such as control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aschoff, J.: Zeitliche Strukturen biologischer Vorgänge. Nova Acta Leopoldina 21, 147–177 (1959);- Exogenous and endogenous components in circadian rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 11–27 (1960); - Comparative physiology: Diurnal rhythms. Ann. Rev. Physiol. 25, 581–600 (1963).

    Google Scholar 

  • Aschoff, J., u. R. Wever: Beginn und Ende der täglichen Aktivität freilebender Vögel. J. Ornithol. 103, 2–27 (1962a); - Biologische Rhythmen und Regelung. Bad Oeynhausener Gespräche 5, 1–15 (1962b);- Aktivitätsmenge und αρ-Verhältnis als Meßgrößen der Tagesperiodik. Z. vergl. Physiol. 46, 88–101 (1962c); - Über Phasenbeziehungen zwischen biologischer Tagesperiodik und Zeitgeberperiodik. Z. vergl. Physiol. 46, 115–128 (1962d).

    Google Scholar 

  • Bruce, V. G., and C. S. Pittendrigh: Resetting the Euglena clock with a single light stimulus. Amer. Naturalist 92, 295–306 (1958).

    Google Scholar 

  • Coursey, P. J. de: Effect of light on the circadian activity rhythm of the flying squirrel glaucomys volans. Z. vergl. Physiol. 44, 331–354 (1961).

    Google Scholar 

  • Hoffmann, K.: Zur Beziehung zwischen Phasenlage und Spontanfrequenz bei der endogenen Tagesperiodik. Z. Naturforsch. 18b, 154–157 (1963).

    Google Scholar 

  • Klotter, K.: General properties of oscillating systems. Cold Spr. Harb. Symp. quant. Biol. 25, 185–187 (1960).

    Google Scholar 

  • Küpfmüller, K., u. F. Jenik: Über die Nachrichtenverarbeitung in der Nervenzelle. Kybernetik 1, 1–6 (1961).

    Google Scholar 

  • Pittendrigh, C. S.: Circadian rhythms and the circadian organization of living systems. Cold Spr. Harb. Symp. quant. Biol. 25, 159–182 (1960).

    Google Scholar 

  • Pol, B. van der: Über “Relaxationsschwingungen”. Jb. drahtl. Telegr. u. Teleph. 28, 178–184 (1926).

    Google Scholar 

  • Rawson, K.: Homing behavior and endogenous activity rhythms. Ph. D. Thesis Harvard University 1956.

  • Remmert, H.: Der Schlupfrhythmus der Insekten. Wiesbaden 1962.

  • Sweeney, B., and J. W. Hastings: Effect of temperature upon diurnal rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 87–103 (1960).

    Google Scholar 

  • Tribitkait, B.: Die Aktivitätsperiodik der weißen Maus im Kunsttag von 16–29 Stunden Länge. Z. vergl. Physiol. 38, 479–490 (1956).

    Google Scholar 

  • Wever, R.: Possibilities of phase-control, demonstrated by an electronic model. Cold Spr. Harb. Symp. quant. Biol. 25, 197–206 (1960); - Zum Mechanismus der biologischen 24-Stunden-Periodik. Kybernetik 1, 139–154 (1962); - Zum Mechanismus der biologischen 24-Stunden-Periodik. II. Mitt. Der Einfluß des Gleichwertes auf die Eigenschaften selbsterregter Schwingungen. Kybernetik 1, 213–231 (1963a); - Zum Problem der Regelung in der Biologie. Pflügers Arch. ges. Physiol. 278, 89–90 (1963b); - Ein mathematisches Modell für biologische Schwingungen. Z. Tierpsychol. 21, 359–372 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wever, R. Zum Mechanismus der biologischen 24-Stunden-Periodik. Kybernetik 2, 127–144 (1964). https://doi.org/10.1007/BF00306797

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306797

Navigation