Skip to main content
Log in

Spatial relations in technical domains

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

When developing expert systems for technical domains, spatial information often has to be considered. Due to the nature of space in technical domains, special representations and special processing methods for spatial problems are needed. Recent work in this area includes some interesting approaches. Most of them handle this complex area very pragmatically—dependent on their domain. In this contribution, we take a more formal approach and direct our attention towards the definition of a set of domain-independent spatial relations, from which more complex relations can be constructed. Just four primitive relations are needed. They are sufficient for describing the whole set of spatial relations between two rectangles parallel to the axes of the coordinate system. In order to show the relevance of this approach to real-world applications, we use the cabin layout of an AIRBUS A340 as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Clancey, “Heuristic Classification,” inAI-Journal 20, pp. 215–251, 1985.

    Google Scholar 

  2. J. McDermott, “RI: A Rule-based Configurer of Computer Systems,” inJ. Artif. Intell., Vol. 19, No. 1, pp. 39–88, 1982.

    Google Scholar 

  3. C.A. Baykan and M.S. Fox, “Constraint Satisfaction Techniques for Spatial Planning,” inIntelligent CAD Systems 3: Practical Experience and Evaluation, edited by P. Hagen and P. ten Veerkamp, Springer, Berlin: Germany, 1990.

    Google Scholar 

  4. M.L. Maher, “HI-RISE: An Expert System for Preliminary Structural Design of High Rise Buildings,” Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, 1984.

    Google Scholar 

  5. D. Sriram, “ALL-RISE: A Case Study in Constrained-Based Design,” inArtificial Intelligence in Engineering, Vol. 2, No. 4, pp. 186–203, 1987.

    Google Scholar 

  6. N.M. Mattos, S. Deßloch, and F.-J. Leick, “A Knowledge-based Approach to Intelligent CAD for Architectural Design,” inProc. Fourth International Conference IEA/AIE-91.

  7. M. Kopisch and A. Günter, “Knowledge-based Support for the Layout Development of the Airbus-A340 Passenger Cabin,” inProc. 12th Int. Conf. Artif. Intell.—Expert Systems—Nat. Lang., Avignon, France, pp. 507–517, 1992.

  8. B. Pasternak and B. Neumann, “ADIK: An Adaptable Drawing Interpretation Kernel,” inProc. 13th Int. Conf. Artif. Intell.—Expert Systems—Nat. Lang., Avignon, France, 1993.

  9. M. Schick, S. Kockskämper, and B. Neumann, “Konstellationserkennung auf Basis einer hybriden Raumrepräsentation,” Universität Hamburg, Hamburg, Germany, BEHAVIOR-Memo 0293, 1993.

    Google Scholar 

  10. D. Hernàndez, “Using Comparative Relations to Represent Spatial Knowledge,” inProc. Workshop Räumliche Alltagsumgebungen des Menschen, Koblenz, Germany, Univ. Koblenz-Landau, Bericht 9/90, pp. 69–80, 1990.

  11. T. von Stein, “Analogische 3D-Formrepräsentation: Ein Überblick über den Forschungsstand,” Labor für Künstliche Intelligenz, Universität Hamburg, Hamburg, Germany, LKI-1/90, 1990.

    Google Scholar 

  12. G. Retz-Schmidt, “Various Views on Spatial Prepositions,” inAI Magazine 9, Vol. 2, S. 95ff, 1988.

  13. S.-S. Chen,Advances in Spatial Reasoning, Vol. 1 & 2, Ablex Publishing Corporation: Norwood, NJ, 1990.

    Google Scholar 

  14. J.F. Allen, “Maintaining Knowledge about Temporal Intervals,” inCommunications of the ACM, Vol. 26, No. 11, pp. 832–843, 1983.

    Google Scholar 

  15. M. Kloth and J. Herrmann, “EXIST—An Expert System for the Innerplant Planning of Locations,” inKnowledge Based Expert Systems in Engineering: Planning and Design, Computational Mechanics Publications, edited by D. Sriram and R.A. Adey, pp. 429–438, 1987.

  16. H.W. Güsgen, “Feasible Reasoning about Space,” inProc. 5. Workshop Planen und Konfigurieren, Hamburg, Germany, LKI, Univ. Hamburg, Memo LKI-M-1/91, pp. 1–15, 1991.

  17. A. Mukerjee and G. Joe, “A Qualitative Model for Space,” inProc. AAAI'90, Boston, MA, pp. 721–727, 1990.

  18. M. Mohnhaupt, “On Modelling Events with an Analogical Representation,” inProc. 11th German Workshop on Artificial Intelligence, Springer: Berlin, Germany, 1987.

    Google Scholar 

  19. M. Mohnhaupt, “On the Importance of Pictorial Representations for the Symbolic/Subsymbolic Distinction,” inKonnektionismus in Artificial Intelligence und Kognitionsforschung, edited by G. Dorffner, Springer: Berlin, Germany, 1990.

    Google Scholar 

  20. C. Habel, “Propositional and depictorial representations of spatial knowledge: The case of path-concepts,” inNatural Language and Logic: Proc. of the International Scientific Symposium, Hamburg, Germany, 1990, edited by R. Studer, Springer: Berlin, Germany, pp. 94–117, 1990.

    Google Scholar 

  21. S. Pribbenow, “Interaktion von propositionalen und bildhaften Repräsentationen,” inRepräsentation und Verarbeitung räumlichen Wissens, edited by C. Freksa and C. Habel, Springer: Berlin, Germany, 1990.

    Google Scholar 

  22. M. Khenkar, “Eine objektorientierte Darstellung von Depiktionen auf der Grundlage von Zellmatrizen,” inRepräsentation und Verarbeitung räumlichen Wissens, edited by C. Freksa and C. Habel, Springer: Berlin, Germany, 1990.

    Google Scholar 

  23. B. Neumann and M. Mohnhaupt, “Propositionale und analoge Repräsentation von Bewegungsabläufen,” inKI 1/88, Oldenbourg: München, Germany, pp. 4–10, 1988.

    Google Scholar 

  24. P. Breuer and J. Müller, “Two Level Representation for Spatial Relations, Part I,” DFKI, Saarbrücken, Germany, Research-Report RR-91-14, 1991.

  25. J.-P. Mohren and J. Müller, “Representing Spatial Relations—The Geometrical Approach,” DFKI, Saarbrücken, Germany, Research-Report RR-92-21, 1992.

  26. S. Mittal and F. Frayman, “Towards a Generic Model of Configuration Tasks,” inProc. 11th IJCAI, Detroit, MI, pp. 1395–1401, 1989.

  27. F. Puppe,Problemlösungsmethoden für Expertensysteme, Springer: Berlin, Germany, 1990.

    Google Scholar 

  28. R. Cunis, A. Günter, and H. Strecker (eds.),Das PLAKON-Buch, Informatik-Fachberichte Nr. 266, Springer: Berlin, Germany, 1991.

    Google Scholar 

  29. M. Kopisch, “Expertensystemgestützte Konfigurierung der Passagierkabine eines Verkehrsflugzeuges,” Diploma Thesis, Fachbereich Informatik, Univ. Hamburg, Hamburg, Germany, 1991.

    Google Scholar 

  30. Federal Aviation Regulation FAR Part 25, Federal Aviation Administration.

  31. A. Günter et al., “Das Projekt PROKON im Überblick,” Univ. Hamburg, Hamburg, Germany, PROKON-Report No. 1, 1991.

    Google Scholar 

  32. P. Harmon, “Intelligent Systems in the Airline Industry—Part II,” inIntelligent Software Strategies, Vol. VII, No. 11, Cutter Information Corp.: Arlington, MA, pp. 6–7, 1991.

    Google Scholar 

  33. P. Harmon, “CC-Cad for Automatic Genaration of Airbus Cabin Plans,” inIntelligent Software Strategies, Vol. IX, No. 9, Cutter Information Corp.: Arlington, MA, pp. 15–16, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopisch, M. Spatial relations in technical domains. Appl Intell 5, 351–366 (1995). https://doi.org/10.1007/BF00880013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00880013

Keywords

Navigation