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Abstract

We give a systolic algorithm and array for bidiagonalization of an nxn matrix
in O(nlog, n) time, using O(n?) cells. Bandedness of the input matrix may
be effectively exploited. If the matrix is banded, with p nonzero subdiagonals
and ¢ nonzero superdiagonals, then 4nIn(p + ¢) + O(n) clocks and 2n(p +
q) + O((p+ ¢)® + n) cells are needed. This is faster than the best previously
reported result by the factor log, e = 1.44- - -. Moreover, in contrast to earlier
systolic designs, which require the matrix to be preloaded into the array and
the result matrix extracted after bidiagonalization, the present arrays are
pipelined.
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Abstract

We give a systolic algorithm and array for bidiagonalization of an nXn matrix
in O(nlog, n) time, using O(n?) cells. Bandedness of the input matrix may
be effectively exploited. If the matrix is banded, with p nonzero subdiagonals
and ¢ nonzero superdiagonals, then 4nln(p + ¢) + O(n) clocks and 2n(p +
q) + O((p+ q)* + n) cells are needed. This is faster than the best previously
reported result by the factor log, e = 1.44---. Moreover, in contrast to earlier
systolic designs, which require the matrix to be preloaded into the array and
the result matrix extracted after bidiagonalization, the present arrays are
pipelined.

1 Introduction

In this paper we present a group of new algorithms, and their implementation
by systolic arrays, for computing the factorization

B=PAQ 1)
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where 4 is a given mx n matrix, B is an n Xn upper bidiagonal matrix, Q@
is orthogonal and P has orthonormal rows. The method has a straightforward
analog for the factorization

T =PAPT (2)

where A is a given symmetric n X n matrix, T is a symmetric tridiagonal
matrix, and. 7 is orthogonal These factorizations are the essential first steps
of important algorithms for computing the singular value decomposxtxon and
the symmetric eigendecomposition [6].

To compute these factorizations with systolic arrays is a lonv-sta.ndmo
problem. Johnsson [T] developed an implementation of the Householder
method that requires O(n?) time. All later work has examined algorithms
that use plane rotations. Kung and Gal-Ezar gave a tridiagonalization method
that requires O(n?) time [8]. It was felt by some that this was the optimal
time complexity for systolic tridiagonalization; and it was later proved by
Carlsson, et.al., that any algorithm that zeros the off-tridiagonal matrix el-
ements in a column-by-column fashion and does not introduce-a nonzero
into a position already zeroed must take O(n?) time on a systolic array [3].
Other algorithms, which do some extra work by allowing fill-in of posxtzons
already zeroed, have better systolic possibilities. Schreiber (12] gave a pair
of arrays for tridiagonalization in O(n*?) time using O(n*/?) processors.
Finally, Bojanczyk and Brent [1] gave a systolic tridiagonalization method
using 4n log, n+ O(n) time and n? processors. :

Ipsen (9] presented some systolic implementations of a new bxdxa.gona.hza.
‘tion algorithm, without obtaining an O(nlogn) implementation. This paper
is largely a refinement of her ideas. We shall present new systolic designs
that, like those of [1], require O(nlogn) time and O(n?®) hardware. But the
approach is quite different from that of [1]. It is faster. Our array can reduce
an upper triangular matrix with m nonzero superdiagonals to bidiagonal form
in 4nlnm clocks, while the Bojanczyk/Brent array requires 4n log, m, which
is more by a factor of log; e & 1.44..-. It is a pipelined design in which the
matrix flows into the array and the resulting bidiagonal matrix flows out in
a uniform manner, while for the Bojanczyk/Brent design the matrix must be -
preloaded and the result matrix extracted. Finally, an importaat advantage
of the techmque described here is that it is fairly sxmple to understa.nd and

describe. .
After computing exthet —of the‘factonza.txons (1) or (2), 1t is sthI necessary



to use an iterative technique to find the singular values of B. Schreiber has
described a systolic array method for the latter problem that provides all the
singular values and requires O(n) time and O(n) processors [12].

In Section 2 we introduce an array for band matrix QR factorization that
we use as a building block to construct arrays. The bidiagonalization array
is described in Section 3.

1.1 Notation

We use upper case letters for matrices and the matching lower case letters
for their elements. We say that A is (p, ¢)-banded if

]<Z—p = a,-j=0

and
iI>it+q = a;; = 0.

We call the pair (p, q) the half-bandwidth of A and write hbw(A4) = (p, ¢).

2 The Band-QR Array |

In this section we describe a simple systolic array that we shall use as a tool,
an array for QR factorization of a banded, square matrix, that was originally
introduced by Heller and Ipsen [10]. Consider the processor array of Figure

2.

The array is synchronous; all processors share a common clock. One clock
period (”clock”) is the time needed by a cell to apply a plane rotation.

Matrix elements not explicitly shown are all zero, and plane rotations
not explicitly shown are all identity rotations. Elements of the (p, ¢)-banded
matrix A enter at the bottom of the array; element a;; enters cell j —z+p+1
at time ¢ + 7 — 2. The array applies plane rotations to the rows of A in order
to zero all elements entering cell 1 — the leftmost subdiagonal of A. Thus,
the array computes a (p — 1,¢q + 1) banded matrix A; satisfying A; = PA,
where P is orthogonal. The (i5)'! element of A; leaves cell j — i + p at time
¢ + J; thus the transit time through the array is two clocks. Note that the
rightmost (g + 1)®* diagonal, which leaves from the cell at the right end of
the array, must have at least p — 1 leading zeros.
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Figure 1: The band-QR array

Suppose we cascade r such arrays, where r < p. The output of the last
array is a matrix

A, = PA (3)

such that hbw(4,) = (p — r,¢ + r) and P is orthogonal. Furthermore, the
diagonals that leave from the rightmost r cells all have at least p — r leading
zeros.

Note too that if » < ¢, then by introducing AT into the array we may
compute

A, = AQ (4)
where hbw(A,) = (p+r,q—r), Q is orthogonal, and the leftmost r diagonals
of A, have at least ¢ — r leading zeros. It may be inconvenient to transpose a
matrix; fortunately, it is equivalent to send A into an array that is the mirror
image of the one in Figure 2.

Finally, suppose that each of the leftmost r subdiagonals of A has s
leading zeros. Then the r new superdiagonals created in the factorization
(3) must have at least s, = s + p — r leading zeros. The corresponding
relation holds for the factorization (4). The algorithm described in the next



section is based on the use of a sequence of factorizations of types (3) and
(4) that in this way introduce more and more zeros at the top of a group of

diagonals.

3 Bidiagonalization by Systolic Array

We shall first describe the new bidiagonalization algorithm, then its sys-
tolic implementation. The algorithm we describe works for upper triangular,
square matrices. If A is m x n, then it would first be necessary to upper-
triangularize A by an orthogonal transformation. After factoring

A=PIR (5)

where R is upper triangular and P, has orthonormal rows, we would bidiag-
onalize R, giving the factorization

B = PrRQ. (6)
Then

B = PrPyAQ
PAQ
is the desired factorization (1). Systolic arrays for (5) are well-known (2,4,
10,13).

The algorithm proceeds by reducing the bandwidth of R by stages until
R becomes bidiagonal. At each stage, as few as one and as many as half

of the excess superdiagonals to the right of the first superdiagonal may be
eliminated. Suppose hbw(R) = (0, m). Let

m=r +rs+-+ry+1 (7)
where each ry is a positive integer such that, for k = 1,2,..., N,

e < Trpteoc+ry+l

Sk.



At the k' stage, rx superdiagonals are eliminated and s; remain. In all,
N stages are needed. The algorithm generates a sequence {Rj} of upper
triangular matrices such that

Ry=R,

and
. Ry = PR, Qx, (8)

where P, and @ are orthogonal and hbw(R;) = (0,s;). Thus, B = Rn
is upper bidiagonal (sy = 1) and satisfies (6) with P = [[i_y Px and
Q= Hllcv=1 k-

We now show how diagonals of R are removed and its bandwidth reduced.
The technique used was first employed by Ipsen [9]. It is easier to look at a
particular case first. Suppose that R = Ry has hbw(R) = (0, 5), so there are
four diagonals to be removed. Let r; = 2; thus s; = 3. Therefore, in the first

stage, we want to remove the two outermost superdiagonals of Rq and leave
three superdiagonals, thus creating R; such that hbw(R;) = (0,3). This is

done as follows.
First remove the two rightmost diagonals of Ry with a 2 x 6 band-QR

array. Thus:

O
1]
//°/°" ,
v

where S; = RoV;. Clearly, hbw(S;) = (2,3) and the two subdiagonals of S;
have three leading zeros. Next, remove the two subdiagonals from S; with a

2 X 6 band-QR array. Thus:



N \\°3 0
S = X-?g €))
| % \-\\\\ g R
NN ©
N

where
R =U,S, = U,RV,.

Clearly, hbw(Rf,l)) = (0,5), and its two outer superdiagonals have three
leading zeros. Continuing, we have

RY) =U;---UyRV;---V;,  j=0,1,...

where hbw(R(()j)) = (0,5) and the outer two superdiagonals have 3; leading
zeros. Let Ry = Rg’), where J = [(n —4)/3]. Clearly R, is upper triangular
and the fourth and fifth superdiagonals of R; have at least 3J >= n — 4
leading zeros. Thus they are entirely zero, and hbw(R;) = (0, 3) as we wished.
In general,

J(k
R
= Uy---UyRi Vi V5
= PeRy1Qx

where J = J(k) = [(n—(sk+1))/sk]. Each matrix V; zeros r; superdiagonals
of RU~Y creating

Ry

S; = RV, (9)

which has r; subdiagonals having js; leading zeros. Next, U; removes the r;
subdiagonals from S;, giving

RY) =U;s;, (10)

which has jsi leading zeros in its rx outermost superdiagonals. Thus, J(k)
steps suffice to remove all of these superdiagonals.

The problem of bidiagonalizing a banded, upper triangular matrix has,
of course, been studied before. The original work is Rutishauser’s [11]. An
analysis of several schemes was given by Golub, Luk, and Overton [5]. The
scheme employed by Bojanczyk and Brent is a hybrid of the schemes Band
Givens I and Band Givens II of [5]. An operation count for the present
algorithm, summarized in Table 3, shows that it uses about twice as many
operations as the best schemes discussed by Golub, Luk, and Overton. The
first column of the table gives operation counts for algorithms that compute
only B. The second column is for algorithms that accumulate the rotations
in order to compute both Pr and Q.



Algorithm Reduction without | Reduction with
vectors vectors

systolic ~ 8mn? ~ 8n’lnm
(present paper)
Band Givens I 5] ~ 4mn? ~ 4n3

Band Givens II [5] | ~ 4mn? ~ 4n3lnm
Band Givens III [5] | ~ 4mn? ~ &
Bojanczyk/Brent [1] | ~ 4mn? ~ 3.88n%lnm

Table 1: Asymptotic multiplication counts for bidiagonalization of a matrix
of order n with half-bandwidth (0, m)

k Tk Sk J(k) t(k)
1 4 6 3 24
2 3 3 6 36
3 1 2 9 18
4 1 1 18 36

t(k) 1s the number of rows in the processor array; t(k) = 2riJ (k).

Table 2: Bandwidth reduction; n = 20, m = 10, first partition

3.1 The systolic bidiagonalization array

The systolic array that carries out this algorithm will now be described. The
process (9) can be accomplished by an 7 X (1 + sg + rx) band-QR array
for removing superdiagonals by column rotations, as described in Section 2.
The process (10) can be accomplished by a matching rx x (1 + sx + r) band-
QR array for removing subdiagonals by row rotations; the two arrays form a
single 2 x (1 + si + r4) array, the output of one array becoming the input
to the other. Thus, a sequence of J(k) pairs of band-QR arrays can carry
out one full stage in the reduction of bandwidth (8); see Figure 2.

The whole bidiagonalization process is accomplished by a sequence of such
arrays. Again, to make it clear, we will look at a particular case. Suppose
that R = Ry has half bandwidth (0,10). The parameters of the algorithm
are given in Table 2 and the array is illustrated in Figure 3. '

For the same problem, a different choice of partition (7) leads to a different
bidiagonalization process. An alternate choice for the problem above leads
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k Tk Sk J(k) t(k)
1 1 9 2 4

2 1 8 2 4

3 1 7 2 4

4 1 6 3 6

5 R 5 3 6

6 1 4 4 8

7 1 3 6 12
8 1 2 9 18
9 1 1 18 36

t(k) is the number of rows in the processor array; t(k) = 2riJ(k).

Table 3: Bandwidth reduction; n = 20, m = 10, second partition

to a somewhat more efficient scheme; the parameters are given in Table 3
and an illustration in Figure 4 While 696 processing elements are needed for
the array of Figure 3, only 498 processing elements are needed for the array
of Figure 4. Moreover, the time required drops from 228 to 196 clocks.

Since the transit time through a band-QR array having r rows is 2r
clocks, it follows that 47 clocks are needed for a matrix to traverse a single
stage in Figure 2, that 4rJ(k) clocks are needed to traverse the J(k) stages
that carry out the k*® reduction stage (8), and therefore that the total time
required to traverse the array is

N
T(n,m,{r}ily) = Y 4rJ(k)
k=1
N ' _
= Z4rk[—n Sk 1]
k=1 Sk
To simplify the analysis we consider instead
N n-— S8 — 1
Z T ( Sk )

=1
1

i

T, = Tl(na m, {rk}llc\I:I)

P
]
~

4

11
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Lemma 1 T is minimized by choosing N = m —1 and r, = 1 for k =
1,---,N.

Proof: Choose any partition (7) of m. Suppose r, > 1. Replace r; by as
many ones. This changes the term

n—3sg—1 n—1
e (fEeT) o (2l
Sk Sk

into the sum

o= (=l
k = sk+7-1
< 1

This process can continue until all r, = 1.

QED

With this choice we have that
T~4T1 =4((n—1)Hpy — (m—1))

where H,,_;, the m — 1% harmonic number, satisfies

1

+ m 4 0O(m™?)

H,_ i~v+Io(m—-1)

and +, Euler’s constant, is .577 - --. Thus,
T ~4nlnm +2.31n — 4m + o(n + m).

An alternative, which maximizes T, is to choose r to be about half the
remaining bandwidth at each step. In that case, N = log,m, and T =
4(nlog, m — m). Thus the difference between the optimal and the worst
choice of partition is, asymptotically, only a factor of log,e = 1.44---. By
comparison, the Bojanczyk/Brent array requires 4n log, m clocks; thus it is
slower by the factor log, e than our best array.

13



The space requirement of our method is
N
P = P(n, m, {Tk}ﬁ_-l) = E t(k)(sk + e + 1)
k=1

cells. For the choice ry, =1, N = m — 1 we have

= 2nm+0(nlnm+m2).

Thus, about twice as many processors are needed as for the Bojanczyk/Brent
array.

If the matrices P and @ are needed, then additional computation must
be done to accumulate the product of all the row rotations (which move left
to right in the array) that is P, and the product of the column rotation
(which move right to left) that is @. A T x n array can accumulate the
row rotations. The rotations enter at the left edge of the array in the format
created by a band-QR array. The n x n identity matrix enters at the bottom,
one column per processor. The array applies the rotations to this matrix,
and their product leaves from the top. Obviously, there is also an array of
this type for accumulating column rotations.

3.2 Systolic tridiagonalization

We will briefly describe the generalization of our bidiagonalization method
to the symmetric tridiagonalization problem. Let A by a symmetric n x n
matrix with hbw(A) = (m,m). Using an r x 2m + 1 band-QR array, we
compute the factorization

Bl = UIA, (11)

where hbw(B,) = (m—r,m+r) and the r newly created outer superdiagonals
of B; each has s = m — r leading zeros. Next form the symmetric matrix

A® = B, Ut. (12)

It is straightforward to show that A() has only m nonzero subdiagonals, so
by its symmetry, hbw(A®) = (m,m); furthermore, the outermost r sub-

14



Figure 5: The tridiagonalization-step array, m=3; r=1; n=10.

and superdiagonals have s leading zeros. Thus, e have an analog of the
bidiagonalization algorithm, with the same time and space requirements.
The only essential difference is that in each pass over the matrix, only one
orthogonal matrix is generated (U above). It is applied from Both the left
and’ the right to the input matrix. This can be accomplished by a systolic
array of 2r rows, in which the first » rows carray out the factorization (11)
and the following r rows form the product (12). To do this, plane rotations
generated by cells at the left edge of the first group of rows are seat, via long
~ connections, to the right edge of the second group of rows. An illustration of

the array is given in Figure 3.2. Sl T T e
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