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Abstract 

We give a systolic algorithm and array for bidiagonalization of an n x n matrix 
in O(nlog, n) time, using O(n2) cells. Bandedness of the input matrix may 
be effectively exploited. If the matrix is banded, with p nonzero subdiagonals 
and q nonzero superdiagonais, then 4n In(p + q) + O(n)  clocks and 2n(p + 
q )  + O((p  + q)’ + n) cells are needed. This is faster than the best previously 
reported result by the factor log, e = 1.44.. .. Moreover, in contrast to earlier 
systolic designs, which require the matrix to be preloaded into the array and 
the result matrix extracted after bidiagonalization, the present arrays are 
pipelined. 
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Abstract 

We give a systolic algorithm and array for bidiagonalization of an n x n matrix 
in O ( n  log, n) time, using O(nZ) cells. Bandedness of the input matrix may 
be effectively exploited. If the matrix is banded, with p nonzero subdiagonals 
and q nonzero superdiagonals, then 4n In(p + q) + O(n)  clocks aad 2n(p -+ 
q )  + O( ( p  + q)2 + n) cells are needed. This is faster than the best previously 
reported result by the factor log, e = 2-44 - 0.  Moreover, in contrast to earlier 
systolic designs, which require the matrix to be preloaded into the array and 
the result matrix extracted after bidiagonaiization, the present arrays are 
pipelind 

1 Introduction 

In this paper we present a group of new algorithms, and their implementation 
by systolic arrays, for computing the factorization 

B = PAQ (1) 
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where ..I is a given rn x n natrix, B is an n x n upper bidiagonal matrix, Q 
is ortho,oonal and P has orthonormal rows. The method has a strai,ohtforward - 
analog for the factorization 

T = PAPT 
where A is a given symmetric n x n matrix, T is a symmetric tridiagond 
matrix, and3 is oFthogonaL These factorizations are the essential first steps 
of important algorithms for computing the s i n p h r  d u e  decomposition and 
the symmetric eigendecomposition [SI. 

To compute these factorizations with systolic arrays is a long-standing 
problem. Johnsson (71 developed an implementation of the Householder 
method that requires O(n2) time. All later work has examined algorithms 
that use plane rotations. Kung and Gd-Ear  gave a tridiagonalization method 
that requires O(nz) time [SI. It was felt by some that  this was the optimal 
time complexity for systolic tridiagonatization; and it was later proved by 
Carlsson, et.d., that any algorithm that zeros the off-tridiagond matrix el- 
ements in a column-by-coIumn fashion and does not introduce a nonzero 
into a position akeady zeroed must take O(n2) time on a systolic array [31. 
Other algorithms, which do some extra work by allowing fill-in of positions 
already zeroed, have better systolic possibilities. Schreiber [E] gave a pair 
of arrays for tridiagonalization in O(n3/*) time using 0(n3r) processors. 
Finally, Boianczyk and Brent [I] gave a systolic tridiagonalization method 
using 473 log, n + O(n)  time and n2 processors. 

Ipsen (91 presented some systolic implementations of a new bidiagonaliza- 
tioa algorithm, without obtaining an O ( n  log n> impiementation. This paper 
is largely a refinement of her ideas. We shall present new systolic designs 
that, like those of (I], require O(n1ogn) time and O(n2) hardware. But the 
approach is quite different tiom that of [I]. It is faster. Our array can reduce 
an upper triangular matrix with m nonzero superdiagonals to bidiagond farm 
in 4n In m cIocks, while the Bojanczyk/Brent array requires 432 log, m, WE& 
is more by a kctar of log, e a~ 1.44 -. It is a pipelined design in which the 
matrix ffows into the array and the resulting b id i agod  matrix ffows out in 
a unitbrm rmmner, while for the Bojanczyk/Brent design the matrix must be 
prdoaded and the result matrix extracted. Finally, an important advantage 
of the technique described here is that it is fairly shp1e  to understand ...- - =$ 

After computing eiths'of t hk to r i za t ions  (1) or (2), it is s t i l l  necessq 

' 

-descn'bti' 
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to use an iterative technique to find the singular values of B. Schreiber has 
described a systolic array method for the latter problem that provides all the 
singular values and requires O ( n )  time and O ( n )  processors [12]. 

In Section 2 we introduce an array for band matrix QR factorization that 
we use as a building block to construct arrays. The bidiagonalization array 
is described in Section 3. 

1.1 Notation 
We use upper case letters for matrices and the matching lower case letters 
for their elements. We say that A is ( p ,  q)-banded if 

j < i - p  =+ a i j = 0  

and 
j >  i + q  + a;j = O .  

We call the pair ( p , q )  the half-bandwidth of A and write hbw(A) = ( p , q ) .  

2 The Band-QR Array 
In this section we describe a simple systolic array that we shall use as a tool, 
an array for QR factorization of a banded, square matrix, that was originally 
introduced by Heller and Ipsen [lo]. Consider the processor array of Figure 
2. 

The array is synchronous; all processors share a common clock. One clock 
period ("clock") is the time needed by a cell to apply a plane rotation. 

Matrix elements not explicitly shown are all zero, and plane rotations 
not explicitly shown are all identity rotations. Elements of the ( p ,  q)-banded 
matrix A enter a t  the bottom of the array; element a;j enters cell j - i + p +  1 
at  time i + j - 2. The array applies plane rotations to the rows of A in order 
to zero all elements entering cell 1 - the leftmost subdiagonal of A. Thus, 
the array computes a ( p  - 1,q + 1) banded matrix AI satisfying A1 = PA,  
where P is orthogonal. The ( i j ) t h  element of A1 leaves cell j - i + p at time 
i + j ;  thus the transit time through the array is two clocks. Note that the 
rightmost ( q  + , )st  diagonal, which leaves from the cell a t  the right end of 
the array, must have at least p - 1 leading zeros. 
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(1) 
a22 

(1) 
a33 

0 ++ all 

. a21 a12 . a31 a22 a13 

a32 a23 

a42 a33 a24 . . a43 a34 

a53 a44 a35 . 

Figure 1: The band-QR array 

Suppose we cascade r such arrays, where r 5 p .  The output of the last 
array is a matrix 

such that hbw(A,) = ( p  - r, q + r )  and P is orthogonal. Furthermore, the 
diagonals that leave from the rightmost r cells all have a t  least p -  r leading 
zeros. 

Note too that if T 5 q, then by introducing AT into the array we may 
compute 

where hbw(A,) = ( p +  r ,  q - r ) ,  Q is orthogonal, and the leftmost r diagonals 
of A, have at least q - r leading zeros. It may be inconvenient to transpose a 
matrix; fortunately, it is equivalent to send A into an array that is the mirror 
image of the one in Figure 2. 

Finally, suppose that each of the leftmost r subdiagonals of A has s 
leading zeros. Then the r new superdiagonals created in the factorization 
(3) must have at least s, s + p - r leading zeros. The corresponding 
relation holds for the factorization (4). The algorithm described in the next 

A, = PA (3) 

A, = AQ (4) 
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section is based on the use of a sequence of factorizations of types (3) and 
(4) that in this way introduce more and more zeros at the top of a group of 
diagonals. 

3 Bidiagonalization by Systolic Array 
We shall first describe the new bidiagonalization algorithm, then its sys- 
tolic implementation. The algorithm we describe works for upper triangular, 
square matrices. If A is m x n, then it would first be necessary to upper- 
triangularize A by an orthogonal transformation. After factoring 

A = P,TR ( 5 )  

where R is upper triangular and Po has orthonormal rows, we would bidiag- 
onalize R, giving the factorization 

Then 

B = PRPOAQ 
= PAQ 

is the desired factorization (1). Systolic arrays for ( 5 )  are well-known [2,4, 
10,131. 

The algorithm proceeds by reducing the bandwidth of R by stages until 
R becomes bidiagonal. At each stage, as few as one and as many as half 
of the excess superdiagonals to the right of the first superdiagonal may be 
eliminated. Suppose hbw(R) = (0, m). Let 

m = r1 + r2 + e  - - + rN + 1 (7) 

where each rk is a positive integer such that, for k = 1 ,2 , .  . . , N ,  
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At the kth stage, r k  superdiagonals are eliminated and sk remain. In all, 
N stages are needed. The algorithm generates a sequence {Rk} of upper 
triangular matrices such that 

Ro = R, 

where p k  and Q k  are orthogonal and hbw(Rk) = ( 0 , s k ) .  Thus, B = RN 
is upper bidiagonal (SN = 1) and satisfies (6) with PR = n i = N P k  and 
Q = n,"=, Qk. 

We now show how diagonals of R are removed and its bandwidth reduced. 
The technique used was first employed by Ipsen [9]. It is easier to look at a 
particular case first. Suppose that R = & has hbw(R) = (0,5), so there are 
four diagonals to be removed. Let rl = 2; thus s1 = 3. Therefore, in the first 
stage, we want to remove the two outermost superdiagonals of Ro and leave 
three superdiagonals, thus creating R1 such that hbw(R1) = (0,3). This is 
done as follows. 

First remove the two rightmost diagonals of & with a 2 x 6 band-QR 
array. Thus: 

where SI = RoV1. Clearly, hbw(S1) = (2 ,3)  and the two subdiagonals of SI 
have three leading zeros. Next, remove the two subdiagonals from SI with a 
2 x 6 band-QR array. Thus: 
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s =  c 

where 

(i) 

= R, 

B t )  = U1S1 = U1 RV, . 
Clearly, hbw(Rr)) = (0,5), and its two outer superdiagonals have three 
leading zeros. Continuing, we have 

Rf) = Uj- . .U1RV1- . -Vj ,  j = O , l ,  ... 
where hbw(Rt)) = (0,s) and the outer two superdiagonals have 3 j  leading 
zeros. Let R1 = Ro , where J = [(n - 4)/3]. Clearly R1 is upper triangular 
and the fourth and fifth superdiagonals of R1 have at least 3 5  >= n - 4 
leading zeros. Thus they are entirely zero, and hbw(R1) = (0,3) as we wished. 

( J )  

In general, 

( J ( k ) )  Rk = Rk-1 
= UJ * * UiRk-IK * - VJ 
= PkRk-iQk 

where J = J(k) 
of ~ f f . . )  creating 

[ (n-(sk+1)) /skl .  Each matrix 6 zeros r k  superdiagonals 

Sj = RPI.)V. 3 ,  (9) 
which has rk subdiagonals having jsk leading zeros. Next, Uj removes the r k  

subdiagonals from Sj, giving 

(10) (j) - U . S .  Rk-1 - J 3 ,  

which has jsk leading zeros in its l'k outermost superdiagonals. Thus, J ( k )  
steps suffice to remove all of these superdiagonals. 

The problem of bidiagonalizing a banded, upper triangular matrix has, 
of course, been studied before. The original work is Rutishauser's [ll]. An 
analysis of several schemes was given by Golub, Luk, and Overton [5] .  The 
scheme employed by Bojanczyk and Brent is a hybrid of the schemes Band 
Givens I and Band Givens I1 of [5 ] .  An operation count for the present 
algorithm, summarized in Table 3, shows that it uses about twice as many 
operations as the best schemes discussed by Golub, Luk, and Overton. The 
first column of the table gives operation counts for algorithms that compute 
only B. The second column is for algorithms that accumulate the rotations 
in order to compute both PR and Q. 
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Algorithm 

systolic 

Reduction without Reduction with 
vectors vectors - 8mn2 - 8n31nm 

-8n3 - 3.88n3 In m 
3 

(present paper) 
Band Givens I [5] 
Band Givens I1 [SI 
Band Givehs I11 [5] 
Bojanczyk/Brent [l] 

Table 1: Asymptotic multiplication counts for bidiagonalization of a matrix 
of order n with half-bandwidth (0, m) 

- 4mn2 - 4mn2 - 4mn2 - 4mn2 

2 
3 
4 

3.1 The systolic bidiagonalization array 
The systolic array that carries out this algorithm will now be described. The 
process (9) can be accomplished by an f k  x (1 + s k  + I'k)  band-QR array 
for removing superdiagonals by column rotations, as described in Section 2. 
The process (10) can be accomplished by a matching r k  x (1 + sk + F k )  band- 
Q R  array for removing subdiagonals by row rotations; the two arrays form a 
single 2 r k  x (1 + sk + f k )  array, the output of one array becoming the input 
to the other. Thus, a sequence of J ( k )  pairs of band-QR arrays can carry 
out one full stage in the reduction of bandwidth (8); see Figure 2. 

The whole bidiagonalization process is accomplished by a sequence of such 
arrays. Again, to make it clear, we will look at  a particular case. Suppose 
that R = Ro has half bandwidth (0,lO). The parameters of the algorithm 
are given in Table 2 and the array is illustrated in Figure 3. 

For the same problem, a different choice of partition (7) leads to a different 
bidiagonalization process. An alternate choice for the problem above leads 

3 3 6 36 
1 2 9 18 
1 1 18 36 
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(k-1) ' '2. (k-1) 
7-22 (k-l)fl? 

7-33 . (~-1f24. . 
0 

(k-1)7-23 (k-1) . 0 

7-34 

Figure 2: The bandwidth reduction array; r=2, s=3, n=10, J=2 
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t 
36 

t 
I 
t 

18 

36 

24 + 

1 

-7- 

Figure 3: Bidiagonalization array for first partition 

10 



1 
2 
3 
4 
5 
6 
7 
8 
9 

~~~ 

rk 

1 
1 
1 
1 
1 
1 
1 
1 
1 

~ 

s k  

9 
8 
7 
6 
5 
4 
3 
2 
1 

J(k) 
2 
2 
2 
3 
3 
4 
6 
9 
18 

t ( k >  
4 
4 
4 
6 
6 
8 
12 
18 
36 

t ( k )  is the number of rows in the processor array; t ( k )  2rkJ(k) .  

Table 3: Bandwidth reduction; n = 20, m = 10, second partition 

to a somewhat more efficient scheme; the parameters are given in Table 3 
and an illustration in Figure 4 While 696 processing elements are needed for 
the array of Figure 3, only 498 processing elements are needed for the array 
of Figure 4. Moreover, the time required drops from 228 to 196 clocks. 

Since the transit time through a band-QR array having r rows is 2r 
clocks, it follows that 4rk clocks are needed for a matrix to traverse a single 
stage in Figure 2, that 4rkJ(k) clocks are needed to traverse the J ( k )  stages 
that carry out the ICth reduction stage (8), and therefore that the total time 
required to traverse the array is 

N 

k=l 

To simplify the analysis we consider instead 

1 

4 
x -T 
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Figure 4: Bidiagonalization array for second partition 

12 



Lemma 1 Tl is minimized by choosing N = m - 1 and r k  = 1 for  k = 
1 ,* . - ,N .  

Proof: 
many ones. This changes the term 

Choose any partition (7) of m. Suppose r k  > 1. Replace f k  by as 

into the sum 

This process can continue until all r k  = 1. 

With this choice we have that 

T M 4T1 = 4 ((n - l)Hm-l - (m  - 1 ) )  

where Hm-l, the m - lSt harmonic number, satisfies 

and 7, Euler's constant, is .577 - - a .  Thus, 

T x 4n In m + 2.31n - 4m + o(n + m). 

An alternative, which maximizes T ,  is to choose r to be about half the 
remaining bandwidth at  each step. In that case, N M logzm, and T x 
4(nlog, m - m). Thus the difference between the optimal and the worst 
choice of partition is, asymptotically, only a factor of log, e = 1.44 - - .. By 
comparison, the Bojanczyk/Brent array requires 4n log, m clocks; thus it is 
slower by the factor log, e than our best array. 
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The space requirement of our method is 

cells. For the choice rk = 1, N = m - 1 we have 

= 2nm t O(nInm t m2).  

Thus, about twice as many processors are needed as for the Bojanczyk/Brent 
array. 

If the matrices P and Q are needed, then additional computation must 
be done to accumulate the product of all the row rotations (which move left 
to right in the array) that is P ,  and the product of the column rotation 
(which move right to left) that is &. A T x n array can accumulate the 
row rotations. The rotations enter at the left edge of the array in the format 
created by a band-QR array. The n x n identity matrix enters at the bottom, 
one column per processor. The array applies the rotations to this matrix, 
and their product leaves from the top. Obviously, there is also an array of 
this type for accumulating column rotations. 

3.2 Systolic tridiagonaliza t ion 
We will briefly describe the generalization of our bidiagonalization method 
to the symmetric tridiagonalization problem. Let A by a symmetric n x n 
matrix with hbw(A) = (m,m).  Using an r x 2m + 1 band-QR array, we 
compute the factorization 

where hbw(B1) = (m-r, m+r) and the T newly created outer superdiagonab 
of B1 each has s 

B1 = UIA, ( 1 1 )  

m - r leading zeros. Next form the symmetric matrix 

It is straightforward to show that A(') has only m nonzero subdiagonals, so 
by its symmetry, hbw(A(')) = (m,  m); furthermore, the outermost r sub- 
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i 
16 

8 

i 
4 
t 

Fi,gxe 5: The tridiagonakation-step . .  array, m = 3 ; r = l ;  n=fO.  

and superdiagonals have s leading zeros. Thus,' we have an analog of the 
bidiagonalization algorithm, with the same time and space requirements. 
The only essential dilference is that in each pass over the matrix, only one 
orthogonal matrix is generated (VI above). It is applied from both the left 
and the right to the input matrix. This can be accomplished by a systolic 
array of 2r rows, in which the first T rows carray out the factorization (11) 
and the following T rows form the product (12). To do this, plane rotations 
generated by cells at the left edge of the first group of rows are sent, via long 
connections, to the right edge of the second group of rows. An illustration of 

- _ _ _  , ,- the m y  is given in Figure 3.2. . .  
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