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Abstract. This paper is a study of high-throughput filter structures such as block structures and their behavior 
in finite precision environments. Block structures achieve high throughput rates by using a large number of proc- 
essors working in parallel. It has been believed that block structures which are relatively robust to round-off noise 
must also be robust to coefficient quantization errors. However, our research has shown that block structures, in 
fact, have high coefficient sensitivity. A potential problem that arises as a result of coefficient quantization is a 
periodically time-varying behavior exhibited by the realized filter. We will demonstrate how finite wordlength errors 
can change a nominally time-invariant filter into a time-varying system. We will identify the block structures that 
have low coefficient sensitivity, and develop high-speed structures that are immune to the time-varying problems 
caused by coefficient quantization. 

1. Introduction 

Block realizations of digital filters generate a block of 
outputs at a time, were developed as early as 1970 by 
Voelcker and Hartquist [1] and Burrus [2], and were 
studied by Mitra and Gnanashekharan [3]. Because of 
VLSI technology and the needs of modern signal and 
image processing, there has been a recent resurgence of 
interest in high-speed filter strucures [4], [5], [6]. Block 
realizations of digital filters were first proposed as low- 
noise filter structures. They require more hardware than 
conventional structures, but also have the ability to 
handle higher data rates. Given sufficient hardware, by 
utilizing multiple processors working in parallel, block 
realizations can concurrently process a block of data in 
each processor-arithmetic cycle, and thus handle higher 
throughput rates than conventional structures. It is 
known that corresponding to every sequential imple- 
mentation of digital filters, there exists a block imple- 
mentation that uses a far larger number of processors 
[3], and processes a block of data in every processor 
cycle. As a result of the big strides made in the last 
decade in integrated circuit technology, and the accom- 
panying reduction in cost and physical size of hardware, 
block structures have become technologically feasible. 
At the same time, modern signal and image processing 
applications have been making ever-increasing demands 
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on throughput rates. Thus these block filter structures 
that were proposed 15-20 years earlier have become 
more relevant now. Apart from block structures, which 
are parallel architectures, pipelined structures employ- 
ing pipelined multiplier units have also been proposed 
for high-speed VLSI digital filtering. 

A detailed round-off noise analysis of block struc- 
tures was undertaken by Barnes and Shinnaka in 1980 
[7], who demonstrated their low round-off noise prop- 
erties. The analysis by Barnes and Shinnaka [3] indi- 
cates that in general, block implementations of recursive 
or IIR filters are more robust than their sequential 
counterparts. Heuristically, this may be explained by 
their observation that the internal modes of the block 
implementation are much closer to the origin than the 
internal modes of the sequential implementation. Lost 
in the bargain is processor utilization. In all block im- 
plementations of IIR digital filters, processor utilization 
is fairly low, the biggest culprit being the block version 
of the general, noncanonical state-space realization 
where the state feedback matrix is full. In comparison, 
the block implementation of direct-form filters (see fig- 
ure 3) is fairly efficient and uses a minimal number 
of processing elements. The trade-off however, is in 
finite precision behavior. For conventional structures, 
it is known that structures with low round-off noise also 
have low sensitivity to coefficient quantization errors. 
Therefore, it has been believed that block structures, 
which are relatively robust to round-off noise, must also 
be robust to coefficient quantization errors. However, 
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block structures implicitly depend on pole-zero cancel- 
lations, and the cancellations may not occur in the 
presence of coefficient (quantization) errors. These 
spurious pole-zero cancellations in the block implemen- 
tation of the direct-form filter are fertile sources of finite 
precision errors. Coefficient quantization errors in 
block structures can also change a nominally time- 
invariant filter to a time-varying one. These effects will 
be pointed out and robust block structures that do not 
suffer from this problem will be presented. 

This paper is a study of various high-speed filter 
structures and their finite-precision behavior. We will 
call a filter structure a high-speed structure if its through- 
put rate is not bounded by its processors' multiplication 
cycle time. These structures must be able to process 
multiple samples in the time required for one multipli- 
cation. In this paper, we investigate the finite-precision 
behavior of such high-speed filter structures. In the next 
section, we will review the more well-known block 
structures. While these structures were originally de- 
rived using a state-space approach, we will adopt an 
equivalent but perhaps simpler, difference-equation ap- 
proach. The block structure for nourecursive (or FIR) 
filters is more easily derived by this approach. Section 
3 presents the finite-precision analysis for these struc- 
tures. Coefficient quantization effects on filter stability 
and the coefficient sensitivity of the transfer function 
are also studied here. The time-varying behavior of 
block structures is demonstrated in this section. In Sec- 
tion 4, robust structures are proposed that do not ex- 
hibit this time-varying anomaly caused by finite word- 
length effects. 

2. Block Structures 

Block filtering is a method of speeding up data through- 
put in a digital filter by using a large number of proc- 
essors operating concurrently. Systolic and wavefront 
implementations of digital filters, both FIR and IIR, 
achieve a maximum throughput rate of one output per 
multiply-add (MAD) cycle [8], [9]. They use at most, 
twice as many processors as the filter order. For filters 
of low order, they are not able to exploit parallelism 
to achieve high throughput rates. By using a large num- 
ber of processors, many times larger than the filter 
order, block filters produce several outputs per MAD 
cycle. All block filter structures have a serial-to-parallel 
converter at the input end, that takes a sequentially 
arriving input and presents it to the array as a block 
input, and a parallel-to-serial converter at the output 

X(z) t 

s 

co 

X o (z) 
r 

X 1 (z) ._ 

e 

XL- -1  (z )  

H B (Z) 

Yo (z) d r ~  "Y(z) 

�9 ~ 

u (zl ~ 

Fig. 1. The generic block realization of a digital filter. 

end, that reconverts the block output to a sequential 
output for the outside world (see figure 1). Many of 
the structures presented here or similar ones have been 
proposed earlier [1]-[7]. 

2.1. Block FIR Structure 

The block structure for convolution or nonrecursive 
(FIR) filtering is easily derived by noting the parallelism 
inherent in convolution. Different samples of the output 
sequence from a convolution can be produced indepen- 
dent of each other, owing to a lack of reeursive depend- 
ence in the output of a convolution. Given a block of 
input data and a sufficient number of processors, multi- 
ple outputs can be produced in the same MAD cycle 
since past outputs are not part of the convolution sum. 

Assume the filter being implemented is of order q, 
and our objective is to compute L outputs in one MAD 
cycle. The required architecture can be determined by 
examining the finite convolution sum: 

q 

y(n) = Z bmu(n - m) 
m=0 

and noting the similarity of this equation to the opera- 
tion of multiplying two numbers in binary representa- 
tion. Multiplication is essentially a convolution of two 
sequences of bits, and FIR filtering is a convolution 
of two sequences of numbers. Array multipliers have 
been used for fast, highly parallel multiplication in one 
clock cycle [10]. Borrowing the idea and applying it to 
FIR filtering, leads to the following array convolver of 
figure 2--a Block FIR filter structure that generates a 
block of outputs per MAD cycle [11]. In figure 2, the 
filter coefficients are bo, bl, . . . ,  bq; the input and 
output sequences are x and y respectively, and they may 
be infinitely long. The input sequence is shifted into 
the shift register, and at the start of a MAD cycle, the 
contents of the input shift register are loaded into the 
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Fig. 2. A block FIR structure of order-2. 

latches labelled LT. Together, the shift register and the 
latches act as a serial-to-parallel converter. The data 
in the latches are presented to the array of multipliers, 
through which it traverses diagonally. At the end of the 
MAD cycle, a block of outputs is ready, switches S open 
and load the output shift register in parallel. The array 
of switches and the output shift register constitute the 
parallel-to-serial converter in the generic diagram of 
figure 1. 

Note that the structure essentially has L copies of 
the conventional direct form FIR filter structure. Each 
copy corresponds to one column in the array, and the 
throughput rate is L times the rate of the conventional 
structure. The input and output shift registers are 
clocked in unison at the throughput rate, L times per 
MAD cycle. It is instructive to note that while L out- 
puts are shifted out sequentially for each MAD cycle, 
L inputs are being shifted in. Hence, during a new 
MAD cycle, the q rightmost inputs to the array are the 
q most recent data from the previous MAD cycle. They 
constitute the curren t  s ta te  of the block filter. 

and allow the computation of multiple outputs in one 
MAD cycle, the dependence on immediate past outputs 
has somehow to be eliminated in the implementation. 
All block structures must implicitly achieve this inde- 
pendence. The block direct form was derived by ex- 
plicitly eliminating the afore-mentioned dependence. 
For simplicity of derivation, let us restrict our attention 
to all-pole filters; i.e., filter with transfer functions 

1 
H ( z )  - A ( z )  

1 - a l z  -1 - a2z -2  - . . .  - a p z - P "  

There is no generality lost in doing so, because any 
IIR filter B(z) /A(z)  may be realized as a cascade of an 
FIR filter with polynomial transfer function B(z)  and 
an all-pole filter with transfer function 1/A(z), and the 
previous section has shown us how B(z)  may be realized 
in Block form. 

The key to a block realization of IIR filters is a mod- 
ification of the recursion 

2.2.  B l o c k  D i r e c t  Form f o r  I IR  Fi l ters  

Block implementation of a recursive filter is not as 
straightforward. Each output in a recursive or I/R filter 
is generated recursively using past outputs as well as 
past and present inputs. To avoid interprocessor waiting 

p 

y(n) = E amy(n - m) + x(n)  
m=l  

to make y(n) independent of other outputs in the same 
block, so that the block of outputs can be generated 
independent of each other concurrently. The trick is 
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to use look-ahead, just like carry look-ahead is used 
in fast parallel binary adders to eliminate interprocessor 
waiting. Using the above recursion for y(n),  with n 
replaced by n - 1, back in the above equation, we get 

y(n) = (a~ + a2)y(n - 2) + (ala~ + a3)y(n - 3) 

+ . . .  + (alap-1 + ap)y(n - p)  

+ alapy(n - p  - l) + x(n) + alx(n - 1) 

which is more compactly written as 

y(n) = atl)y(n - 2) + a~l)y(n - 3) 

+ . . .  + a~pl~y(n - p  - 1) + x ( n )  

+ ctl)x~n - 1~. 

The superscript (1) indicates that the output dependency 
has been pushed back by 1. This process has to be 
repeated L - 1 times to make the recursion for y(n) 
independent of other outputs in the current output 
block: y(n), y(n - 1), . . . ,  y(n - L + 1). Using the 
following definition: 

.4~~ = A(z )  

C~~ = 1, 

the recursive process of eliminating immediate past de- 
pendencies can be expressed compactly as 

A~k+l)(z ) = A~k)(z) + atk~z-k-lA(z) 

C<k+l~(z ) = C~k~(z) + atk)z - k -1  

In the above (k + 1)th step, the (k + 1)th power of z-1 
is eliminated from the denominator, and for each k, 
we have 

a ( k ) ( z )  : 1 - -  a t k ) z  - k - 1  - -  a ~ k ) z  - k - 2  

- -  . . .  - -  a ( k ) z - k . P  

The new system still has the same transfer function, 
and it can be shown that 

C<r-1)(z) = 1 + alz  -1 + atl)z -2 

+ . . .  + a t L - 2 ) z - L + I  

A<L-1)(z) = A(z)  C<L-1)(z). 

Recall that conventional direct forms can be realized 
as a cascade of all-pole and all-zero sections. In the 

so-called direct form I, the all-zero section precedes 
the all-pole section, while in direct form II, the order 
is reversed [12]. The block direct forms are obtained 
by realizing augmented polynomials A(k~(z) to generate 
the (k + 1)th output of a block, for each k = 0, 1 . . . .  , 
L - 1. In particular, the block version of the conven- 
tional direct form I structure is obtained by realizing 
B(k)(z) = C(k~(z)B(z) and A(k)(z) for k = 0, 1, 2 . . . . .  
L - 1, as shown in figure 3. In the block direct form 
I realization, each column corresponds to one value of 
k, and produces one output from the block of length 
L. In the block direct form II structure, the block FIR 
section for B(z) is cascaded after the block all-pole sec- 
tion that realizes CCg>(z)/ACk~(z) in the kth column, as 
shown in figure 4. Notice in both structures, the presence 
of the serial-to-parallel and parallel-to-serial converters. 
The p outputs of the all-pole section that are fed back 
as inputs constitute the state of the block structure. In 
figure 4, latches at the left side contain the state vari- 
ables. In the block FIR structure of figure 2, the state 
variables are the q most recent inputs from the previous 
block. The block direct form II structure is shown in 
a condensed schematic in figure 5, which is drawn 
assuming q _< p < L. Of course, similar structures can 
be envisioned for q > p or p, q > L cases as well. 

2.3. Block Parallel and  Cascade Structures 

Conventional direct form realizations are known to have 
poor finite-precision behavior, and it led to the develop- 
ment of the more robust parallel and cascade structures 
[12]. In the block direct form realizations, the poly- 
nomial lengths become large and this can increase the 
deletirious effects of finite precision. In this section, 
we develop block cascade and parallel structures, which 
are obtained by combining 1st and 2nd order block 
direct form sections. Each section is a block direct form 
whose transfer function is of the type 

bo + blZ -1 q- bzz -2 
1 - a l z  - 1  - azz -e  

if it is a 2nd-order section. Figure 6 shows a block 
parallel implementation (one section can be of first 
order, if needed), and a block cascade realization is 
depicted in figure 7. These structures were first studied 
by Zeman and Lindgren in 1981 using a state-space 
dervafion [5]. They called them state-decimation filters. 
In the next subsection, we will present the state-space 
representation of the block structures, and show that 
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Fig. 3. The block direct form I. 

they can also be obtained by a transformation (or state 
decimation) of the state-space equations for the corre- 
sponding conventional structures. 

2.4. State Space Representation for  Block Structures 

Let us first write down the state-space equations for 
the block FIR structure of figure 2. For the conven- 
tional, direct form realization of an FIR filter, the state 
vector composed of the contents of the delay elements is 

w(n) = (x(n - 1)x(n - 2) . . .  x(n - q))t 

where the superscript t denotes matrix transposition. 
The state-space equations are 

w(n + 1) = I 
O 0 0  . .  0 0 0 - ~  
1 0 0 . . 0 0 0 |  
0 1 0 . - 0 0 0  / 

6 6 6  :: 6 i  6j 

w(n) + x(n) 

y(n) = (b 1 b 2 b  3 . . .  bq) w(n) + box(n). 

In the block FIR structure, the nth block input and 
block output may be identified from figure 2 as 
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X__b(n ) = (x (nL)  x ( n L  4- 1) . . .  x ( n L  4- L - 1)) t 

yb (n )  = ( y ( n L )  y ( n L  + 1) . . .  y ( n L  + L - 1)) t. 

The nth state of  the block filter is 

W b ( n )  = ( x ( n L  - 1 ) x ( n L  - 2)  . . .  x ( n L  - q)) ' .  
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The state-space equations for the block FIR structure 
are 

W__b(n + 1) = FbW__b(n) + GbX_b(n ) 

yb(n) = HbW___b(n ) + DbX_b(n) 

where (for L > q), 

Db = i i 00o  l bl bo 0 0 
b 1 b o 0 

nb= 
[il b2 b3 ,1  b2 b 3 b 4 . . .  bq 

3 b4 b5 �9  0 

I0 o o o o 11 0 0  . .  0 1 0  
~ =  0 0 . . 1 0 0  

1 0  . .  0 0 0  

and 

F ~ = 0 .  

Note that the sequence of states W b(b ) of the block 
structure is a decimated version of the state sequence 
_w(n) of the conventional structure: 

Wb(n) = w(nL). 

This is true in general, for any pair of corresponding 
conventional and block realizations. There also exist 
direct relations between the parameter matrices of the 
two realizations. 

The first step in developing state space equations for 
the block direct form structure for IIR filters is identi- 
fying the p state variables�9 Referring to figure 4, the 
current block output is clearly a function of the current 
block input and the contents of the p latches that store 
the intermediate variables w from the previous block 
cycle. Thus, these p variables that will be denoted col- 
lectively as Wb(n), summarize relevant information in 
previous input blocks that is needed for the generation 
of current and future output blocks. Recognizing the 
vector Wb(n ) as the current state of the realization, we 
can write down the following state space equations for 
the block direct form II realization, 

W__b(n + 1) = FbW_b(n ) -q- GbXb(n ) 

y_b(n) = HbWb(n  ) + DbXb(n), 

where the state feedback matrix is related to the coeffi- 
cients as 

Fb = 

at L- l )  a6L-1) 
atL-2) a~L-2) 

atL-p) a6L-P) 

. . .  a~ L-l) 
g ,  

�9 . �9 a ~  ' ~ - 2 )  

�9 . .  a(p L-p) 

assuming as before that block length L is at least as 
large as filter order p. Similar equations can be obtained 
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for the block parallel and cascade forms. I f  first order 
sections are used instead of second-order in the block 
parallel form, then the state-feedback matrix will be 

Fb = diag{a( ,  a~ . . . . .  ap L } 

where ak are the poles of  the transfer function (as- 
sumed simple). 

These state-space equations and the equations for 
all block forms can be obtained f rom the state-space 
equations for the conventional structures by a transfor- 
marion that we will refer to as state decimation [2], [4]. 
Let the state-space representation for a conventional 
realization (with sequential processing) be 

w(n + 1) = Fw(n) + gx(n) 

y(n) = hw(n) + dx(n) 

where x, y, and d are scalar, g is a column vector (p•  
and h is a row vector (l• Let the state sequence deci- 
mated by a factor of  L be Wo(n ) = w(nL). Then the 
state propagation equation in decimated form becomes 

W b(n + 1) = FLw(n) + [FL-lg [Fr-2g[ . . .  

[Fg[g]xb(n),  

and in terms of the decimated state sequence, the out- 
puts become 

y(nL + k) = h__FkWb(n) + h_Fk-lgx(nL) + . . .  

+ h_x(nL + k - 1) + dx(nL + k) 

for k = 0, 1, 2 . . . .  , (L - 1). Thus, we get the block 
structure 

Wb(n + 1) = FbWb(n) + GbXb(n) 

Y_b(n) = HbWb(n) + DbXb(n) 

where F b = F L, Gb is the extended controllability 
matrix 

[FL-lg  I VL-2g[ . . .  1Fg I_g], 
lib is the extended observability matrix 

_h) 2 / 
h F L - t J  

and D b is the lower triangular Toeplitz matrix whose 
(i, j ) th entry is h Fi-j-lg for i > j and d for i = j .  

Simple calculations show that if  we start with the 
state-space equations for the conventional direct form 
II (which will be in observer canonical form [13]) and 
make the above state-decimation transformation, the 
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resulting equations will be exactly the state-space equa- 
tions for the block direct form II [14]. Similarly, if we 
start with the equations for the conventional parallel 
form using first-order parallel sections (which will be 
in diagonal canonical form [13]), 

F = diag{al, a2, . . . ,  ap}, 

the result of the above transformation will be the equa- 
tions for the block parallel form with first-order 
sections, 

Fb = diag{aa z, a~, . . . ,  a~}. 

It is also easily seen that a state-decimation transfor- 
mation of the conventional direct form structure for FIR 
filters leads to the block FIR structure of figure 2. The 
state-decimation transformation can be used to generate 
block structures from any conventional (sequential) 
structure. For good finite-precision behavior, one could 
transform the optimal principal-axis realizations [15], 
[16] to block-form. However, that may not lead to sig- 
nificant reduction in round-off noise compared to other 
block realizations, because as was demonstrated by 
Barnes and Shiunaka [4], all block structures have low 
round-off noise for large block lengths. 

2.5. Other High-Speed Filter Structures 

An interesting alternative to block-filtering was pro- 
posed by Loomis and Sinha [17]. The Loomis and Sinha 
architecture is not based on parallel processing, and 
instead utilizes pipelining to achieve increased through- 
put rate. Instead of using a number of arithmetic proc- 
essors working in parallel, Loomis and Sinha studied 
the option of pipelining the basic multiply-and-add unit. 
If this unit is realized as a cascade of L stages, each 
of which takes approximately the same amount of time 
for its processing, then the throughput rate through the 
pipelined multiplier will be approximately L per MAD 
cycle. The speed-up is obtained, because each stage in 
the pipeline takes less time than the complete arithmetic 
unit. Ideally, each stage should be L times faster than 
the complete unit, and hence the speed-up. The use of 
pipelined multipliers in conventional FIR structures is 
easily accomplished, and it will speed up the throughput 
rate by a factor of L. This speed-up is achieved with 
a small increase in hardware (the control circuitry 
needed for communication and synchronization be- 
tween stages), unlike in block strucures where the hard- 
ware needed (for FIR filters) is also L times larger. 
However, the pipelined implementation is limited in 
speed-up improvements by the number of equally corn- 

plex stages that the arithmetic unit can be broken into. 
Block structures, on the other hand, are only limited 
by the number of processors that can be devoted to the 
filter realization. 

The use of pipelined multiply-add units to improve 
throughput is not as straightforward for IIR filters as 
it is for FIR filters. Just like with block structures, the 
recursive dependence on past outputs in IIR filters 
comes in the way. In an IIR filter, the past p outputs 
need to be fed back to be used in computing the present 
ouptut. In a pipeline, intermediate results are distributed 
throughout pipeline stages. Partial results for the past 
L - 1 outputs are still in the pipeline, when the pro- 
cessing for the present output begins in the first stage, 
and these outputs will not be available for feedback. 
The solution is to get rid of immediate past output 
dependency just as in the development of the block 
direct forms in Section 2.2. Loomis and Sinha suggest 
that since A(Z-l)(z) is free of dependency on the past 
(L - 1) samples, B(L-1)(z)/A(L-1)(z) be realized in an 
L-stage pipelined implementation [17]. This novel struc- 
ture can provide increased speed at very little cost in 
increased hardware. However, the speed-up is limited 
by the largest number of approximately equally com- 
plex stages that a multiplier can be broken into. More 
importantly, as Loomis and Sinha themselves point out, 
this structure has a serious stability problem when L 
is small, caused by finite precision effects. The next 
section studies the effect of finite precision on the high- 
speed structures surveyed here. 

3. Finite Precision Effects 

Let us first examine the destabilization caused by finite 
wordlength errors in the Loomis and Sinha pipeline 
structure. It was pointed out by Loomis and Sinha that 
finite wordlength effects can make the pipeline structure 
unstable, when the number of pipeline stages is small. 
Examining the block structures, it is seen that the col- 
unms of the block direct form II filter also realize the 
same augmented polynomials realized by the Loomis and 
Sinha implementation. Does that mean that the block 
direct form structure (and possibly all block structures) 

have  stability problems for small values of L? In the 
next subsection, we will see that the answer is no. 

3.1. Internal Stability 

The Loomis and Sinha L-stage, pipelined implementa- 
tion realizes the augmented transfer function B(L-1)(Z)/ 
A(L-1)(Z), which is ideally the same as the original 



transfer function because of (L - p) pole-zero cancella- 
tions. It is possible that some of the (L - p) additional 
poles introduced by the augmentation are located out- 
side the unit circle in the complex plane. When that 
happens, the Loomis and Sinha realization becomes in- 
ternally unstable. Then, though B(L-1)(z)/A(L-1)(z) and 
B(z)/A(z) are theoretically equal, in the finite word- 
length environment of the real world, they behave dif- 
ferently. As an illustration, consider a 2-stage pipelined 
implementation of the stable, 2nd-order transfer function 

1 

5 z_ 1 3 z_ 2 " 1 - ~  + ~  

Here, 

0 '~ A(z) : ~ + ~ z A(1)(Z) = + ~ Z- 1 _ 19 Z_2 15 -3 5 

and the augmented 3rd-order difference equation 

19 15 
y(n) = ~ y ( n  - 2) - ~ y ( n  - 3) 

5 
+ x(n) + -~x(n - 1) 

is internally unstable, because of the new pole at -1.25. 
Internal instability manifests itself in many ways. For 
one, the zero-input response of the system to almost any 
nonzero initial conditions, blows up geometrically and 
quickly exceeds dynamic range limitations. Consider 
the zero-input response to initial conditions y(0) = 1, 
y(-1) = 0. Some of the output samples of the 3rd-order 
realization are 

y(20) = -31 ,  y(40) = - 2686, 

y(60) = - 2  • 105 , y(80) = - 2  • 107 , 

y(100) = -1 .76  • 109 . 

Secondly, even if initial conditions are forced to be zero 
to avoid such problems, internal variables may still blow 
up for almost any arbitrary input. Consider the zero- 
state response of the direct-form II realization [12] of 
the augmented 3rd-order system 

19 15 
wl(n) = "i6 Wl(n - -  2) - ~ wx(n - -  3) + x(n) 

w2(n ) = w l ( n  - -  1) 

5 
y ( n )  = wl(n ) + ~ w l ( n  - -  1) 

to the unit pulse input 
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~1 n = o 

x ( n )  \o else. 

The output (theoretically) behaves correctly, but both 
state variables blow up. This would not be a problem 
if it were not for the dynamic range limitations of a 
practical system, owing to finite wordlengths. A third, 
and important concern regarding internally unstable 
realizations of externally (or BIBO) stable transfer func- 
tions in finite wordlength environments is that coeffi- 
cient quantization can make the realization unstable ex- 
ternally as well. 

In the Loomis and Sinha pipelined, realization, 
quantization of the coefficients of the augmented poly- 
nomials will cause the poles and zeros to be perturbed 
independently (and possibly differently), so that after 
coefficient quantization, the poles and zeros introduced 
by the augmentation may not cancel each other. If some 
of the poles introduced by augmentation are outside the 
unit circle, the filter will become externally unstable. 
In their paper, Loomis and Sinha demonstrate this prob- 
lem with convincing examples, and argue that for large 
values of L, the (L - 1) poles introduced by the aug- 
mentation do not fall outside the stability region, so 
that even in the presence of quantization errors, when 
poles and zeros do not cancel, there is no stability 
problem. 

We now examine the stability of the block direct 
form structures. At first sight, it might appear that the 
block direct form structures face the same stability 
problem as does the Loomis and Sinha structure (even 
worse: the first several columns of the block direct form 
structure use low levels of augmentation). Thus, the 
block direct form structures also rely on pole-zero can- 
cellations in each column of the realization. The second 
column from the right of the two block direct form 
structures realize either CO)(z)/A 0)(z) or BO)(z)/A(1)(z), 
both relying on one pole-zero cancellation. The (k + 1)th 
column from the right implements either C(k)(z)/A(k)(Z) 
or B(k)(z)/A(k)(z), relying on k pole-zero cancellations. 
Just as in the Loomis and Sinha structure, these can- 
cellations may not occur in the presence of coefficient 
quantization errors. However, even if the roots of 
A(k)(z) lie outside the unit circle (for any k between 1 
and L - 1) they do not cause stability problems in the 
block direct forms. The key difference is that in the 
block realization, the 1/A (k)(z) column produces only 
L-decimated outputs, while in the pipelined realization, 
1/A (L)(z) produces each and every output. As a result, 
most of the variables that are fed back to a column in 
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the block structure come from other columns, and this 
helps to prevent error accumulation and buildup. 

To demonstrate that the block direct form is stable 
even if there are no pole-zero cancellations (as long as 
all roots of the nominal A (z) are inside the unit circle), 
we will resort to the state space representation devel- 
oped in the last section. Recall that the state-feedback 
matrix of a block structure is Fb = F L. It has eigen- 
values inside the unit circle, whenever the transfer func- 
tion is externally stable, since eigenvalues of F L are 
Lth powers of the poles of the original transfer function 
B(z)/A(z). Thus, every block realization obtained by 
state decimation of a conventional, minimum-order 
realization is internally stable, even when the roots of 
the augmented polynomial are outside the unit circle. 
Also, when coefficient quantization prevents pole-zero 
cancellations in the augmented polynomial, there is still 
no instability introduced. Similar conclusions can be 
drawn for all block structures. 

3. 2. Round- Of f  Noise 

Barnes and Shinnaka found that in fixed-point imple- 
mentations, block structures in general, have lower 
round-off noise than the corresponding conventional 
structures. Ideally, internal variables in the block struc- 
ture reproduce the state variables of the corresponding 
conventional structure, and hence input scaling consid- 
erations (to avoid dynamic range overflow in internal 
variables) are the same for corresponding conventional 
and block structures. For the analysis of output round- 
off noise, Barnes and Shinnaka used Hwang's basic 
model that roundoff noise is generated at the output 
of summing nodes, is independent from one summing 
node to the next, and that it is zero-mean, white and 
has the same variance (02 ) at all summing nodes. With 
this model, there is one error source at each inner prod- 
uct computation node. Thus for direct form FIR struc- 
tures, the output round-off noise variance is simply 02 , 
whatever the model order, as long as the (q + 1) terms 
in the inner product 

bou(n) + blu(n - 1) + . . .  + bqu(n - q) 

are accumulated and summed together at one node, and 
that there is only one quantizer, located at this node. 
Under these assumptions, the block FIR structure also 
has the very same output round-off noise variance. 

Using the same model, the direct form II structure 
with the all-pole section preceding the all-zero section 
has two error sources, one at the summing node for 

the ak inner product, and one at the bk inner product. 
The errors from the first source get fed back and have 
a cumulative effect on the output with magnitude de- 
pendent on the actual filter coefficients. Using the state- 
space notation introduced earlier, it can be shown that 
for every conventional IIR structure, the output round- 
off noise variance is 

( 1  ~ t h )  + h_ Fn(F n ) a 2. 
n=O 

Similar analysis for block I ~  structures, based on the 
same assumptions, establishes that the round-off noise 
variance in the y(nL + k) output in the block structure is 

02 = + hFnL+k-l(FnL+k-1)th t 02. 
n=0 

for k = 0, 1, 2, . . . ,  L - I. Thus the average round- 
off noise over one block 

L - 1  
1 2 4=zZo  

k=0 

is exactly 1/L times the noise variance in the output of 
the conventional structure. The block structure has on 
the average, L times lower round-off noise variance than 
the corresponding conventional structure. 

3.3. Coefficient Sensitivity 

For conventional structures, it was long believed that 
structures with low round-off noise also have low sen- 
sitivity to coefficient quantization errors [18], [19]. 
More recently, strong connections were established be- 
tween coefficient sensitivity and round-off noise levels 
in conventional structures [16]. 

Since the coefficients of the block FIR structure are 
the same as the coefficients of the conventional direct 
form FIR realization, the coefficient sensitivity proper- 
ties are the same for both structures, and the block 
realization is neither better nor worse. To study the ef- 
fect of coefficient quantization on a block filter, let us 
examine the first partial derivatives of the poles of the 
transfer function with respect to the coefficients in the 
block realization. It is well known that the roots of a 
polynomial are very sensitive to polynomial coeffi- 
cients, when the roots are closely spaced. This is made 
obvious by an examination of the partial derivative of 
a polynomial's roots to its coefficients. Kaiser showed 
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that this sensitivity measure is high for polynomials 
with a large number of closely spaced roots [20], and 
that this leads to large perturbations in the behavior of 
a direct-form filter with parameter quantization. The 
Loomis and Sinha pipelined structure realizes a high- 
order augmented polynomial, where this effect is fur- 
ther exacerbated. 

A block structure also suffers from similar prob- 
lems. System parameters in a block structure are the 
entries in the matrix F b = F L, and the poles of the 
transfer function are the eigenvalues of F: 

Pole = {eigenvalue of Fb } lit 

Thus, the pole's sensitivity is 

1 {eigenvalue of Fb } Z 

1 
- 1 {eigenvalue sensitivity of Fb} 

1 pole 
L corresponding eigenvalue of Fb 

{eigenvalue sensitivity of Fb }. 

Even if F b is well-conditioned for the eigenvalue prob- 
lem, and has low eigenvalue sensitivity, the sensitivity 
of the poles to perturbations in the entries of F b can 
be high if the system pole to the corresponding eigen- 
value of Fb is large. Since nominally the poles have 
magnitude smaller than one, this ratio is always larger 
than one. If L is large and the nominal poles are close 
to the unit circle, 1/L will dominate over this ratio and 
imply a small sensitivity. However, for poles closer to 
the origin, the ratio may dominate over I/L and lead 
to large sensitivity. This suggests that block filters suffer 
from potential coefficient sensitivity problems. This 
also suggests that F must be well-conditioned for the 
eigenvalue problem. If F is well-conditioned, so is 
F b = E L. 

3.4. Periodically Time-Varying Behavior 

One factor not taken into account thus far is that quan- 
tization errors in block structures can cause the overall 
system response to become slightly time-varying. It is 
well known that multi-input, multi-output, linear, time- 
invariant (LTI) filters can be used in conjunction with 
serial-to-parallel and parallel-to-serial converters to 
realize periodically time-varying, single-input, single- 
output (SISO), linear filters [21], [22]. The structure 

of figure 1, where H,  (z) is the matrix transfer function 
of the multi-input, multi-output LTI system, for in- 
stance, realizes a periodically time-varying SISO system 
with period L. In fact, the class of block realizations 
of SISO LTI filters is a subset of the general class of 
block realizations of periodically time-varying linear, 
SISO systems. Without any restriction on the block 
transfer function HB(z), the structure of figure 1 real- 
izes a periodically time-varying SISO system. Barnes 
and Shinnaka [23], and more recently Valdyanathan and 
Mitra [24], have given necessary and sufficient condi- 
tions that must be satisfied by the impulse response 
matrix hB(n) and the matrix transfer function HB(Z) 
respectively, in order to make the SISO system time- 
invadant. A multi-input, multi-output LTI system satis- 
fying these conditions is called block-shift-invariant. 

To be block-shift-invafiant, it was shown in [24] that 
the matrix transfer function must have the following 
Toeplitz and pseudo-circulant structure: 

n s ( z )  = 

Hi(z) 
H2(z) 

z-IHL(z) 
Ht(z) 

HL(Z) HL-I(Z)  

z - IHL_I (Z )  . . .  Z- 1n2(z) 
Z-IHL(Z) . . .  z - l n 3 ( z )  

HL-2(Z) . . .  HI(Z ) 

Under these conditions, the block structure realizes the 
SISO function 

L-1 
H~z) : ~ z-%§ 

k=O 

Coefficient quantization in a block implementation of 
a nominally time-invariant SISO transfer function can 
cause HB(z ) to be perturbed from this special struc- 
ture, and cause the realized SISO system to become 
periodically time-varying [25]. 

Consider coefficient perturbations in the block FIR 
structure of figure 2. If all coefficients are perturbed 
independently, the various columns will have slightly 
different coefficients and will realize somewhat differ- 
ent FIR filters. The overall SISO system will then be 
periodically time-varying. However, the nominal coef- 
ficients in each column are identical, and if the same 
wordlength is used throughout the structure, they will 
be quantized identically as well. Thus, even after coef- 
ficient quantization, the columns of the block FIR struc- 
ture will have identical coefficients, and the overall sys- 
tem will remain time-invariant. The block FIR structure 
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therefore, does not exhibit periodically time-varying 
behavior as a result of parameter quantization. The same 
cannot be said of block IIR structures; observe that the 
coefficients differ from one column to the next in fig- 
ures 3 and 4. Thus, they will be perturbed independ- 
ently by coefficient quantization, causing HB(z) to lose 
its Toeplitz and pseudo-circulant structure, and making 
the overall SISO system periodically time-varying. To 
avoid such problems, in the next section, we present 
block IIR filter structures that retain time-invariance 
even in the presence of coefficient quantization. 

4. Robust Block Realization for IIR Filters 

The block FIR structure remains time-invariant in the 
presence of coefficient quantization, because of the 
symmetry in its coefficients. This fact and the block 
shift invariance condition on the matrix transfer func- 
tion He(z )  suggests a different block structure for IIR 
filters that is guaranteed to be time-invariant even when 
coefficients are quantized. This structure shown in fig- 
ure 8, uses L 2 concurrent SISO filters, one for each 
entry in the matrix transfer function, and is based on 
the multi-path structure proposed by Hayashi et al. [26]. 
Each component SISO subsystem has order equal to 
the overall system order p, and produces one output 
per MAD cycle. Since they are all functioning concur- 
rently, L outputs are produced every MAD cycle, the 
same throughput as with block structures. Referring to 

X(z) "-'~ .-~,.-Y (z) 

X~(z) ~ 

X L--1 (Z) ~ YL-1 (z) ,~ 

Fig. 8. The generic robust block structure--guaranteed block shift 
invariance. 

the implementation of figure 8, observe that many of 
the component SISO subsystems are replicas of other 
component subsystems, except for an additional delay 
element. This symmetry is responsible for the guaran- 
teed block shift invariance in the presence of coefficient 
quantization. Identical components will have identical 
coefficients which will be perturbed identically by coef- 
ficient quantization. Thus, even after coefficient quan- 
tization, the structure will retain its symmetry which 
is responsible for the block shift invariance. 

For block structures, on the other hand, which do 
not have this symmetry in the implementation, coeffi- 
cient quantization will cause the matrix transfer function 
to deviate in an unpredictable way from the Toeplitz 
and pseudo-circulant structure required for block shift 
invariance, causing the realized overall system to be 
periodically time-varying. In the suggested structure, 
each component SISO subsystem will also suffer from 
coefficient quantization, altering their transfer functions 
slightly, but the overall SISO system will continue to 
be time-invariant. This time-invariance is gained at the 
expense of hardware. 

Two such structures with the required symmetry in 
their coefficients are obtained by a simple modification 
of the block direct form structures of figures 3 and 4. 
If every column in the block direct form(s) is made as 
big as the largest column, and realizes A r  then 
all columns will have identical coefficients. The under- 
lying idea is to use the largest order augmentation in 
every column, and use the same recursion to generate 
every output in the block. Consider block direct form 
II and modify its all-pole half so that each column 
realizes 

w ( n L  + k) = a tL-1)w(nL + k - L)  

+ a ~ L - 1 ) w ( n L  + k - L - 1) + . . .  

+ a(L-1)w(nL + k - L - p + 1) 

+ x ( n L  + k) + a l x ( n L  + k - 1) 

+ atl)x(nL + k - 2) + . . .  

+ atL-Z)x(nL + k - L + 1) 

instead of using a different level of augmentation in each 
column. Such a modification will mean that instead of 
only p variables 

w(nL  - 1) w(nL  - 2) . . .  w ( n L  - p )  

being stored and fed back as state variables for the next 
block, (L + p) state variables are needed: 

w(nL  - 1) w ( n L  - 2) . . .  w(nL  - L - p) .  
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It will also mean that the number of multipliers in the 
structure increases 

from~lL2 +2pL~to(L2 +2pL) 

- -a  significant rise in hardware cost, and a correspond- 
ing drop in processor utilization, But, it provides a sym- 
metry in coefficients that makes the structure immune 
to the periodic time-varying behavior seen in earlier 
block structures after coefficient quantization. In the 
new structures just described, that we will call Robust 
block direct forms, coefficient quantization will cause 
all columns to be perturbed identically, thus retaining 
time-invariance. 

In terms of the block transfer function HB (z), it is 
easily seen that each of the component SISO transfer 
function Hk(Z) is either of order one or of order zero 
(provided that L _ p _> q), and that even after coef- 
ficient quantization, Hs(z) retains the block shift- 
invariance property. Other robust block structures can 
be obtained from the robust block direct forms by com- 
bining first and/or second order sections in a cascade 
or parallel connection as in figures 6 and 7. The robust 
block direct and cascade forms are similar to the multi- 
path structure proposed by Hayashi et al. [26]. 

All of these robust block structures are unlike any of 
the other known block structures discussed in Sections 
2 and 3, in that they have a lot of redundancy in the 
form of extra hardware and extra memory elements. In 
fact, they each have L + p state variables that are stored 
in memory. This redundancy in the number of state 
variables, indicates that unlike block structures, the 
robust block structures cannot be obtained by a state- 
decimation transformation of conventional structures. 

5. Conclusions 

In conclusion, this paper studied the behavior of block 
structures for high-throughput realization of FIR and 
IIR digital filters in finite wordlength environments. It 
has been known for some time that block IIR structures 
have lower round-off noise properties than conventional 
structures. In this paper, we have demonstrated that in 
spite of having low round-off noise, block IIR structures 
can have exceedingly high coefficient sensitivity. We 
have also seen that block FIR structures have excellent 
finite precision properties, their coefficient sensitivity 
is no higher than that of the corresponding conventional 
structure, and they do not exhibit periodically time- 

varying behavior. For IIR filters, new robust block 
structures were proposed that remain time-invariant 
even after the coefficients are quantized. 
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