Skip to main content
Log in

How neurons may compute: The case of insect sexual pheromone discrimination

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recognition of pheromone scent by male insects probably depends on analyzing the blend's composition in terms of relative concentrations of major and minor molecular components. Based on anatomical, physiological and behavioral data concerning certain moth species and the cockroach, we propose a simple, biologically plausible neural circuit which is able to perform this task reliably. The model employs oscillations as a detecting device. This principle is easily generalized to other systems. As a computational device, ratio detection may find applications in a variety of biological situations, e.g. in the olfactory system of all animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles, M. 1982. Local Cortical Circuits, Springer, Berlin.

    Google Scholar 

  • Bradshaw, J.W., Baker, R., Lisk, J.C. 1983. Separate Orientation and Release Components in a Sex Pheromone, Nature 304: 256–257.

    Google Scholar 

  • Bertram, R., 1993. A Computational Study of the Effects of Serotonin on a Molluscan Burster Neuron. Biol. Cyb. 59: 257–267.

    Google Scholar 

  • Boeckh, J., Selsam, P. 1984. Quantitative investigation of the odor specificity of central olfactory neurons in the American cockroach. Chemical Senses, 9, (4):396–380.

    Google Scholar 

  • Boeckh, J. and Ernst, K.D. 1987. Contribution of single unit analysis in insects to an understanding of olfactory function. J. Comp. Physiol. A161:549–565.

    Google Scholar 

  • Burrows, M., Boeckh, J., Esslen, J. 1982. Physiological and Morphological Properties of Interneurons in the Deutocerebrum of Male Cockroaches which Respond to Female Pheromone. J. Comp. Physiol. 145:447–457.

    Google Scholar 

  • Canavier, C.C., Clark, J.W., Byrne, H.H. 1991. Simulation of the Bursting Activity of Neuron R15 in Aplysia: Role of Ionic Currents, Calcium Balance, and Modulatory Transmitters. J. Neurophysiol. 66: 2107–2124.

    PubMed  Google Scholar 

  • Changeux, J.P., Danchin, A. 1976. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature (London), 264: 705–712.

    Google Scholar 

  • Christensen, T.A., Hildebrand, J.G. 1988. Frequency coding by central olfactory neurons in the sphinx moth Manduca sexta. Chemical Senses, 13(1):123–130.

    Google Scholar 

  • Christensen, T.A., Waldrop, B.R., Harrow, I.D., Hildebrandt, J.G. 1993. Local Interneurons and Information Processing in the Olfactory Glomeruli of the Moth Manduca sexta. J. Comp. Physiol. A 1973 (in press).

    Google Scholar 

  • Delaney, K.R., Gelperin, A., Fee, M.S., Flores, J.A., Gervais, R., Tank, D.W., Kleinfeld, D. 1993. Waves and Stimulus-Modulated Dynamics in an Oscillatory Olfactory Network, (submitted).

  • Freeman, W. 1975. Mass action in the nervous system. Academic Press, New York.

    Google Scholar 

  • Freeman, W.J., Skarda, C.A. 1985. Spatial EEG patterns, nonlinear dynamics and perception: the Neosherrington view. Brain Res. Rev. 10, 147–175.

    Google Scholar 

  • Gascuel, J., Masson, C., 1987. Influence of olfactory deprivation on synapse frequency in developing antennal lobe of the honeybee. Neurosci. Res. Comm., 1(3): 173–180.

    Google Scholar 

  • Goodman, C.S., Bastiani, M.J., Due, C.Q., du Lac, S., Helfand, S.L., Kuwada, J.Y., Thomas, J.B. 1984. Cell recognition during neuronal development. Science 225: 1271–1279.

    PubMed  Google Scholar 

  • Gray, C., König, P., Engel, A.K., Singer, W. 1989. Oscillatory responses in cat visual cortex exhibit intercolomnar synchronization which reflects global stimulus properties. Nature, vol. 338: 334–337.

    PubMed  Google Scholar 

  • Hansson, B.S., Löfstedt, C., Löfqvist, J. 1986. Spatial Arrangement of Different Types of Pheromone Sensitive Sensilla in a Male Moth. Naturwissenschaften 73.

  • Hansson, B.S., Löfstedt, C. 1987. Inheritance of Olfactory Response to Sex Pheromone Components in Ostrinia nubialis. Naturwissenschaften 74.

  • Hansson, B., Ljungberg, H., Hallberg, E., Löfstedt, C. Functional specialization of olfactory glomeruli in a moth, Science, 256: 1313–1315, 1992.

    PubMed  Google Scholar 

  • Kaissling, K.E. 1987. R.H. Wright Lectures on Insect Olfaction. Simon Fraser University, Burnaby B.C., Canada.

    Google Scholar 

  • Kaissling, K.E., Kramer, E. 1990. Sensory basis of pheromone-mediated orientation in moths. Verh. Dtsch. Zool. Ges. 83:109–131.

    Google Scholar 

  • Kerszberg, M. 1989. Genetics and Epigenetics of Neural Function: A Model. J. Cog. Neurosci. 2: 51–57.

    Google Scholar 

  • Kerszberg, M., Masson, C., 1994. Signal Induced Selection Among Spontaneous Activity Patterns of Bee's Olfactory Glomeruli, submitted.

  • Li, Z., Hopfield, J.J., 1989. Modeling the Olfactory Bulb and Its Neural Oscillatory Processings. Biological Cybernetics 61:379–392.

    PubMed  Google Scholar 

  • Liljenström, H., 1991. Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture. Intern. J. Neural Syst., Vol 2, Nos 1 & 2, 1–15.

    Google Scholar 

  • Linn, C.E., Campbell, M.G., Roelofs, W.L. 1986. Male Moth Sensitivity to Multicomponent Pheromones: Critical Role of Female-Released Blend in Determining the Functional Role of Components and Active Space of the Pheromone, J. Chem. Ecol. 12:659–668.

    Google Scholar 

  • Linster, C., Masson, C., Kerszberg, M., Personnaz, L., Dreyfus, G. 1993a. Computational diversity in a formal model of the insect macroglomerulus, Neural Computation, 5:239–252.

    Google Scholar 

  • Linster, C., Marsan, D., Masson, C., Kerszberg, M., Personnaz, L., Dreyfus, G. 1993b. A Formal Model of the Insect Olfactory Macroglomerulus: Simulations and Analytical Results. in Advances in Neural Information Processing Systems 5, Giles, C.L., Hanson, S.J., and Cowan, J.D. (eds), San Mateo, CA: Morgan Kaufmann Publishers.

    Google Scholar 

  • Llinas, R., Yarom, Y. 1981. Properties and Distribution of Ionic Conductances Generating Electroresponsiveness of Mammalian Inferior Olivary Neurones in vitro. J. Physiol. Lond. 315: 569–84.

    PubMed  Google Scholar 

  • Masson, C., Mustaparta, H. 1990. Chemical Information Processing in the Olfactory System of Insects. Physiol. Reviews 70(1):199–245.

    Google Scholar 

  • Purves, D., Voydovic, J.T., Magrassi, L., Yawo, H. 1987. Nerve terminal remodeling in living mice by repeated examination of the same neuron. Science, 238: 1122–1126.

    PubMed  Google Scholar 

  • Rospars, J.P., 1988. Structure and development of the insect antennodeutocerebral system. Int. J. Insect Morphol. & Embryol. 17: 234–294.

    Google Scholar 

  • Schweitzer, E.S., Sanes, J.R., Hildebrand, J.G. 1976. Ontogeny of electroantennogarm responses in the moth Manduca sexta. J. Insect Physiol. 22:955–960.

    Google Scholar 

  • Sun, X., Fonta, C., Masson, C., 1993. Odour quality processing by bee antennal lobe interneurones. Chemical Senses (in press).

  • Wilson, M.A., Bower, J.M. 1988. A computer simulation of olfactory cortex with functional implications for storage and retrieval of olfactory information. In Neural Information Processing Systems. Anderson, D.Z. (ed) American Institute of Physics: 114–126.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linster, C., Kerszberg, M. & Masson, C. How neurons may compute: The case of insect sexual pheromone discrimination. J Comput Neurosci 1, 231–238 (1994). https://doi.org/10.1007/BF00961735

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00961735

Keywords

Navigation