Skip to main content
Log in

Distinct rhythmic locomotor patterns can be generated by a simple adaptive neural circuit: Biology, simulation, and VLSI implementation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Rhythmic motor patterns can be induced in leg motor neurons of isolated locust thoracic ganglia by bath application of pilocarpine. We observed that the relative phases of levators and depressors differed in the three thoracic ganglia. Assuming that the central pattern generating circuits underlying these three segmental rhythms are probably very similar, we developed a simple model circuit that can produce any one of the three activity patterns and characteristic phase relationships by modifying a single synaptic weight. We show results of a computer simulation of this circuit using the neuronal simulator NeuraLOG/Spike. We built and tested an analog VLSI circuit implementation of this model circuit that exhibits the same range of “behaviors” as the computer simulation. This multidisciplinary strategy will be useful to explore the dynamics of central pattern generating networks coupled to physical actuators, and ultimately should allow the design of biologically realistic walking robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alving BO (1968) Spontaneous activity in isolated somata of Aplysia pacemaker neurons. J. Gen. Physiol. 51:29–45.

    PubMed  Google Scholar 

  • Bate CM (1976) Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J. Embryol. Exp. Morph. 35:107–123.

    PubMed  Google Scholar 

  • Benjamin PR and Elliott CJH (1989) Snail feeding oscillator: The central pattern generator and its control by modulatory interneurons. In: Neuronal and Cellular Oscillators, JW Jacklet, ed. New York: Marcel Dekker. pp. 173–214.

    Google Scholar 

  • Beer RD, Chiel HJ, Quinn RD, Espenschied KS, and Larsson P (1992) A distributed neural network architecture for hexapod robot locomotion. Neural Computation. 4:356–365.

    Google Scholar 

  • Bräunig P (1982) The peripheral and central nervous organization of the locust coxo-trochanteral joint. J. Neurobiol. 13:413–433.

    PubMed  Google Scholar 

  • Brooks RA (1989) A robot that walks; emergent behaviors from a carefully evolved network. Neural Computation. 1:253–262.

    Google Scholar 

  • Burrows M (1992) Local circuits for the control of leg movements in an insect. Trends Neurosci. 15:226–232.

    PubMed  Google Scholar 

  • Burrows M and Watkins BL (1986) Spiking local interneurones in the mesothoracic ganglion of the locust: homologies with metathoracic interneurones. J. Comp. Neurol. 245:29–40.

    PubMed  Google Scholar 

  • Campbell JI (1961) The anatomy of the nervous system of the mesothorax of locusta migratoria migratorioides. R.& F. Proc. R. Zool. Soc. London. 137:403–432.

    Google Scholar 

  • Cruse H (1976) The function of the legs in the free walking stick insect, Carausius morosus. J Comp Physiol. 112:235–262.

    Google Scholar 

  • DeWeerth SP, Nielsen L, Mead, CA and Aström, KJ (1991) A simple neuron servo. IEEE Trans on Neural Networks. 2:248–251.

    Google Scholar 

  • Donner MD (1987) Real-time Control of Walking. Cambridge, MA: Birkhäuser Boston.

    Google Scholar 

  • Farley RD, Case JF and Roeder KD (1967) Pacemaker for tracheal ventilation in the cockroach, Periplaneta Americana. (L). J. Insect. Physiol. 13:1713–1728.

    PubMed  Google Scholar 

  • Flynn AM, Brooks RA, Wells WM and Barrett DS (1989) Intelligence for miniature robots. Sensors and Actuators. 20:187–196.

    Google Scholar 

  • Getting PA and Dekin MS (1985) Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator. J. Neurophysiol. 53:466–480.

    PubMed  Google Scholar 

  • Graham D (1977) Simulation of a model for the coordination of leg movement in free walking insects. Biol. Cybern. 26:187–198.

    Google Scholar 

  • Graham D (1978a) Unusual step patterns in the free walking grasshopper Neoconocephalus robustus. I. General features of the step patterns. J. Exp. Biol. 73:147–157.

    Google Scholar 

  • Graham D (1978b) Unusual step patterns in the free walking grasshopper Neoconocephalus robustus. II. A critical test of the leg interactions underlying different models of hexapod co-ordination. J. Exp. Biol. 73:159–172.

    Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Advances in Insect Physiology. 18:31–140.

    Google Scholar 

  • Grillner S and Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Ann. Rev. Neurosci. 8:233–261.

    PubMed  Google Scholar 

  • Grillner S, Wallen P, Brodin L, and Lansner A (1991) Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Ann. Rev. Neurosci. 14:169–199.

    PubMed  Google Scholar 

  • Gynther IC and Pearson KG (1989) An evaluation of the role of identified interneurons in triggering kicks and jumps in the locust. J. Neurophysiol. 61:45–57.

    PubMed  Google Scholar 

  • Harris-Warrick RM, and Marder E (1991) Modulation of neural networks for behavior. Ann. Rev. Neurosci. 14:39–57.

    PubMed  Google Scholar 

  • Harris-Warrick RM, Nagy F and Nusbaum MP (1992) Neuromodulation of stomatogastric networks by identified neurons and transmitters. In: Dynamic Biological Networks: The Stomatogastric Nervous System. R. M. Harris-Warrick, E. Marder, A. I. Selverston, M. Moulins, eds. Cambridge: MIT Press, pp. 87–137.

    Google Scholar 

  • Heinzel H-G (1988) Gastric mill activity in the lobster. II. Proctolin and octopamine initiate and modulate chewing. J. Neurophysiol. 59:551–565.

    PubMed  Google Scholar 

  • Heinzel H-G and Selverston AI (1988) Gastric mill activity in the lobster. III. Effects of proctolin on the isolated central pattern generator. J. Neurophysiol. 59:566–585.

    PubMed  Google Scholar 

  • Jacklet JW (1989) Neuronal and Cellular Oscillators. New York: Marcel Dekker.

    Google Scholar 

  • Lazzaro J and Mead CA (1989) A silicon model of auditory localization. Neural Computation. 1:47–57.

    Google Scholar 

  • LeMoncheck JE (1992) An analog VLSI model of the jamming avoidance response in electric fish. IEEE Journal of Solid State Circuits. 27(6).

  • Mahowald M and Douglas R (1991) A silicon neuron. Nature. 354:515–518.

    PubMed  Google Scholar 

  • Mahowald MA, Douglas RJ, LeMoncheck JE, and Mead CA (1992) An introduction to silicon neural analogs. Semin. Neurosci. 4:83–92.

    Google Scholar 

  • Marder E and Weimann JM (1992) Modulatory control of multiple task processing in the stomatogastric nervous system. In: Neurobiology of Motor Programme Selection. J. Kien, C. McCrohan, and B. Winlow, eds. New York: Pergamon Press, pp. 3–19.

    Google Scholar 

  • Mead CA (1989) Analog VLSI and Neural Systems. Addison-Wesley: Reading, MA.

    Google Scholar 

  • McClellan AD (1982) Movements and motor patterns of the buccal mass of Pleurobranchaea during feeding, regurgitation and rejection. J. Exp. Biol. 98:195–211.

    Google Scholar 

  • Miller PL (1960) Respiration in the desert locust. II. The control of the spiracles. J. Exp. Biol. 37:237–263.

    Google Scholar 

  • Miller PL (1966) The regulation of breathing in insects. Adv. Insect. Physiol. 3:279–354.

    Google Scholar 

  • Miller PL (1967) The derivation of the motor command to the spiracles of the locust. J. Exp. Biol. 46:349–371.

    PubMed  Google Scholar 

  • Murray A, Del Corso D, and Tarassenko L (1991). Pulse-stream VLSI neural networks mixing analog and digital techniques. IEEE Trans. Neural Networks. 2:193–204.

    Google Scholar 

  • Robertson RM (1986) Neuronal circuits controlling flight in the locust: central generation of the rhythm. Trends Neurosci. 9:278–280.

    Google Scholar 

  • Robertson RM and Pearson KG (1983) Interneurons in flight system of the locust: distribution, connections and resetting properties. J. Comp. Neurol. 215:33–50.

    PubMed  Google Scholar 

  • Robertson RM and Pearson KG (1985) Neural circuits in the flight system of the locust. J. Neurophysiol. 53:110–128.

    PubMed  Google Scholar 

  • Ryckebusch S, Bower JM, and Mead C (1989) Modeling small oscillating biological networks in analog VLSI. In Advances in Neural Information Processing Systems 1. (DS Touretzky ed). Morgan Kauffman: San Mateo, CA, pp. 384–393.

    Google Scholar 

  • Ryckebusch S and Laurent G (1993) Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J. Neurophysiol. 69:1583–1595.

    PubMed  Google Scholar 

  • Ryckebusch S and Laurent G (1994). Interactions between segmental leg central pattern generators during fictive rhythms in the locust. J. Neurophysiol. in press.

  • Sarpeshkar R, Watts L, and Mead CA (1992) Refractory neuron circuits. Internal Memorandum, Physics of Computation Laboratory, California Institute of Technology.

  • Siegler MVS and Pousman CA (1990) Motor neurons of grasshopper metathoracic ganglion occur in Stereotypie anatomical groups. J. Comp. Neurol. 297:298–312.

    PubMed  Google Scholar 

  • Simmers AJ and Bush BMH (1983) Motor programme switching in the ventilatory system of Carcinus maenas: The neuronal basis of bimodal scaphognathite beating. J. Exp. Biol. 104:163–181.

    Google Scholar 

  • Watts L (1994) Event-driven simulation of networks of spiking neurons. In Advances in Neural Information Processing Systems 6. (J. D. Cowan, G. Tesauro, J. Alspector eds). Morgan Kauffman: San Francisco, CA, pp. 927–934.

    Google Scholar 

  • Watts L (1992) Designing networks of spiking silicon neurons and synapses. In Proceedings of Computation and Neural Systems Meeting CNS*92, Kluwer: San Francisco, CA.

    Google Scholar 

  • Weimann JM (1992) Multiple task processing in neural networks: Numerous central pattern generators in the stomatogastric nervous system of the crab, Cancer borealis. PhD. Thesis, Department of Biology, Brandeis University.

  • Weimann JM, Meyrand P, and Marder E (1991) Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. J. Neurophysiol. 65:111–122.

    PubMed  Google Scholar 

  • Wilson DM (1966) Insect walking. Ann. Rev. Entomol. 11:103–122.

    Google Scholar 

  • Wilson JA (1979a) The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy. J. Neurobiol. 10:41–65.

    PubMed  Google Scholar 

  • Wilson JA (1979b) The structure and function of serially homologous leg motor neurons in the locust. II. Physiology. J. Neurobiol. 10:153–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryckebusch, S., Wehr, M. & Laurent, G. Distinct rhythmic locomotor patterns can be generated by a simple adaptive neural circuit: Biology, simulation, and VLSI implementation. J Comput Neurosci 1, 339–358 (1994). https://doi.org/10.1007/BF00961881

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00961881

Keywords

Navigation