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SELECTING AMONG RULES INDUCED
FROM A HURRICANE DATABASE

John A. Major and John J. Mangano
The Travelers Insurance Companies, Hart ford, Connecticut 06183

Rule induction can achieve orders of magnitude reduction in the volume of data
descriptions. For example, we applied a commercial tool (IXL'™) to a 1,819
record tropical storm database, yielding 161 rules. However, the human compre-
hension goals of Knowledge Discovery in Databases may require still more orders of
magnitude. We present a rule refinement strategy, partly implemented in a Prolog
program, that operationalizes "interestingness" into performance, simplicity, novel-
ty, and significance. Applying the strategy to the induced rulebase yielded 10
"genuinely interesting" rules.

I. PURPOSE OF THE STUDY

At The Travelers Insurance Company, we are involved in applying statistics and arti-
ficial intelligence techniques to the solution of business problems. This work is
part of an investigation into applications for Natural Hazards Research Services.

The purpose of this study is not to develop a hurricane model or predictor. It
is, rather, to assess the utility of rule induction technology and our particular
rule refinement strategy. The object task of the study is to develop rules that
predict, from simple position and wind speed observations, whether a cyclone will
make landfall on the U.S. coast.

IL. BACKGROUND
1
The analysis of hurricanes is an important specialty of meteorology that feeds its
results into actuarial science. Casualties and damalge from hurricanes frequently
cost insurers over $1 billion per year in claims.? Hurricane Andrew (1992)
alone caused over $15 billion in property damage claims.®

A cyclone is "an atmospheric system in which the barometric pressure diminishes
progressively to a minimum value at the center and toward which the winds blow
spirally inward from all sides, resulting in a lifting of the air and eventually in
clouds and precipitation... The name does not signify any degree of intensity." A
hurricane is a cyclone originating in the tropics with wind speeds of 64 knots
or }.ﬁgher.4

IXL'™ js a commercial knowledge discovery software tool marketed by
IntelligenceWare, Inc. of Los Angeles, California. It accepts as input a
relational database in any of several formats, plus control parameters and goals
specified by the user. Its outputs include a text file of conjunctive rules with
performance statistics.5®

As Gaines’ points out, a knowledge discovery tool can qhickly generate many

rules that will take a human days to understand. This motivated our development of
a refinement strategy and its partial implementation in the REFINERY program.
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II1. THE DATA

The National Hurricane Center maintains a machine-readable file on all North Atlan-
tic tropical cyclones since 1886.% Among other data items, the file contains

positions and maximum sustained wind speeds of each cyclone at six-hour intervals.
Due to the relative unreliability of observations before 1945, we limited our data-
base to cyclones from 1945 to 1979. We reserve 1980 to 1992 data for validation.

Cyclones, being structured in space and time, are complex entities to represent in
a database. While work has been done on induction on structured objects,’
IXL is limited to unstructured entities. For this reason, we transformed cyclone
tracks to point observations along the track, dropping the identity, and hence the
continuity, of the cyclone. This introduces complications we will address in IX.B.

The attributes used in the study are presented in Figure 1.

DATE: Real number representing the month+day as 1.01 through 12.31.

STORMTYPE: I1="Tropical Storm or Hurricane," 3="Tropical Disturbance," and
5="Extratropical Storm." Over 90% of the records were 1.

WIND.SPEED: Ranged from 15 to 155 knots.

LATIT: Latitude ranged from 8.2 to 60.4 degrees (north).

LONGIT: | Longitude ranged from 8.5 to 101 degrees (west).

TRACK.SPD: The forward speed of the storm system, 0 to 70.5 knots.

TRACK.ANG: Direction in which the storm system is moving. Units were de-
grees clockwise from a direction going due west, -179 to 180.

DIST.COAST: The distance to the nearest point on the U.S. coast. Ranged from
90 to 3378 nautical miles.

COAST.ANG: Bearing from storm center to nearest point on the U.S. coast.

TRKCST.ANG: The algebraic difference between the track angle and the coast
angle, wrapped to range from -180 to 179. Positive 'means the
storm is heading to the right of the nearest coastal point.

INW.SPEED: The magnitude of the track speed vector projected onto the coast
bearing vector. Ranged from -68.75 to 35.5 knots.

PAR.SPEED: The magnitude of the track speed vector projected onto a vector
90 degrees clockwise to the coast bearing vector. Ranged from
-19.75 to 53.25 knots. Positive means the storm is heading to
the right of the nearest coastal point.

US.LAND: Binary attribute used as goal. Equals one if the instance’s
storm did cross the U.S. coast.

Figure 1. Attributes of the hurricane database.

After selection and location edits (e.g., no observation closer than 90 miles from
the coast) there were 334 cyclones, of which 100 crossed the U.S. coast. Those
cyclones generated 1,819 records, of which 388 were from landfall cyclones.

IV. APPLYING IXL
IXL was given the goal of finding rules that conclude any value for US.LAND. Para-

meters specified a confidence factor of at least 30, coverage of at least 10, and a
maximum rule length of 5 terms. (Confidence factor and coverage are discussed in
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section V.) After 43 hours on an IBM PS/2 model 70 (Intel 80386 20Mhz), the run
was interrupted. From the 529 rules induced up to that point, we extracted 161
that concluded U.S.LAND=1. We refer to these 161 as the landfall rules.

V. INTERPRETING THE UNREFINED RESULTS

The first of the landfall rules, Rule 29, is presented in Figure 2.

% Rule 29
CF = 33.61
"US.LAND" = "1"
IF
"100" <= "WIND.SPEED" <= "115"

% Margin of Error: 8.8 %
% Applicable percentage of sample: 6.71 %
% Applicable number of records: 122

Figure 2. First of 161 induced rules, IXL format.

The conceptiembodied in the rule is the conjunction of the one or more terms fol-
lowing the "IF." In this case, the concept selects all instances in the database
where the wind speed is between 100 and 115 knots.

The "Applicable number of records," or coverage, is the number of instances satisfy-
ing the concept. We say that the rule covers those instances. We sometimes use the
letter G to represent coverage. In this case, G=122.

The CF (certainty factor) is the positive diagnostic power of the rule,1° the
percentage of covered instances with U.S.LAND equal to one (that is, true). We
sometimes use the letter C to represent CF.

Even among the 51 rules presented in the Appendix, it is a nontrivial task for the
human (domain expert or analyst) to grasp what has been revealed. Consider the fol-
lowing questions. Which rule has the highest coverage? CF? What rules outperform
R366? Which rules mentioning coast.ang are disjoint; which are nested? Does R488
offer a significant improvement over its generalizations?

VI. CRITERIA FOR INTERESTINGNESS

A. Performance: <G,C> space and the performance frontier
Piatetsky-Shapiro!! provides three performance axioms that rule interest
measures f(G,C) should satisfy. Let D be the overall occurrence rate in
the database. ‘

1: f(GD)=0.
2 f(G,C) monotonically increases in C for fixed G,
3 AGT,/G) monotonically decreases in G for fixed T,
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We would like to add a fourth, independent, axiom:
4: f(G.C,) monotonically increases in G for fixed Cy>D.

From axioms two and four, we derive a dominance relation between rules as points in
<coverage,CF> space. If R1 is at <G,C> and R2 is at <F,B>, and G>F and C>B, then
R1 dominates R2. RI1 is certainly more interesting than R2, but we will with-
hold judgement for "off-diagonal” pairs. All rules that are not dominated by any
other rules are said to be on the performance frontier. Such high-performance
rules are, by that fact, potentially interesting,

B. Simplicity: concept lattice, cones, and MGR families

Possibly the most cited rule preference criterion, after performance, is simpli-
city. Simplicity can be explored by use of the rule lattice. This is a partial
order on the set of induced rules where R1 subsumes (is more general than) R2 if
the instances in R2’s concept must lie in R1’s concept.*

We refer to the set of specializations and generalizations of a rule as its
cone. Given a high-performance rule (in the sense of section A), then the
rules in its cone are also potentially interesting.

There will be at least one rule with no generalizations (other than the implicit
rule TOP, whose concept covers everything, and which we add to the rule set).
Such rules are Most General Rules (MGRs). The cone of an MGR is called its
family. A family that contains many high-performance rules is probably worth
examining in its entirety.

C. Novelty: hot spots, quasi-stars, and other redundancies

t
Another criterion is 110v¢lty,12 which needs a knowledge context to operation-
alize it. Redundancy is a converse of novelty. A rule that adds little insight or

performance to an existing set of rules has no novelty with respect to that set.

Say rules R1 and R2 have overlapping concepts, and a domain expert judges the formu-
lation of R1 to make "more sense" with respect to known scientific theory than R2.

* Subsumption can be defined in two basic ways: intensional or extensional.

Intensional subsumption is a grammatical property of the concept formulations.
Syntactic versions treat variables as independent; in the case of IXL con-

. cepts, it is a matter of matching variables and checking ranges. Logical
versions must refer to an axiomatic theory of variable relations.

Extensional subsumption is a property of the instances covered by the con-
cepts. Sample-based versions check whether all the instances in a data-
base covered by a concept are among those covered by another concept.
Population-based versions address the question with regard to all possible
databases. When an axiomatic domain theory is true and complete, logical
subsumption coincides with population-based subsumption.

Because REFINERY can only handle syntactic subsumption, we introduce some sam-
ple-based and logical analysis to move our understanding closer to the ideal.
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If, further, the set of instances covered by R2 but not R1 have poor performance
(in the sense of coverage and CF), then we consider R2 redundant and uninteresting.

In other databases we have found clusters of points in the instance space that have
a higher than average occurrence rate of the criterion. We term such a region a
hot spot. An induced rule set will tend to have many rules that cover overlapping
subsets of the hot spot. We term such a set of rules a quasi-star (named after
Michalski’s stars!®).

D. Significance: contrast statistics in a projected context
Another criterion is statistical significance.l* Search techniques can
always find extreme cases, but sound conclusions require an assessment of
uncertainty.

Discussions of statistical tests use the terms p-level, significance level or
type I error rate to refer to the probability, p, that any one test will
incorrectly yield a positive result due to the effects of random sampling. If an
induction tool generates 10,000 random rules and tests them on a database of pure
noise, it will report about 100 of them as achieving a 1% significance.

This is a well-known problem,’® and in the statistical literature, it is
known as ,multiple comparisons. The oldest and simplest solutionl® is to
use a significance level small enough to keep the expected number of false posi-
tives down to an acceptable level. Say, use p=10-5 for 10,000 trials.

Our problem is in not knowing how many rules the induction tool tested on its way
to finding the ones that are reported. Our solution is the projected context,
an estimate of the size of the population of similar rules that had been examined.

The definition proceeds as follows: Consider a concept Q and a more specific con-
cept R. Let I be the coverage of Q (or the number of instances in the database
if Q=TOP). Let V be the number of variables available to formulate special-
izations of Q (the number available in the database less any that are restricted to
single values in Q). Let R cover G instances and its defining concept consist
of T conjuncts. Then we consider R one of J = (I/G) * VI/(TI(V-T)!) spe-
cializations of Q examined by the induction mechanism.

Our significance measure is S(R|Q) = -log,(4'J), where A is a
numerical approximation to the one-tail significance level of the Chi-square test
that R’s covered instances are drawn randomly from Q’s. Among reported
rules with significance s, we can expect one in 105 to be spurious.

As an example, consider rules R56 and R334 (refer to the Appendix). R334, "R." is
a specialization of R56, "Q."

R56 covers I=513 instances; R334 covers G=228 instances. (I/G) = 2.25 is the num-
ber of subsets in any attempt to partition R56s instances into mutually exclusive
subsets of size G. R334 uses T=2 out of V=12 available variables. VI/(T(V-T)!) =
12!/(21'10!) = 66 is another index of freedom in generating "comparable® special-
izations: the number of ways of selecting T out of V variables for use in writing
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the terms of a rule.* The product of these two indices, 148.5, is J.

Statistical significance can be assessed by a contingency table as follows:

US.LAND=0 USLAND=1 TOTAL
R56-R334 209 76 | 285
R334 103 125 1 228
R56 312 201 | 513

A test of independence yields a Chi-square value of 42.145 on one degree of free-
dom. The one-tail significance level of this statistic is 4.237°1071=A
(Abramowitz & Stegun, Table 26.2,17 four-point interpolation).

Our measure, S(R334|R56) = -log(AJ) = 8.2012, is well beyond the 2.0 minimum we set
for significance. (REFINERY uses an approximation for A and reports S as 7.9552.)

VII. FORMALIZING THE STRATEGY
Following the above considerations, our analysis strategy proceeds in three phases.
A. Phase 1: Identify potentially interesting rules

Potentially i‘nteresting (PI) rules are those that satisfy the performance criterion
or are closely related to rules that do.- Specifically:

A rule R is PI if
R is on the performance frontier, or
Q is on the frontier and R is in the cone of Q, or
Q is a Most General Rule, and there are at least 3 frontier rules
in Q’s family, and R is also in Q’s family. .

B. Phase 2: Identify technically interesting rules

Technically interesting (TI) rules are selected among PI rules according to a re-
cursively defined principle based on the simplicity and statistical significance
criteria. If a potentially interesting rule is a spurious specialization of a tech-
nically interesting rule, it is therefore uninteresting. Specifically, TOP is
considered TI, to start the recursion, and:

A rule R is TI if
R is PI, and
for all Q such that Q is TI and R specializes Q: S(R|Q) > 2.

Relative to the TI rule R, we refer to those rules Q (in the definition) as R’s
Most Specific TI Generalizations (MSTIGs). PI rules that are significant in
contrast to all their MSTIGs are TL

The first two phases are algorithmic. The next phase requires some judgement.

* It might be argued that if rule Q has U variables a more appropriate index is
2”’(V~U)!/((T-U)!(V-T)!). The above formula is more conservative.
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C. Phase 3: Remove rules that are not genuinely interesting
The TI rules are each examined for redundancy. This consists of two aspects.

First, remove most rules from a quasi-star. Keep the simplest and/or most general
rule that adequately covers the hot spot, and possibly some other extremely high-
performance rules in the quasi-star. Discard all others.

Second, remove a rule R that is similar to another TI rule Q if Q makes much more
sense to an expert and the difference R-Q does not perform well.

VIII. EXECUTING THE STRATEGY ON THE LANDFALL RULES

Parts of the above strategy were implemented in a Prolog program, REFINERY. This
program parsed the IXL rule file, identified subsumptions, and computed statistical
contrasts between all related pairs. Other parts of the strategy were carried out
with the help of a geographical information system (GIS) operating on a 50% sample.

A. Potentially interesting rules

There were 17 rules on the performance frontier (Figure 3). One MGR family (R56)
had six frontier rules, another (R119) had four. R119 itself was on the frontier.
These two families were expanded into 19 and 10 PI rules, respectively. Expanding
cones generated 22 additional PI rules. A total of 51 potentially interesting

rules were identified. These are presented in the Appendix in detail.

B. Technically interesting rules

In family R56, R56 was significant in contrast to TOP. An immediate specializa-
tion which was on the frontier, R59, and two other rules had significant contrasts
to R56. This reduced the 19 PI rules down to four TI rules. Under family R119,
R119 was significant. Two of its immediate specializations had significant
contrasts. This reduced its 10 PI rules to three TI rules. Of the remaining 22
additional PI rules, 14 were TI, bringing the total to 21 technically interesting
rules. (Note: Figure 3 does not mark R114 or R351 as TL)

The 21 TI rules were used as queries in the GIS as an aid to understanding. We
observed that R114’s term, "coast.ang in [84,176]," implied a localization of the
instances near or in the Gulf of Mexico. R114 was in fact a specialization of R56.
The contrast between R114 and R56 was not significant, therefore R114 was not TI.
Further search revealed that R351 specialized R334 and was not significant.

There were, finally, 19 technically interesting rules. Nine were on the frontier.
C. Genuinely interesting rules

The localization to the Gulf of Mexico was seen in seven of the TI rules. The sim-

plest, most representative among them was R59. Among the other rules in the Gulf

quasi-star, R352 had the highest CF and a highly significant contrast to its MSTIG,

R119. The other five Gulf rules, R107, R350, R357, R484, and R481, were dropped.

Turning to rule comparisons, we found R334 dominated R339 in <G,C> space and they
shared a term. Cross-classifying instances in the GIS, we saw R339 covered about
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Figure 3. Specialization lattice of Potentially Interesting rules.

half the instances that R334 did, and added a few new ones. The instances covered
by R334 but not R339 had about the same proportion of US.LAND (CF) as all of
R334’s instances. However, the other difference set, R339-R334, had a lower CF
than R339. R339 seemed sufficiently redundant and inferior that we dropped it.
(The logic behind R334’s success is discussed in section D.)

Similarly, R342 and R359 shared over 400 covered instances, with R342 contributing
a superior difference set. R359 was therefore dropped.

R344 had no generalizations nor specializations among the 161 original rules, yet
was related to R342 and R359. R344 sclects slowly moving storms, but the other two
select storms that are moving fowards the coast. R344’s Jperformance was not

superior, so it was not considered interesting.

Another TI rule, R44, "latit in [22.3,28.4]," had a CF of 30.4%. The upper limit
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made climatological sense (see discussion of recurve in section D), but landfall
rates are 30% or higher at latitudes well below 22.3. Although there was no simi-
lar rule to favor, R44 certainly did not achieve a reasonable combination of perfor-
mance and sensibility. Therefore, we dropped it.

This took the 19 TI rules down to 10 genuinely interesting rules, of which five
were on the frontier. The GI rules are identified by an asterisk in Figure 3 and
by italics in the Appendix.

D. Observations

Longitude (R49, R56, R59, etc.) and distance to coast (R97, R359) are important.
This is obvious. An inward speed term (R359) excludes instances where the storm is
moving away from the coast. This is also obvious.

Two sets of terms begin to bring knowledge in the sense of Frawley.!? A typi-
cal Atlantic hurricane starts in the low latitudes and moves west under the influ-
ence of the trade winds, with some tendency to drift north due to the latitudinal
gradient of the Coriolis force. If it hasn’t dissipated by the time it reaches 30
degrees latitude, it will probably recurve, moving east under the influence of the
prevailing westerlies.’® The track-coast angle terms (R119, R305, and R352),
and parallel speed term (R157) select storms whose current track is inward and to
the left of the nearest coastal point. Such storms are more likely to reach land
before recurving than storms which veer to the right.

In R30S, the wind speed term excludes many low-intensity storms that die out before
reaching the coast. There are very few instances with wind speeds over 140, so the
upper limit is not much of a constraint.

The track angle terms (R334, R352) appeared anomalous, but made sense in the GIS.
Track angles between 90 and 175 (most of R352’s range) signify a storm 'that has al-
ready recurved. However, the track-coast angle term places these instances in the
Gulf of Mexico, where recurving tracks are more likely to strike the U.S. In
R334, the track angle specifies (mostly) a non-recurving situation. Why does this
add significance to R56? Instances in those longitudes with track angles less than
27 are mostly non-recurving tracks in the Gulf. The southern Gulf tracks have a
good chance of passing south of Florida and avoiding U. S. landfall. Instances
with track angles greater than 116 are mostly recurving southern Gulf or Atlantic
tracks. The Atlantic tracks are therefore moving away from the coast.

IX. ASSESSMENT
The application of the three-phase rule analysis to the 161 rules took less than
two days. It succeeded in refining them to a modest set of high-performing, signi-
ficant, simple, and nonredundant rules. We expect the process would have taken
only a few hours with a more fully developed version of REFINERY.

However, two dependency problems introduced difficulties in our analysis. These
are likely to appear, to some degree, in any real database.

A, Dependency among variables

In VIILB we saw that "coast.ang in [84,176]" was a specialization of "longit in
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[73.1,97.3]." There are more such implications derivable from variable depen-
dencies. Distance to coast and coast angle are each functions of latitude and
longitude. Track-coast angle is a linear function of track angle and coast angle.
Inward speed and parallel speed are functions of track speed and track angle.

Since the algorithm in REFINERY was uninformed of such relations, it did not find
all the links that exist in the (population-based) concept lattice.

B. Dependency among instances

The derivation of storm points from tracks violates the independence assumptions
underlying our rule significance measure. Adjacent points in a track share the
same value for US.LAND and have correlated values for all other variables.

To assess the impact of this, we recomputed significance levels assuming all track
instances were multiple occurrences of the same row of values. On this basis, a
one in 100 misreporting rate required S > 13.5, rather than S > 2. Rules R49, R56,
R119, R157, and R359 were still significant. R342 and R352 didn’t quite make the
cut. R59, R97, R305, and R334 fell short and had to be removed. No new TI rules
were introduced due to the removal of MSTIGs.

This is the other extreme of the dependence spectrum. The truth lies in between.
H

X. RELATED WORK
KDD applications for insurance include Major'® and Piatetsky-Shapiro.2°
A case-based reasoning approach to hurricane modeling based on the NOAA data was
taken by Hope.?! More recently, AI work in meteorology was discussed by
Moninger. -

t
Gaines” addresses the problem of post-processing induced rules, but in the
context of noise-free data. With noisy data,?® he uses the significance of a
test of a binomial sampling model. This is asymptotic to a Chi-square test when co-
verage is large yet much smaller than the database.

Gebhardt?* develops a refinement mechanism based on measures of performance
and rule similarity. A rule R will be suppressed by a rule Q if the ratio of their
performance measures is less than their similarity measure. While offering a num-
ber of alternatives, performance is always a one-dimensional measure, and choice of
similarity measure is based on pragmatic considerations. There does not appear to
be an adjustment for search context, although the general mechanism permits it.

Most other work is predicated on processes within, rather than downstream from, the
induction mechanism. Weiss!® presents preference heuristics that are used to

prune a set of candidate rules; two are similar to our performance and redundancy
criteria. Quinlan?® addresses decision trees.  Piatetsky-Shapiro! in-

fers rule accuracy (CF) in the entire database from samples where CF=1. A radical
approach to the multiple comparisons problem is outlined by Jensen.2®

A set of induced rules is not a knowledge base. KBs have rules concluding a varie-
ty of attributes, and a relatively low level of redundancy. Shen?? addresses
regularities in a large KB. Ginsberg?® presents a metalanguage of knowledge
base refinement concepts based on rule-chaining relations and error rates.
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Interestingness is still wide opeén. Klosgen29 presents a mechanism by which
users specify patterns for what they consider interesting statements. The landfall
rules we analyze are of the type: "share of units of a <target group> is sxsgmf i-
cantly larger in a <subgroup> than in a <total population>." Lenat? pro-

vides considerable food for thought on the operationalization of interestingness.

XI. FURTHER WORK

One potential shortcoming of this approach is the shadowing of some possibly in-
teresting rules by unrelated rules that outperform it. For example, storm.type=1

could dominate the performance frontier, leaving us ignorant of some important pre-
dictors involving storm.type=3. In other work with REFINERY, we have addressed
this issue by applying the induction mechanism iteratively, removing instances

covered by the best rules at each step. Another approach would be to use rule

disjointness in the criteria for interestingness.

The variable dependenc 3y discussed in IX.A might be helped with additional term sub-
sumption machmery = For example, say Z=f(X,Y) monotonically increases in

X and Y. Then from a rule that includes "X in [A,B]," we should be able to derive
"Z in [f(A,Y_, ), f(B,Y __)I" to use in search of generalizations.

Observation dependency is thornier. The use of block assuniptions to compute an
upper bound' on required significance scores does not address the real issue here.

Storms are evolving entities, structured in time. An approach combining induction
on structured concepts®3? with Bayesian methods®® might be fruitful.

The phase three criteria (VILC) are not yet algorithmic. Quasi-star removal could
be made so; the redundancy/performance anal¥s1s could be automated as far as identi-
fying candidates for removal. Gebhardt’s** mechanisms could be applied here

as well. Also, a better coupling with graphical data analysis®* would help.
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ticut. The views and conclusions contained in this report are those of the
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APPENDIX

Potentially Interesting rules and selection commentary.

RULE DEFINITION

R44 latit
R49 longit

R56 longit
R59 longit

R97 dist.coast

R10Q0 dist.coast

R107 coast.ang

R110 coast.ang

AAAI-98

(Note: Genuinely Interesting rules are italicized.)

in [22.3,28.4] 405
in [62.9.95.7] 922

in [73.197.3] 513

in [83.597.3] 252

in [90,450] 538

in [90,360] 415

in [44,166] 424

in [112,176] 117

CVG CF

30.4% PI:
T
GI?

30.0% PI:
TIr?
Gr?

39.2% PI:

Tr
Gr?

47.6% PI:
Tz
GI?

30.5% PI:
T
Gr?

32.8% PI:
TI?

37.5% PI
gy
GI?

54.7% PI:
TI?

PI, TI, GI COMMENTARY

Gen:{R453). Note: MGR
Yes, S|ITOP=4.9
No, low performance+sense.

Gen:(R342,R481). Note: MGR
Yes, S|TOP=17.0
Yes

Gen:{R59,R334,R338,R426,R453,
R488). Note: MGR

Yes, S|TOP=26.5

Yes

Frontier

Yes, S|R56=2.9

Yes. Chosen as Gulf hot spot
representative.

Gen:{R338)}. Note: MGR
Yes, S|TOP=7.7
Yes.

Gen:(R338)
No, S|R97<2

Gen:{R484. Note: MGR
Yes, SiTOP=17.1
No, Gulf hot_spot.

Gen:(R490}
No, S|R114<2
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R114 coast.ang

R119 trkcst.ang

" R121 trkcst.ang

R131 trkcst.ang

R134 trkcst.ang

R135 trkest.ang

R157 par.speled

R160 par.speed

R163 par.speed

R167 par.speed

R194 date

&longit

R262 date

& trkcst.ang

R256 date

& trkcst.ang

R296 storm.type

& coast.ang

R305 trkcst.ang

& wind .speed

R334 longit

Page 42

& track.ang

in [84,176]

in [-180,15]

in [-180,1]

in [-38,1]

in [-60,-23]

in [-22,3]

in [-19.75,1]

in [-19.75,-1]

in [-19.75,-3.25] 525

in [-7.5,-3.25]
in [1.01,8.22]
in [73.1,97.3]

in [8.14,9.16]
in [-180,-24]

in [1.01,9.07]
in [-180,15]

=1
in [112,176]

in [-180,15]
in [80,140]

in [73.197.3]
in [27,116]
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237

942

818

495

296

325

884

717

336

142

192

448

114

187

228

46.0% PI:
T1?

30.6% PI:

TI?
Gr?

30.8% PIL
TI?

32.1% PI:
TI?

33.1% PI:
TI?

32.9% PI:
TI?

30.2% PI:
Tz
Gr?

31.0% PI:
TI?

31.1% PI:
TI?

31.3% PI:
TI?

45.8% PI:
TI?

38.5% PI:
TI?

35.5% PI:
TI?

55.3% PI:
TI?

42.8% PI:
Trz
Gr?

54.8% PI:
T
Gr?

Gen:(R351, R490). Note: MGR
No. S|TOP=18.6, but found to
specialize R56 with S|R56<2.

Frontier and gen:{R121,R352,
R490). Note: MGR

Yes, S|TOP=20.1

Yes.

Frontier
No, S|[R119<2

In family R119
No, S|R119<2

In family R119
No, S|[R119<2

In family R119
No, S|IR119<2

Gen:{R160). Note: MGR
Yes, S|TOP=16.4
Yes

Frontier
No, S|R157<2

Spec:(R160})
No, S|IR157<2

Spec:{R160}
No, S|R157<2

Spec:(R56)
No, S|R56)<2

Spec:(R119)
No, S|IR119<2

Spec:{R119)
No, S|IR119<2

Gen:(R490}
No, S|R114<2

Spec:{R119)
Yes, S|R119=2.1
Yes

Frontier

Yes, S|R56=8.0
Yes
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R337 longit
& dist.coast

R338 longit
& dist.coast

R339 longit
& trkcst.ang

R342 longit
& inw.speed

R343 longit
& inw.speed

R344 dist.coast
& track.spd

R350 track.ang
& coast.ang

R351 track.ang
& coast.ang

R352 trkcst.ang
&track.ang

R357 par.speed
&track.ang

R359 dist.coast
& inw.speed

R366 date
&storm.type

R426 date
& longit

R428 date
&longit

R432 date
& longit
&inw.speed

AAAI-93

in [83.5,97.3] 188
in [90,450]
in [83.7,97.3] 144
in [90,360]
in [73.1,97.3] 142

in [-10,84]

in [62.995.7] 518

in [2.522.5]

in [83.7,97.3] 115
in [0,6.75]

in [90,684] 560
in [0,12.75]

in [59,175] 176
in [44,166]

in [27,116] 115
in [84,176]

in [-180,15] 93
in [59,175]

in [-19.75,3.25] 154
in [59,175]

in [90,822] 466
in [2.5,22.5]
in [1.01,8.22] 135

=]

in [8.23,10.04] 95
in [73.1,97.3]

in [1.01,8.22] 124
in [73.1,97.30]
in [1.01,9.07] 239

in [62.9,95.7]
in [2.5,22.5]

51.6%

54.9%

52.8%

39.8%

53.0%

33.4%

48.3%

60.0%

68.8%

50.7%

39.9%

46.7%

67.4%

47.6%

43.9%

PI:
TI?

PI:
T?

PI:
TI?
GI?

PI:
Tr?
Gr?

PI:
TI?

PI:
TI?
GI?

PI:
TI1?
GI?

PI:
TI?

PI:
Tr?
Gr?

PI:
TI?
GI?

PI:
TI?
GI?

PIL:
TI?

PI:
TI?

PI:
TI?

PI:
TI?

Gen:(R338)
No, S|R59<2

Frontier
No, S|[R59<2

Speci{R 56}
Yes, SIR56=2.0
No, redundant agajnst R334

Frontier
Yes, S|R49=10.3
Yes

Spec:{R56)
No, S|R59<2

Frontier. Note: MGR
Yes, SITOP=13.4
No, redundant against R342

Gen:{R484)
Yes, SIR107=2.1
No, Gulf hot spot

Frontier
No, S|R114=2.8, but S|R334<2

Frontier
Yes, S|R119=13.1 \
Yes, Gulf, but high-per formance

Gen:{R481,R484). Note: MGR
Yes, SITOP=16.0
No, Gulf hot spot

Frontier. Note: MGR
Yes, SITOP=24.4
No, redundant against R342

Spec:{R56)
No, S|R56<2

Frontier
No, S|R334<2

Spec:{R56)
No, S|R56<2

Speci(R342)
No, S|R342<2
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R450 storm.type

=1

& wind.speed in [15,50]

& longit

R451 storm.type

in [83.5,97.30]

=]

& wind.speed in [15,45]

&longit

R453 storm.type

& latit
&longit

R456 storm.type

&longit

in [83.7,97.3]

=1
in [22.3,28.4]
in [83.7,97.3]

=1
in [73.1,97.30]

&trkest.ang in [-10,84]

R473 wind.speed in [110,155]

& coast.ang
& par.speed

R480 longit
& trk.spe:cd
& coast.ang

R481 longit
& par.speed
& track.ang

R484 coast.ang
& track.ang
& par.speed

R488 date

& storm.type

& longit
& trk.angle

R490 date

& storm.type

& coast.ang

& trkcst.ang

R5 il storm.type

&latit
& longit
& track.spd

R512 storm.type

&latit
& longit

& inw.speed
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in [-26,29]
in [-19.75,-1]

in [84.4,97.3]
in [10,13.25]
in [84,111]

in [62.9,95.7]
in [-19.75,3.25)
in [59,175]

in [44,166]
in [59,175]
in [-19.75,3.25]

149

126

114

139

10

131

101

in [8.23,10.04] 93

=1
in [73.1,97.3]
in [27,116]

in [9.27,10.22]
=1

in [112,176]
in [-38,1]

=1
in [26.3,35.5]
in [83.5,97.3]
in [9.75,16.5]

=1
in [26.3,35.5]
in [83.5,97.3]
in [5,14.25]

12

10

10

49.7% PI.
TI?

50.0% PI:
TI?

61.4% PI
TI?

54.0% PI:
TI?

100.0%PI:
T

100.0%PI:
™

58.8% PI:
TI?
GI?

67.3% PI:
TI?
GI?

68.8% PI:
T1?

100.0%PI:
T1?

100.0%PI:
n

100.0%P1I:
TI?

Spec:{R56)
No, S|R59<2

Spec:{R56)
No, S|[R59<2

Frontier
No, S|R59<2

Spec:{R339)
No, S|[R339<2

Spec:{R160})
No, S|IR160<2

Spec:{R56)
No, S|R59<2

Frontier
Yes, S|R49=10.5, S|R357=3.7
No, Gulf hot spot

Frontier
Yes, S|[R350=5.9, S|R357=5.6
No, Gulf hot spot

Frontier
No, S|R334<2

Frontier
No, S[R114<2

Spec:{R56)
No, S|R59<2

Spec:{R56)
No, S|R59<2
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