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Abstract. For sequential circuit path delay testing, we propose a new update rule for state variables whereby 
flip-flops are updated with their correct values provided they are destinations of at least one robustly activated 
path delay fault. Existing algorithms in the literature, for robust fault simulation and test generation, assign 
unknown values to off-path latches that have non-steady signals at their inputs in the previous vector. Such 
procedures are pessimistic and predict low fault coverages. They also have an adverse effect on the execution 
time of fault simulation especially if the circuit has a large number of active paths. The proposed update rule 
avoids these problems and yet guarantees robustness. 
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1. Introduction 

A robust delay test for a path in a combinational circuit 
consists of propagating a transition along the path and 
ensuring that the off-path sensitizing signals do not cause 
the path destination to change state before the 
transition has traversed the entire path. The validity of 
such a test is guaranteed irrespective of other delays in 
the circuit, and this condition is referred to as 
combinational robustness. In sequential circuits, 
several latches may be path destinations for many faults 
activated simultaneously by the same vector. Consider 
the fault effect propagation in the subsequent vector of 
one particular fault, referred to as the primary fault. 
For subsequent robust detection of the primary fault, it 
is necessary that none of the other simultaneously 
activated secondary faults mask the primary fault 
effect propagation. This criterion is often referred to 
as sequential robustness. 

Consider a primary path delay fault that gets 
activated by some vector of an input sequence. We will 
refer to that vector as the activation vector for the 
primary fault. For the fault effect to propagate from the 
destination latch in the next vector, some other latch 
might be required to have a specified value. However, 
that latch may be the destination of another secondary 
path fault also activated by the activation vector. One 
might desire that the propagation of the effect of the 
primary 

fault is independent of the presence of the secondary 
fault. In such situations, existing algorithms assign 
unknown values to latches having non-steady signals 
at their inputs [1], [2]. There are adverse consequences if 
such a pessimistic update rule is used. Other than 
predicting low fault coverages, a separate analysis of 
the fault effect propagation may be necessary for every 
active fault. In fault simulation, if the number of active 
faults is large, the entire simulation will be slow. In this 
article, we present an alternative update rule that can 
alleviate these problems. 

2. Background 

To represent the signal state in two consecutive 
vectors, we use a 7-valued algebra consisting of the 6-
valued system of Smith [3] and an additonal logic 
value, X, representing unknown. Smith's logic is 
suitable to reason about combinational circuits with fully 
specified inputs. The additonal value, X, is necessary for 
sequential circuits and combinational circuits with 
unspecified inputs. 

Smith's algebra consists of 6 values:  p0, p1, s0, s1, 
-0, -1 and can be thought of as consisting of tuples (pds, 
fv), where pds is path detectability status and fv is the 
final value. These logic values describe the timing 
behavior of the circuit during the interval,
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denoted by <Vn, Vn+1>, between any two consecutive 
vectors Vn and Vn+1. During any such interval, a signal 
may undergo hazards (static or dynamic), but will 
always settle down to a definite final value (for 
combinational circuits with fully specified inputs) and 
this value, which may be 0 or 1, represents the second 
component of the tuple. 

For a signal g, pds(g) = s for the interval < Vn, Vn+l > 
if the signal remains stable during the entire interval. It 
is set to p if there exists at least one path along which a 
transition propagates and the signal g is guaranteed not 
to change until the transition along that path has 
reached g. More than one active path terminating at g 
may exist, in which case, all transitions along these 
paths must reach g before g can change. The time of 
transition will then depend upon the slowest of these 
paths. Note that a pds value of p does not necessarily 
mean that a complete path from input to output exists in 
the combinational circuit. However, it does guarantee 
that at least one partial path from an input to that signal 
exists. The pds component is set to - if neither s nor p is 
true. Thus a logic value of -1 represents either a static-1 
hazard or a non-robustly propagating rising transition 
(as at the output of an OR gate with multiple rising 
transitions at inputs). 

The unknown value, X, represents those signals 
whose final values are not known. For such signals, the 
pds components are not relevant and, semantically, X 
means the final value can be either 0 or 1. The 
evaluation tables for this 7-valued logic, as shown in 
Figure 1, are a direct extension of the 6-valued logic of 
Smith [3]. 

As an example, we consider the sequential circuit 
shown in Figure 2. It has two latches, LI and L2, one 
input I, six gates Gl, ..., G6, and one primary output G6. 
The circuit is simulated for the following 4-vector input 
sequence <V1, V2, V3, V4> = 1000. The latches are 
assumed to have a reset state and are initialized to 0. 
The first vector, I = 1, is applied for sufficiently long 
interval so that all signals stabilize to their steady states. 
The subsequent three vectors are then applied at the 
rated clock interval. We will focus our attention on 
transitions propagating along the following paths: 

F1: I ,  G1, G2  
F2: L 1 ,  G3, G4 
F3: L1,  G3, G2 
F4: L2, G5, G6 
F5: L 1 ,  G6 

 
AND s0 P0 -0 s1 pl -1 X 

s0 s0 sO s0 s0 s0 s0 s0 

P0 s0 -0 -0 p0 -0 -0 -0 
-0 s0 -0 -0 -0 -0 -0 -0 
s1 s0 p0 -0 s1 pl -1 X 
p1 s0 -0 -0 pl pl pl X 
-1 s0 -0 -0 -1 pl -1 X 
X s0 -0 -0 X X X X 

        

        

        

OR s0 po -0 s1 p1 -1 X 

s0 s0 po -0 s1 p1 -1 X 
p0 p0 p0 p0 s1 -1 -1 X 
-0 -0 p0 -0 s1 -1 -1 X 
s1 s1 s1 s1 s1 s1 s1 s1 
p1 p1 -1 -1 s1 -1 -1 -1 
-1 -1 -1 -1 s1 -1 -1 -1 
X X X X s1 -1 -1 X 

Fig. 1. Evaluation tables for 7-valued logic. 

Figures 2(a) and 2(b) show the state of signals during 
two vector intervals: <V1, V2> and <V2, V3>. The latches 
are marked with fault identifiers corresponding to those 
paths along which transitions propagate robustly. These 
faults correspond to paths along which all signals have 
their pds component set to p. For instance, Figure 2(a) 
shows latch L1 marked with F1 to indicate that this latch 
will clock in a faulty value if path I, G1 and G2 is slow. 
Figure 2(b) has L1 marked with F1 and F3 while latch 
L2 is marked with two faults: Fl and F2. The reason for 
marking latch L1 with two faults is as follows: if the 
rising transition at the input of L1 (Figure 2(a)) fails to 
arrive on time, the falling transition at the input of L1 in 
the following vector will also fail to arrive. Therefore, the 
fault Fl is propagated to latch L1 in the following vector. 
However, if L1 does clock in the correct value, but the path 
L1, G3 and G2 is slow, then also L1 will latch an incorrect 
value. Thus, both Fl and F3 are in the fault list at L1. 

Consider simulation of the vector pair <V3, V4>. 
Propagation of the fault effect of F3 from latch L1 
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(a) Simulation of vector pair <V1, V2> 

 
(b) Simulation of vector pair <V2, V3>  

Fig. 2. Signal values in first 3 vectors. 

 
depends on the logic state in L2 which in turn, depends 
on faults F1 and F2. Existing algorithms [1], [2] assign an 
unknown value, X, to latches like L2 while considering 
the propagation of fault effects from latches like L1. 
This is shown in Figure 3(a). Assigning an X to L2 
for the fault F3 drives the primary output to X. 
Hence F3 is not detected. Now consider the fault effect 
of F2 from latch L2. Latch L1 is assigned a value X, 
which drives the primary output G6 to X. This is shown 
in Figure 3(b). Hence, fault F2 is also undetected. 
Now consider fault Fl, which causes incorrect values in 
both latches. It is easy to show that only F1 is 
declared detectable by the given input sequence. In 
reality, it can be easily verified that the presence of any 
combination of these five faults will cause the circuit 
to fail. This example demonstrates that updating 
latches with unknown values causes a low (pessimistic) 
fault coverage prediction. 

3. Optimistic Update of Latches 

Consider an update rule in which all latches with non-
steady signals at their inputs are updated with their 

fault-free circuit values, provided they are destinations 
of at least one robustly activated path. This condition 
can be verified easily (in constant time) by ensuring 
that the pds component for the latch input signal was p 
in the previous vector. Latches with static hazards and 
dynamic hazards due to non-robust propagation are 
updated with an unknown value (X). This rule can be 
stated as follows: 

Optimistic Update Rule: For any latch whose input is 
not steady at either 0 or 1, assume fault free value in 
the subsequent vector, provided the latch is the path 
destination of at least one robustly activated fault. 

We will apply the optimistic update rule to the example 
of Section 2. Figure 4 shows the signal values for the 
vector pair <V3, V4>. Note that using optimistic values 
for both latches, all five path delay faults are found 
detectable. The fault effects for F1 and F2 at latch L2 
are propagated robustly along the path G5 and G6. In 
addition, the path consisting of L2, G5 and G6 (fault 
F4) is also sensitized. Fault effect of F3 is propagated 
through G6 to the output. Hence all five faults are 
detected. 
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update rule in all prior vectors. The signal value at the 
path destination at the end of the activation vector 
may be incorrect due to two possible reasons. Either 
the activated path is slow or the state of the circuit is 
incorrect, thus preventing the off-path signals to 
sensitize the fault. The latter situation occurs only if 
the optimistic update rule has been applied to a latch 
in a previous vector, and the state of the latch is 
indeed incorrect due to a delayed transition. In either 
case, it is possible to show that at the end of the 
activation vector, the path destination has a faulty 
value. Since we assume fault free values (optimistic 
update) only if a latch is a destination of at least one 
robustly activated path, the incorrectness of the circuit 
state (in the presence of faults that were robustly 
activated) is also independent of other delays in the 
circuit. Subsequent to activation, the fault may 
eventually be detected at a primary output. Similar to 
the concept of fault activation in combinational 
circuits [3], such a failure in a sequential circuit is not 
diagnosable. However, the condition for fault 
detectability can be stated as follows: 

Optimistic Update Theorem: Any fault found 
detectable by using optimistic update of latch 
variables, if present in the circuit, is guaranteed to 
cause failure and cannot be masked by other path 
delay faults in the circuit. 

We first prove some auxiliary properties about 
signal values specified by the optimistic update rule. 
We will then use these properties to prove correctness 
of the optimistic update theorem. We assume that all 
signal values at nodes in the circuit have been 
obtained from the 7-valued algebra of Figure 1. Since 
the optimistic update rule has been applied for all 
latches throughout the entire intput sequence, the 
signal values may be different from the values hi the 
actual physical circuit which may have one or more 
path delay faults. The auxiliary properties deal with 
the relationship between the signal values in the 
actual (faulty) circuit and those evaluated by the 7-
valued algebra and the optimistic update rule. 

Lemma 1: A node in a sequential circuit with a stable 
value (s1 or s0), as specified by applying the 7-valued 
algebra and the optimistic update rule, attains this 
value (in the actual physical circuit) irrespective of the 
presence or absence of any delay fault. 

Proof. Examination of the truth table reveals that for a 
gate to have a stable output, either at least one input 
must have a stable controlling value or all inputs have 

steady non-controlling values. Hence, for a stable gate 
output to have a logic value in the real circuit that is 
different from the value in the fault-free circuit, it is 
necessary that at least one stable input is affected by 
the fault. We use induction arguments first on the 
levels of the circuit and then on the successive 
vectors. Since the inputs to the combinational 
network (primary inputs and latch outputs) remain 
unchanged at their stable values irrespective of slow 
paths, it follows by induction on the levels of the 
circuit that no gate of the network with a stable value 
is affected by delay faults. Since this is true in the first 
two time frames, it follows by induction on 
successive vectors that the lemma is true universally.
 • 

Lemma 2: Any signal in the circuit that has a final 
value of 0 (1), as specified by applying the 7-valued 
algebra and the optimistic update rule, may have a 
final value of 1 (0) in the actual physical circuit only 
if some robustly activated path fault caused an 
erroneous latch state in a previous vector. 

Proof. Intuitively, this lemma says that if the actual 
circuit (with one or more faults) is slowed down 
arbitrarily in vector N, the logic value to which any 
node stabilizes can be complementary to the final 
value predicted by the optimistic update rule only if 
some robustly activated fault caused an incorrect latch 
state in a previous vector. Note that the comparison 
here is between the signal in the actual circuit and the 
value obtained by the 7-valued algebra and the 
optimistic update rule. This lemma applies only to 
those signals that do not evaluate to X, i.e., signals 
that attain a 0 or 1 final value. 

We will first prove that the above is true in the 
time frame immediately after the first fault (or faults) 
was activated robustly. Then by induction on 
successive time frames, it will follow that this is true 
universally. The proof for the first time frame uses 
induction on the levels of the circuit. 

Consider primary and pseudo-primary inputs (latch 
outputs). Primary inputs cannot have different final 
values in the actual physical circuit. The only possible 
logic values for pseudo-primary inputs are s1 and p1 
(s0 and p0) if the final stabilization value is 1 (0). The 
lemma does not apply to signals with logic value X 
and -1 and -0 are never assigned to inputs of the 
combinational network. From Lemma 4, any signal 
with value s1 or s0, attains that value in the actual 
circuit irrespective of the absence or presence of any 
delay fault. By definition of the update rule, pseudo-
primary inputs with the value p1 (p0) attain the value 
s0 (s1) in 
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the actual circuit if robustly activated faults cause 
incorrect latch states. Thus, the lemma is true for 
pseudo-primary inputs and trivially true for the primary 
inputs to the combinational network. 

Now, we consider gates at level two. If the output 
of a gate, as evaluated by the algebra and the update 
rule, has a dominant value, i.e., the value is caused 
when at least one input has the dominant logic value, 
the signal may have the complementary non-dominant 
output value in the actual circuit only if there exists at 
least one input in the actual circuit with the opposite 
final value. Since this is not possible for primary and 
pseudo-primary inputs unless there is an activated fault 
causing an incorrect latch state, the lemma holds for 
all gates at level two. Such an argument can be easily 
extended to a gate with a non-dominant output final 
value. For inverters which are single input gates, the 
lemma is true trivally. • 

Consider path fault f and its activation vector N. We 
assume that latches have been updated optimistically 
in all prior vectors. For a circuit with fault f, robustness 
is guaranteed in the following sense: for a circuit with 
fault f, the path destination is guaranteed to latch an 
incorrect value irrespective of whether the state of the 
circuit is different from that evaluated by using the 
optimistic update rule. The destination flip-flop may 
latch an incorrect value either due to f or due to some 
other path being slow in vector N (combinational 
robustness) or due to the failure of off-path signals in 
sensitizing the fault. The last condition arises due 
to delayed robustly propagating transitions in previous 
vectors (sequential robustness). In either case, failures 
are not diagnosable. Moreover, the faults found 
detectable by this update procedure, if present in the 
circuit, are guaranteed to cause failure independent of 
other circuit delays. 

Proof of the Optimistic Update Theorem. The proof 
considers all possible primitive gate types and 
transitions (rising and falling) from the on-path input to 
the output of a gate lying on the path under 
consideration. We outline the proof for an AND gate, G, 
lying on the path corresponding to the fault f. The 
arguments for an OR gate are similar. 

Consider a falling transition at the on-path input of 
the AND gate G. Since the path fault f was robustly 
activated, the off-path input, as evaluated by the 7-valued 

algebra and the optimistic update rule, has to be s1. 
Considering the possibility of this off-path signal in the 
actual circuit to have a value different from s1 in the 
presense of other delay faults, we find that it is 
impossible as shown in Lemma 1. 

We next consider a rising transition on the on-path 
input of gate G. The off-path input can have a value 
p1, s1 or -1. If the value is s1, then this node is invariant 
with respect to circuit delays, as shown in Lemma 1. If 
the value is p1 or -1, from Lemma 2, we can assert 
that if a robustly activated fault caused a delayed 
transition at a latch input in the actual circuit, the off-
path signal may have a final value 0, i.e., logic value 
s0, p0 or -0. Even when the final value of this off-path 
input is indeed 0, the destination flip-flop of path f is 
guaranteed to latch in an incorrect value. • 

5. Conclusion 

The state variable update rule proposed in this article 
guarantees robustness in the presence of arbitrary delays 
in the circuit. It has applications to delay fault test 
generation and fault simulation of sequential circuits. 
The optimistic update rule can be used in both fault 
activation and fault effect propagation phases. A fault 
simulation algorithm using this update rule is described 
in a recent article [4]. As shown there, its impact on 
fault simulation is two fold: prediction of a higher and a 
more realistic fault coverage and reduction in the 
effort required for fault effect propagation. 
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