Skip to main content
Log in

Representation, similarity, and the chorus of prototypes

  • General Articles
  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

It is proposed to conceive of representation as an emergent phenomenon that is supervenient on patterns of activity of coarsely tuned and highly redundant feature detectors. The computational underpinnings of the outlined concept of representation are (1) the properties of collections of overlapping graded receptive fields, as in the biological perceptual systems that exhibit hyperacuity-level performance, and (2) the sufficiency of a set of proximal distances between stimulus representations for the recovery of the corresponding distal contrasts between stimuli, as in multidimensional scaling. The present preliminary study appears to indicate that this concept of representation is computationally viable, and is compatible with psychological and neurobiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adini, Y., Moses, Y., and Ullman, S. (1993), Face recognition: the problem of compensating for changes in illumination direction. CS-TR 21, Weizmann Institute of Science.

  • Altes, R. A. (1988), ‘Ubiquity of hyperacuity’,J. Acoust. Soc. Am. 85, 943–952.

    Google Scholar 

  • Anderson, C. H. and van Essen, D. C. (1987), ‘Shifter circuits: a computational strategy for dynamic aspects of visual processing’,Proceedings of the National Academy of Science 84, 6297–6301.

    Google Scholar 

  • Ashby, F. G., editor (1992),Multidimensional models of perception and cognition, Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Barsalou, L. W. (1987), ‘The instability of graded structure: implications for the nature of concepts’, in Neisser, U. (ed.),Concepts and conceptual development, pages 101–140. Cambridge Univ. Press.

  • Beals, R., Krantz, D. H., and Tversky, A. (1968), ‘The foundations of multidimensional scaling’,Psychological Review 75, 127–142.

    Google Scholar 

  • Bialek, W., Rieke, F., de Ruyter Van Steveninck, R. R., and Warland, D. (1991), ‘Reading a neural code’,Science 252, 1854–1857.

    Google Scholar 

  • Biederman, I. and Cooper, E. E. (1991), ‘Evidence for complete translational and reflectional invariance in visual object priming’,Perception 20, 585–593.

    Google Scholar 

  • Brooks, L. R. (1987), ‘Decentralized control of categorization: the role of prior processing episodes, in Neisser, U. (ed.),Concepts and conceptual development, pages 141–174. Cambridge Univ. Press.

  • Brunswik, E. (1956),Perception and the representative design of psychological experiments. U. of California Press, Berkeley, CA.

    Google Scholar 

  • Campbell, D. T. (1985), ‘Pattern matching as an essential in distal knowing’, in Kornblith, H. (ed.),Naturalizing epistemology, pages 49–70. MIT Press.

  • Cerella, J. (1987), ‘Pigeons and perceptrons’,Pattern Recognition 19, 431–438.

    Google Scholar 

  • Cummins, R. (1989),Meaning and mental representation’, MIT Press, Cambridge, MA.

    Google Scholar 

  • Cutzu, F. and Edelman, S. (1992), Viewpoint-dependence of response time in object recognition. CS-TR 10, Weizmann Institute of Science; also in Vision Research, 1994, in press.

  • Cybenko, G. (1989), ‘Approximations by superpositions of sigmoidal functions’,Math. Control, Signals, Systems 2, 303–314.

    Google Scholar 

  • Desimone, R., Albright, T. D., Gross, C. G., and Bruce, C. J. (1984), ‘Stimulus-selective properties of inferior temporal neurons in the macaque’,J. Neurosci. 4, 2051–2062.

    Google Scholar 

  • Duvdevani-Bar, S. and Edelman, S. (1994), ‘Representation by Chorus of Prototypes’, in preparation.

  • Edelman, S. (1993), ‘On learning to recognize 3D objects from examples’,IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 833–837.

    Google Scholar 

  • Edelman, S. (1994), Representation of similarity in 3D object discrimination. CS-TR 94-02, Weizmann Institute of Science.

  • Edelman, S. and Bülthoff, H. H. (1990), ‘Generalization of object recognition in human vision across stimulus transformations and deformations’, in Feldman, Y. and Bruckstein, A., editors,Proc. 7th Israeli AICV Conference, pages 479–487. Elsevier.

  • Edelman, S., Reisfeld, D., and Yeshurun, Y. (1992), ‘Learning to recognize faces from examples’, in Sandini, G., editor,Proc. 2nd European Conf. on Computer Vision, Lecture Notes in Computer Science, volume 588, pages 787–791. Springer Verlag.

  • Edelman, S. and Weinshall, D. (1991), ‘A self-organizing multiple-view representation of 3D objects’,Biological Cybernetics 64, 209–219.

    Google Scholar 

  • Feigl, H. (1958), ‘The “Mental” and the “Physical”’, in Feigl, H., Scriven, M., and Maxwell, G. (ed.),Concepts, theories, and the mind-body problem. U. of Minnesota Press, Minneapolis, MN.

    Google Scholar 

  • Feldman, J. A. and Ballard, D. H. (1982), ‘Connectionist models and their properties’,Cognitive Science 6, 205–254.

    Google Scholar 

  • Fodor, J. A. (1981),RePresentations. MIT Press, Cambridge, MA.

    Google Scholar 

  • Fujita, I., Tanaka, K., Ito, M., and Cheng, K. (1992), ‘Columns for visual features of objects in monkey inferotemporal cortex’,Nature 360, 343–346.

    Google Scholar 

  • Girosi, F. and Poggio, T. (1990), Networks and the best approximation property. A.I. Memo 1164, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

  • Granger, R. and Lynch, G. (1991), ‘Higher olfactory processes: perceptual learning and memory’,Current Opinion in Neurobiology 1, 209–214.

    Google Scholar 

  • Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. (1972), ‘Visual properties of cells in inferotemporal cortex of the macaque’,J. Neurophysiol. 35, 96–111.

    Google Scholar 

  • Harnad, S., editor (1987).Categorical Perception: The Groundwork of Cognition. Cambridge University Press, New York.

    Google Scholar 

  • Hartline, H. K. (1938), ‘The response of single optic nerve fibers of the vertebrate eye to illumination of the retina’,Am. J. Physiol. 121, 400–415.

    Google Scholar 

  • Hartman, E. J., Keeler, J. D., and Kowalski, J. M. (1990), ‘Layered neural networks with Gaussian hidden units as universal approximations’,Neural Computation 2, 210–215.

    Google Scholar 

  • Haussler, D. (1992), ‘Decision theoretic generalizations of the PAC model for neural net and other learning applications’,Information and Computation 100, 78–150.

    Google Scholar 

  • Hummel, J. E. and Biederman, I. (1992), ‘Dynamic binding in a neural network for shape recognition’,Psychological Review 99, 480–517.

    Google Scholar 

  • Kirby, M. and Sirovich, L. (1990), ‘Application of the Karhunen-Loève procedure for characterization of human faces’,IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 103–108.

    Google Scholar 

  • Kornblith, H. (1993),Inductive inference and its natural ground. MIT Press, Cambridge, MA.

    Google Scholar 

  • Li, L., Miller, E. K., and Desimone, R. (1993), ‘The representation of stimulus familiarity in anterior inferior temporal cortex’,J. of Neurophysiology 69, 1918–1929.

    Google Scholar 

  • Margolis, J. (1991),The truth about relativism. Basil Blackwell, Oxford, UK.

    Google Scholar 

  • Markman, E. (1989),Categorization and naming in children. MIT Press, Cambridge, MA.

    Google Scholar 

  • Marr, D. and Poggio, T. (1977), ‘From understanding computation to understanding neural circuitry’,Neurosciences Res. Prog. Bull. 15, 470–488.

    Google Scholar 

  • Marr, D. and Poggio, T. (1979), ‘A computational theory of human stereo vision’,Proceedings of the Royal Society of London B 204, 301–328.

    Google Scholar 

  • McCollum, J., Larson, J., Otto, T., Schottler, F., Granger, R., and Lynch, G. (1991), ‘Short-latency single-unit processing in olfactory cortex’,Journal of Cognitive Neuroscience 3, 293–299.

    Google Scholar 

  • Miller, J. and Eimas, P. (1979), ‘Feature detectors and speech perception: a critical evaluation’, n Albrecht, D., editor,Recognition of Pattern and Form (Lecture Notes in Biomathematics), volume 44, pages 111–145, Springer, Berlin.

    Google Scholar 

  • Murphy, G. L. and Medin, D. L. (1985), ‘The role of theories in conceptual coherence’,Psychological Review 92, 289–316.

    Google Scholar 

  • Nosofsky, R. M. (1991), ‘Tests of an exemplar model for relating perceptual classification and recognition memory’,Journal of Experimental Psychology: Human Perception and Performance 17, 3–27.

    Google Scholar 

  • Perrett, D. I., Mistlin, A. J., and Chitty, A. J. (1989), ‘Visual neurones responsive to faces’,Trends in Neurosciences 10, 358–364.

    Google Scholar 

  • Perrett, D. I., Rolls, E. T., and Caan, W. (1982), ‘Visual neurones responsive to faces in the monkey temporal cortex’,Exp. Brain Res. 47, 329–342.

    Google Scholar 

  • Platt, J. (1991), ‘A resource-allocating network for function interpolation’,Neural Computation 3, 213–225.

    Google Scholar 

  • Poggio, T. (1990), ‘A theory of how the brain might work’,Cold Spring Harbor Symposia on Quantitative Biology LV, 899–910.

    Google Scholar 

  • Poggio, T. and Edelman, S. (1990), ‘A network that learns to recognize three-dimensional objects’,Nature 343, 263–266.

    Google Scholar 

  • Poggio, T., Fahle, M., and Edelman, S. (1992), ‘Fast perceptual learning in visual hyperacuity’,Science 256, 1018–1021.

    Google Scholar 

  • Poggio, T. and Girosi, F. (1989), A theory of networks for approximation and learning. A.I. Memo No. 1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

  • Poggio, T. and Girosi, F. (1990), ‘Regularization algorithms for learning that are equivalent to multilayer networks’,Science 247, 978–982.

    Google Scholar 

  • Poincaré, H. (1913/1963),Mathematics and Science: Last Essays Dover, New York, translated by J. W. Bolduc.

    Google Scholar 

  • Putnam, H. (1988),Representation and reality, MIT Press, Cambridge, MA.

    Google Scholar 

  • Quine, W. V. O. (1960),Word and object, MIT Press, Cambridge, MA.

    Google Scholar 

  • Quine, W. V. O. (1969), ‘Natural kinds’, inOntological relativity and other essays, pages 114–138. Columbia University Press, New York, NY.

    Google Scholar 

  • Rhodes, G. (1988), ‘Looking at faces: first-order and second-order features as determinants of facial appearance’,Perception 17, 43–63.

    Google Scholar 

  • Rolls, E. T., Baylis, G. C., Hasselmo, M. E., and Nalwa, V. (1989), ‘The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey’,Exp. Brain Res. 76, 153–164.

    Google Scholar 

  • Sagi, D. and Tanne, D. (1994), ‘Perceptual learning: learning to see’,Current Opinion in Neurobiology 4, 195–199.

    Google Scholar 

  • Sakai, K. and Miyashita, Y. (1992), ‘Neural organization for the long-term memory of paired associates’,Nature 354, 152–155.

    Google Scholar 

  • Schwartz, E. L. (1985), ‘Local and global functional architecture in primate striate cortex: outline of a spatial mapping doctrine for perception’, in Rose, D. and Dobson, V. G., editors,Models of the visual cortex, pages 146–157. Wiley, New York, NY.

    Google Scholar 

  • Selfridge, O.G. (1959), ‘Pandemonium: a paradigm for learning’, inThe mechanisation of thought processes. H.M.S.O., London.

    Google Scholar 

  • Shepard, R. N. (1980), ‘Multidimensional scaling, tree-fitting, and clustering’,Science 210, 390–397.

    Google Scholar 

  • Shepard, R. N. (1987), ‘Toward a universal law of generalization for psychological science’,Science 237, 1317–1323.

    Google Scholar 

  • Snippe, H. P. and Koenderink, J. J. (1992), ‘Discrimination thresholds for channel-coded systems’,Biological Cybernetics 66, 543–551.

    Google Scholar 

  • Spitzer, H., Desimone, R., and Moran, J. (1988), ‘Increased attention enhances both behavioral and neuronal performance’,Science 240, 338–340.

    Google Scholar 

  • Stich, S. (1990),The fragmentation of reason, MIT Press, Cambridge, MA.

    Google Scholar 

  • Tanaka, K. (1992), ‘Inferotemporal cortex and higher visual functions’,Current Opinion in Neurobiology 2, 502–505.

    Google Scholar 

  • Tanaka, K. (1993), ‘Column structure of inferotemporal cortex: “visual alphabet” or “differential amplifiers”?’, inProc. IJCNN-93, Nagoya.

  • Thurstone, L. L. (1927), ‘The law of comparative judgement’,Psychological Review 34, 273–286.

    Google Scholar 

  • Turk, M. and Pentland, A. (1991), ‘Eigenfaces for recognition’,J. of Cognitive Neuroscience 3, 71–86.

    Google Scholar 

  • Tversky, A. (1977), ‘Features of similarity’,Psychological Review 84, 327–352.

    Google Scholar 

  • Ullman, S. and Basri, R. (1991), ‘Recognition by linear combination of models’,IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 992–1005.

    Google Scholar 

  • Watanabe, S. (1985),Pattern recognition: human and mechanical Wiley, New York.

    Google Scholar 

  • Weiss, Y. and Edelman, S. (1993), Representation with receptive fields: gearing up for recognition. CS-TR 93-09, Weizmann Institute of Science.

  • Weiss, Y., Edelman, S., and Fahle, M. (1993), ‘Models of perceptual learning in vernier hyperacuity’,Neural Computation 5, 695–718.

    Google Scholar 

  • Westheimer, G. (1981), ‘Visual hyperacuity’,Prog. Sensory Physiol. 1, 1–37.

    Google Scholar 

  • Young, M., Tanaka, K., and Yamane, S. (1992), ‘On oscillating neuronal responses in the visual cortex of the monkey’,J. of Neurophysiology 67, 1464–1474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelman, S. Representation, similarity, and the chorus of prototypes. Mind Mach 5, 45–68 (1995). https://doi.org/10.1007/BF00974189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00974189

Key words

Navigation