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Abstract. This paper proposes a learning criterion for stochastic rules. This criterion is developed by extending 
Valiant's PAC (Probably Approximately Correct) learning model, which is a learning criterion for deterministic 
rules. Stochastic rules here refer to those which p robabilistically asign a number of classes, { Y}, to each attribute 
vector X. The proposed criterion is based on the idea that learning stochastic rules may be regarded as probably 
approximately correct identification of conditional probability distributions over classes for given input attribute 
vectors. An algorithm (an MDL algorithm) based on the MDL (Minimum Description Length) principle is used 
for learning stochastic rules. Specifically, for stochastic rules with finite partitioning (each of which is specified 
by a finite number of disjoint cells of the domain and a probability parameter vector associated with them), this 
paper derives target-dependent upper bounds and worst-case upper bounds on the sample size required by the 
MDL algorithm to learn stochastic rules with given accuracy and confidence. Based on these sample size bounds, 
this paper proves polynomial-sample-size learnability of stochastic decision lists (which are newly proposed in 
this paper as a stochastic analogue of Rivest's decision lists) with at most k literals (k is fixed) in each decision, 
and polynomial-sample-size learnability of stochastic decision trees (a stochastic analogue of decision trees) with 
at most k depth. Sufficient conditions for polynomial-sample-size learnability and polynomial-time learnability 
of any classes of stochastic rules with finite partitioning are also derived. 

Keywordsl Learning from examples, stochastic rules, PAC model, MDL principle, stochastic decision lists, sto- 
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1. Introduction 

In 1984, Valiant introduced the PAC (Probably Approximately Correct) learning model 
(Valiant, 1984), which is a complexity-theoretic criterion for learning functions (or we call 
them deterministic rules). The goal in the PAC model is to find a good approximation of 
an unknown "function" by drawing random examples of it independently. Let random ex- 

• amples in the form of (X, Y) (Y = f*(X),  f *  is called a target function or a target rule), 
X fi 0(  = {0, 1} n, n is a positive integer), of an unknown Boolean function on 0(, be inde- 
pendently drawn according to the probability distribution Q(X) over 0( ( X  is called the 

" domain, and f f  = {0, 1}, the set of possible values which the target function takes, is 
called the range. The random variable X E ~ is called an attribute vector, and the variable 
Y fi f f  is called a class). A learning algorithm takes these examples as input and outputs, 
with probability at least 1 - 6, a function g (called a hypothesis) that approximates f*  
in the sense that the probability of f *(X) ~ g(X) is at most e for X drawn independently 
according to Q(X). Here e and 6 are some suitably small positive real numbers, and are 
respectively called the accuracy parameter and confidence parameter. The learning algorithm 

An extended abstract of this paper appeared in Proceedings of the 3rd Annual Workshop on Computational Learn- 
ing Theory. 
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is required to run efficiently in the sense that the needed sample size and the computation 
time are both polynomial in l/e, I/d, and n. 

In the original PAC model, examples were assumed to be perfectly noise-free. In the real 
world, however, examples will be afflicted with noise or other uncertainty (e.g., uncertainty 
which is due to lack of relevant attributes, etc.), and some examples with identical attributes 
may in fact differ in class values. That is, randomly drawn examples are not always in the 
form of (X, if(X)) for some target function f*. "0" is sometimes possibly assigned to a 
given X, and 'T '  is also sometimes possibly assigned to X with identical attribute values. 
The question of how to deal with such a kind of uncertainty in classification has been one 
of the main obstacles to the application of the conventional PAC model to actual problems. 

Several noise models have been proposed within the PAC model: See, for example, Valiant 
(1985), Kearns and Li (1988), Angluin and Laird (1988), and Sloan (1988). In all of these, 
a rule to be learned is still assumed to be a function, and uncertainty in classification is 
dealt with as "noise" filtered out of the target function. For example, Angluin and Laird 
proposed a misclassification noise model (Angluin & Laird, 1988) as follows: With proba- 
bility 1 - v the class value for an example of the target function f* is correctly reported, 
and with probability v it is incorrectly reported, where v is an unknown noise probability. 
This kind of explanation for uncertainty is, however, too restricted since the rate of mis- 
classification noise is uniform over all attribute vectors. Thus, we need to model the mis- 
classification uncertainty itself without using the notion of noise filtered out through the 
target function. 

Haussler generalizes the PAC model in a novel approach to a model of learning under 
uncertainty (Haussler, 1989) by letting f f  be a continuous range. In Haussler's model, exam- 
pies are assumed to be generated from a fixed probability distribution on 3( x ,~ (X: 
domain, ,~: range), where the class Y E .~ for a given X E 3( is not always determined 
by a "target function." The goal of Haussler's model is to find a good approximation of 
the function with minimal loss rather than that of the target function. 

In this paper, we propose a new computational model of learning under uncertainty. It 
has been developed from the viewpoint of statistical estimation theory rather than from 
the decision-theoretic viewpoint on which Haussler's model is based. In our model, a rule 
refers not to a function but to a conditional probability distribution over the range f f  for 
a given input attribute vector X in JY. We refer to such rules as stochastic rules in this 
paper. The notion of stochastic rules provides a natural way of dealing with uncertainty 
in classification. Thus, the goal of learning stochastic rules is to learn from examples not' 
only the deterministic classification structure but also the uncertainty itself in the classifica- 
tion. This uncertainty is represented by 'probability.' A model of learning stochastic rules 
has also been considered by Kearns and Schapire (1990) independently of this work and" 
they call such rules probabilistic concepts. 

The purpose of this paper is twofold. First, we develop a learning criterion for stochastic 
rules by extending the PAC model in a manner different from that of Haussler's approach. 
Our proposed criterion is predicted on the basic idea that learning stochastic rules may 
be regarded as estimation of a conditional probability distribution over the range ,~ for 
a given attribute vector X in X. Here we assume that the "target rule," which generates 
examples, belongs to some known class. Second, we derive upper bounds on the sample 
complexity of learning stochastic rules withfinite partitioning (each of which is specified 
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by a countable model, belonging to a finite set, and a specific type class-assignment proba- 
bility parameter vector) and also derive sufficient conditions for polynomial-sample-size 
learnability and polynomial-time learnability of any given class of stochastic rules with 
finite partitioning. Here the sample complexity refers to the smallest sample size over all 
learning algorithms required for our criterion to be satisfied. 

Let us now briefly summarize our technical approach and discuss some of the previously 
reported research upon which we base our work. 

Our proposed learning criterion is a generalization of Valiant's PAC model in the follow- 
ing three senses: 1) The objects to be learned are classes of stochastic rules rather than 
those of functions. Functions can be regarded as specific types of stochastic rules whose 
class-assignment probabilities are all 0 or 1.2) Learning confidence (the probability that 
the hypothesis lies within some accuracy of the target rule) is measured in terms of a prod- 
uct probability distribution on 0( × ~ .  3) The difference between a hypothesis and the 
target rule is measured in terms of some notions of deviation between two probability dis- 
tributions (e.g., the Hellinger distance, the variation distance, the Kullback-Leibler diver- 
gence, and the quadratic distance, etc.) rather than the probability of an erroneous predic- 
tion, i.e., the probability of a symmetric difference (Q[X^: f (X)  ~ f*(X)] (Q(X) : proba- 
bility distribution on the domain, f*: a target function, f: a hypothesis), which was used 
in the original PAC model. 

Let e be an accuracy parameter and let b be a confidence parameter. In our definition 
of learnability of stochastic rules, a learning algorithm is required to take as input indepen- 
dent random examples generated independently according to Q(X)P*(YIX) and to output, 
with probability at least 1 - 6, a hypothesis P such that d(P*,/6) < e for the target rule 
P* with respect to some distance measure d, with sample size and computation time which 
are both polynomial in l/e, 1/6, and n. This model of learnability contains Valiant's PAC 
learning model as a special case where targets are conditional probability distributions which 
take values in {0, 1} only. We also stress here that Haussler's model (Haussler, 1989; 1990), 
which inspired Kearns and Schapire's model (Kearns & Schapire, 1990), is essentially dif- 
ferent from our proposed model in the sense that the former requires that the expected 
loss for the hypothesis come within e of the minimum one, but the latter requires that a 
hypothesis come within e of the target rule itself with respect to some distance measure. 

The learning algorithm used to derive our upper bounds on the sample complexity is 
different from those which have been used in the conventional PAC model or modified 
PAC models. The following types of algorithms have proven to perform well in the context 
of learning functions. 1) Consistent algorithms; algorithms outputting a hypothesis consis- 
tent with the given examples (Valiant, 1984; Rivest, 1987, etc.). 2) Minimum ,disagreement 
algorithms; algorithms outputting a hypothesis that best or approximately best fits the given 
examples (Kearns & Li, 1988; Sloan, 1988; Angluin & Laird, 1988, etc.). Examples of 
the type 1) algorithms include Blumer et al's Occam algorithm (Blumer, et al., 1987), which 
outputs an approximately minimum hypothesis which is consistent with the given examples. 
Examples of the type 2) algorithms include Kearns and Schapire's Occam algorithm (Kearns 
& Schapire, 1990), which outputs a hypothesis that approximately best fits the given exam- 
ples and typically must be shorter than the sample size. 

However, in the presence of uncertainty, one cannot simply consider that an optimal 
hypothesis is that which best fits the given examples because such a hypothesis may be 
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affected by statistical irregularities of the examples. That is, it may be "overfitting" the 
given examples. We use an algorithm based on the MDL (Minimum Description Length) 
principle as a learning algorithm for stochastic rules in order to avoid the overfitting prob- 
lem and to make the hypotheses converge to the target rule faster. We refer to this algorithm 
as an MDL algorithm. 

The MDL principle, on which our learning algorithm is based, was developed by Rissanen 
(1978; 1983; 1984; 1986; 1989), Wallace and Boulton (1968) and Solomonoff (1964), etc. 
This principle gives a strategy for selecting the best hypothesis from the class of hypotheses. 
The MDL principle asserts that the best hypothesis is that which requires the least code 
length in bits for the encoding of itself and the given examples observed through it. Intu- 
itively, the best hypothesis is selected on the basis of the trade-off between its simplicity 
and its goodness of fit to the given examples. 

The validity of the MDL principle in inductive learning has been reported in several 
empirical studies, e.g., inferring decision trees (Quinlan & Rivest, 1989), shape reconstruc- 
tion (Pednault, 1989), shape recognition (Segen, 1989), classification rules with hierarchical 
parameter structures (Yamanishi, 1989; 1990a), etc. This paper specifically presents an 
MDL algorithm for learning stochastic decision lists (a stochastic analogue of Rivest's deci- 
sion lists (Rivest, 1987). Further, this paper introduces a general family of stochastic rules, 
called stochastic rules wtih finite partitioning, each of which is specified by a countable 
model and a probability parameter vector, and presents an MDL algorithm for learning 
them. Our method for applying the MDL principle to learning from examples is basically 
predicated on Quinlan and Rivest's method (Quinlan & Rivest, 1989), but our algorithm 
gives a general strategy for learning general stochastic rules with finite partitioning. 

In this paper, we derive upper bounds on the sample size required by the MDL algorithm 
to output, with probability at least 1 - 6, a hypothesis which lies within { of the target 
rule with respect to the HeUinger distance or the variation distance. We derive them apply- 
ing the type of the proof techniques used in Barton (1985) and Barron and Cover (1991). 
The sample-complexity estimation techniques used in this paper are different from the uni- 
form convergence method used by Haussler (1989; 1990). He considers the case in which 
the distance between a hypothesis and the target function can be reduced to the difference 
of the expectations of some appropriate loss function. In his model, the uniform convergence 
method is used to estimate the rate at which the minimum empirical loss converges to the 
minimum expected loss and thereby give upper bounds on the sample complexity of learn- 
ing functions. Unlike the uniform convergence method, in this paper, we directly estimate 
the probability with which the distance between the target rule and the MDL rule is less 
than a fixed accuracy parameter, making use of some properties of the MDL rules. 

Before our investigation, Barron and Cover have proved that the Hellinger distance between 
the target probability distribution and the one estimated by the MDL principle is asymp- 
totically bounded by a statistical quantity, what we call the 'index of resolvability,' which 
quantifies the complexity of the hypothesis space and its approximation error to the target 
distribution (Barron & Cover, 1991). Unlike Barron and Cover's results, our result gives 
a new aspect to the convergence for the MDL algorithm in that, in our approach, we measure 
the rate of convergence in terms of sample complexity as a function of the accuracy param- 
eter, the confidence parameter and the parameters specifying the target rule. Further notice 
that our results are concerned with only the cases where the target rule is parametric. 
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Let N0(1/e, lift, P*) be the smallest number of examples required by the MDL algorithm 
to produce, with probability at least 1 - 6, a hypothesis that lies within e of the target 
rule, P* with respect to the Hellinger distance. Ignoring time complexity, we prove that 

No ,~ , t '  ~ m* e(M*) 1 ½~ 
= 0 l o g - -  + + - l o g  , 

e e e 

where m* is the dimension of the probability parameter vector space of the target rule, 
and e(M*) is the description length for the countable model of the target rule, Notice that 
this sample complexity bound depends on the target rule. 

Further, for stochastic rules with finite partitioning, we also derive an upper bound on 
the sample complexity of learning by the ML (Maximum Likelihood) algorithm, and com- 
pare it with that by the MDL algorithm. Here the ML algorithm is an algorithm that, from 
given examples, outputs a hypothesis that maximizes the likelihood for the examples, equiv- 
alently, minimizes the description length for them, ignoring rule complexities. We prove 
that the upper bound on the sample size required by the ML algorithm is of the same order 
as that for the MDL algorithm for the case in which the target rule has the largest-dimensional 
probability parameter vector over all hypotheses and, for the encoding of the countable 
models, we use a code-length function based on the uniform distribution over the set of 
countable models. 

For a given class G of stochastic rules with finite partitioning, satisfying some appropriate 
conditions, we also derive an upper bound on the smallest sample size N0(1/e, 1/6, n) re- 
quired by the MDL algorithm to produce, "for all" distribution Q on JY, "for all" target 
rule P* E G, with probability at 1 - 6, a hypothesis that lies within e of P*. N0(1/e, 1/8, n) 
is estimated as follows. 

N O , ~ ,  = O log + 
C e 

- -  + l l ° g  1 ~  " e 

( (G)  is the maximum value of the dimension of a probability parameter vector specifying 
a rule in G. Y-~is the set of all countable models, each of which specifies a rule in G. 
e and 6 are respectively accuracy and confidence parameters. This sample complexity estima- 
tion implies that if ( ( C )  and log 1 2781 are polynomial in n, then G is statistically learnable 

" (=learnable with sample size polynomial in l/e, 1/t5, and n) with respect to the Hellinger 
distance, the variation distance, and the quadratic distance. Using this sufficient condition 
for statistical learnability, we prove that the class of stochastic decision lists with at most 

• k literals in each term and the class of stochastic decision trees (a stochastic analogue of 
decision trees) with at most k depth are statistically learnable, where k is fixed. Further, 
we derive a sufficient condition for polynomial learnability (learnability in time polynomial 
in l/e, 1/t5, and n) of any given class of stochastic rules with finite partitioning. This condi- 
tion is characterized in terms of the existence of a polynomial-time algorithm that outputs 
a hypothesis which lies within a small accuracy of an output of the MDL algorithm. 
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The organization of the rest of the paper is as follows: Section 2 gives a formal definition 
of stochastic rules and a number of their examples. Section 3 gives a learning criterion 
for stochastic rules. Section 4 gives the M D L  algorithm. Section 5 gives bounds on the 
sample sizes required by the MDL algorithm and the ML algorithm. Section 6 discusses 
learnability of classes of  stochastic rules with finite partitioning. 

2. Definition of  stochastic rules and some examples 

In this section, a formal definition of stochastic rules and a number of their examples are 
presented. 

2.L General definition of  stochastic rules 

Let n be a positive integer. Let ~ / ( i  = 1 . . . . .  n) be finite or countably infinite and .~ 
• de f  

be fimte. Here S( = .9( 1 x . . .  x X n is a measurable set which we call the domain and 
is a set which we call the range• X = (x 1 . . . .  , Xn) E ~ is called an attribute vector, 

and Y E f f  is called a class. Let ~-~ be a family of  probability distributions on 5(  x ft .  
Let .7 be a family of functions from .X- to .~. We call f E .7 a deterministic rule. Let 

Q(X) be a probability distribution over Of. The conventional learning problem dealt with 
in Valiant's PAC model (Valiant, 1984) is as follows: Given finite training examples (a se- 
quence of examples is called a sample) D N = D 1 . . .  DN,  ( O  i = ( x i ,  Yi) E ~ × ,~ ,  

Yi = f*(xi), f *  E .7, i = 1 . . . .  , N) drawn independently according to some unknown prob- 
ability distribution 7r E ~-J, find a good approximation of an unknown deterministic rule 
f *  E .Twhich we call a target function. Notice that in this learning framework, X is gen- 
erated according to the distribution Q(X), but Y is assumed to be uniquely determined 
by X; i.e., Y = f*(X).  We will extend this learning problem to the case in which Y is 
not uniquely determined by X but all classes in f f  are probabilistically assigned to X. 

First note that for each 7r E ~-9 7r may be resolved as follows: 

r (X ,  Y) = Q ( X ) P ( Y [ X ) ,  (1) 

where X is a random variable on A'and Yis a random variable on f t .  In the sequel, X E S(, " 
Y E .~ denote random variables, and x E .X, y E f f  denote observed values• Q(X) is a 
probability distribution over .)( and P(Y [ X) is a conditional probability distribution over 

for a given X E .X. We call P(Y[  X) a stochastic rule. In other words, a stochastic 
rule assigns all classes in ...O to each attribute vector X, giving each class a specific proba- 
bility for each individual attribute vector• 

In the discussion below, we consider only classes of stochastic rules with finite partition- 
ing, each of which is specified by a finite number of  partitions of the domain .X and real- 
valued probability parameter vectors associated with the partitions. 
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Definition 1 (Stochastic rules with finite partitioning). A finite set {Si}i=l ..... m (m < co) 

of subsets of 3(  is called (f inite)  part i t ioning o f  5)( if JY = U m= 1S i, Si r) Sj = 4~ (i ;~ j). 
Each Si (i = 1 . . . . .  m) is called a disjoint cell o f ) ( .  The probabili t ies {Pi(J) } i=l ...re,j=1 . . . . .  s 

• d e f  . .  ' 

associated with {Si}i=l ..... m are defined by Pi(J) = the probablhty that Y = j for X E Si, 
where Pi(J) ~ [0, 1] (i = 1 . . . . .  m, j = 1 . . . . .  s). A stochastic rule with f ini te  parti t ion- 
ing (specified by a finite number of partitions {Si}i=l . . . . . .  and a set of associated proba- 
bilities, {Pi(J)}i=l . . . . . .  j=l ..... ~) is defined by the following type of stochastic rule: 

If  x E $1, 
then Y = 1 with probability p1(1), 

else if x fi $2, 
then Y = 1 with probability p2(1), 

. . . .  Y = s with probability pl(s) 

. . . .  Y = s with probability p2(s) 

else if x fi Sin-l, 
then Y = 1 with probability pro-l(1) . . . . .  Y = s with probability Pm_l(S) 

else Y = 1 with probability pm(1), . . . ,  Y = s with probability Pm(S) (2) 

Letting GFp be the class of all possible stochastic rules with finite partitioning, any class 
G of stochastic rules with finite partitioning is defined as a subset of GFp. [] 

Explicitly, we denote a class G of stochastic rules with finite partitioning as 

G = {P(Y] X : 0 -~ M )  E GFp: M E Y-7(', 0 ~ O(M)}. 

Here P ( Y I  X: 0 -~ M) is a stochastic rule specified by a real-valued vector 0 = (pl(1), 
. . . .  p l ( s  - 1), . . . ,  pm(1) . . . . .  pm(S -- 1)) which we call a probabil i ty  parameter  vector 
and by countable parameter M which we call a countable model .  Here M specifies finite 
partitioning of the domain A-with m disjoint cells. O(M) C [0, 1] 'n(s-1) is a set of probabil- 
ity parameter vectors associated with M, and YTFis a set of all countable models, each of 
which specifies finite partitioning of the domain 3(. We define dim O(M) as the dimension 
of O(M), i.e., dim O(M) = m(s - 1). Notice that pi(s) is determined by pi(s) = 1 - 
Zs-1 j=l Pi(J) (i = 1, . . . ,  m). 

Let G be a class of stochastic rules• In our formulation, the learning problem can be 
stated simply: "Given finite training examples O N = D1 . • • DN, (Di = (xi, Yi) E ~ × ..~ 

i = 1 . . . . .  N) drawn independently according to some unknown product probability distribu- 
" tion on 3(  x if;  Q(X)P*(YI  X)(P*(Y [ X) is assumed to belong to G),  find a good approx- 

imation of the unknown stochastic rule P*(Y I X) E G efficiently." P*(Y ] X) is called a 
target rule. 

Angluin and Laird's misclassification noise model (Angluin & Laird, 1988) can be thought 
of as a model of learning specific type stochastic rules. Angluin and Laird's misclassifi- 
cation noise model is formulated as follows: With probability 1 - v the class value for 
an example of  the target function f* (Boolean function) is correctly reported, and with 
probability v it is incorrectly reported, where v is an unknown noise probability. Letting 
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= {0, 1}, learning the target funct ionff  and estimating the noise probabil i ty v in such 
a noise model  can be regarded as learning a stochastic rule P ( Y  I X) such that Y = f*(X) 
with probabili ty 1 - v and Y = 1 - i f (X)  with probabil i ty v, where the probabili ty 
parameter associated with the rule is only u. That is, Angluin and Laird are trying to deal 
with classification uncertainty by filtering out the misclassification noise, but such a kind 
of  classification uncertainty can be modeled using a specific conditional probabil i ty distri- 
bution in our stochastic setting. 

2.2.  S tochast ic  decis ion lists and  s tochast ic  decis ion trees 

In this subsection, let us introduce a class of stochastic rules with finite partitioning, called 
stochast ic  decision lists. The stochastic decision lists are regarded as a stochastic analogue 
of Rivest's decision lists (Rivest, 1987). 

Let 3(  1 = . . .  = 3(n = .~ = {0, 1}. Let n be the number of attributes and let k be 
a given positive integer. 

Each variable xi takes a value in {0, 1}, and is associated with two literals: xi itself and 
its negation ~ .  A natural assignment gives a value to ~ : J?i = 0 i f x i  = 1, otherwise xi = 1. 
We denote the set of 2n literals as Ln de=f {Xl, Xl . . . . .  Xn, Xn}" A term is a conjunction 

of literals and can be interpreted a mapping from assignments into {0, 1}. For  example, 
the term xl A -~2 A x3 is 1 if  and only if  x2 = 0 and both Xl and x 3 are 1. The size of a 
term is the number of literals. We denote the set of all terms of size at most k as 7~'; i.e., 

~ de__f {Zi~ A Zi2 A . . .  A Zid , 0 <-- d ~ k, Zi E Zn,  Z i. ~;~ z i . ( j  ~ k), ~ ~ z i~ ( j  ~ k)}. Here 
tZ " J  " J ~ J 

T~ includes the constant function "1, '  which is regarded as a term with d = 0. We denote 
an ordered set of m terms: tl ,  • • . ,  tm a s  ( t l ,  . . . ,  t m ) ,  where t m is the constant function 
1 and ti ~ tj for i ~ j .  We denote a set ofnall ordered sets in the form ( f l  . . . .  , t m) as 
£~; i.e., I ~  %f { M  = 01 . . . .  , t m ) : t i E T~ - {1} (i = 1 . . . .  , m - 1), t i ~ tj (i ~ j ) ,  
t m = 1, 1 < m < [T~ J}. Pi denotes the probabili ty that Y = 1 for X such that h(X) 
. . . .  = t /- l(X) = 0 a n d  ti(X) = 1 (i = 1 . . . . .  m), where 0 < Pi < 1 (i = 1 . . . . .  m).  
We let 0 de=f (p;  . . . . .  Pro) be a probabil i ty parameter  vector. 

We define a stochast ic  decision list specified by 0 = (p;  . . . . .  Pm) ,  M = ( h ,  • • . ,  tm) , 
and k as a stochastic rule which gives a class-assignment; Y = 1 with probabil i ty Pi 
and Y = 0 with probabil i ty 1 - Pi for arbitrary X, where i is the least index such that 
t i ( X )  = 1. That is, a stochastic decision list specified by 0 and M has the following ° 
semantics: 

For an attribute vector X E 3(, 
if  t 1 = 1 for X then Y = 1 with probabili ty Pl (Y = 0 with 1 - Pl)  
else if  t2 = 1 for X then Y = 1 with probabili ty P2 (Y = 0 with probabili ty 1 - P2) 

else if  tin-1 = 1 for X then Y = 1 with probability Pro-1 ( Y  = 0 with probability 1 - Pro- l )  

else Y = 1 with probabil i ty Pm for all X (Y = 0 with probabili ty 1 - Pro)" 
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We call M a decision form and k a degree. For a given decision form M = ,(tl • • • tm), 
we call m the depth of M and ti the i-th decision, k specifies the level of fineness of the 
partitioning. M specifies the partitioning of 3(. To define a stochastic decision list, we must 

first fix k, and then determine M and having fixed k and M, determine 0. Thus, 0, M, 
and k form a hierarchical structure. We may write this structure as: 

0 -~ M - ~  k. (3) 

In this paper, for a fixed k, P ( Y I  X : 0 -~ M)  denotes a stochastic decision list specified 

by 0 and M. 

Definition 2 (Class of stochastic decision lists). Let CFe be the set of all stochastic rules 
with finite partitioning on {0, 1} n × {0, 1}. For a fixed k, a class o f  all stochastic deci- 
sion lists with degree at most k, which we denote as Gkz, is defined as: For a given n, 
GokL = {P(Y[ X : 0 -~ M)  ~ GFe : M ~ r~,  0 E O(M)}, where O(M) = [0, 1] m is a 
set of probabil i ty parameter  vectors associated with M, and m = dimO(M).  When we em- 
phasize the number n of  attributes, we will indicate this in parentheses, as in G~L(n ). 

[]  

The definition of stochastic decision lists is easily extended to the case where f f  = 
{1, . . . ,  s}. Each 0 E O(M) is written as: 0 = (pl(1), . . . ,  pl(s  - 1) . . . .  , pro(l), . . . ,  

p m ( S  - -  1)) where Pi(J) denotes the probabili ty with which Y = j for X such that tl(X) 
= . . .  = ti_l(X ) = 0 and ti(X) = 1, where O(M) C [0, 1] m(s-1). 

Let us take one more example of classes of stochastic rules with finite partitioning, called 
stochastic decision trees. Let 5(  = {0, 1} n and f f  = {1, . . . ,  s}. Let Sn = {xl, . . . ,  xn} 
where x i is a variable which takes a values in {0, 1} (i = 1, . . . ,  m). A stochastic decision 
tree is a binary tree with probabilistic class-assignment where each internal node is labeled 
with a variable in S~, and at the i-th leaf (that we assume all leaves are properly ordered) 
the c l a s s j  is assigned with probabili typi(j)  (i = 1, . . . ,  m, j = 1, . . . ,  s). m is the num- 
ber of leaves. The depth of a stochastic decision tree is the length of the longest path from 
the root to a leaf. The tree form of a stochastic decision tree is the binary tree where the 
class-assignment is ignored. That is, the structure of a stochastic decision tree is decom- 

posed into its tree form and its probabili t ies for class-assignment. 
Each stochastic decision tree defines a conditional probabili ty distribution over .~ for 

a given attribute vector X as follows: At each internal node the left edge to a child is taken 
if the variable at the internal node is 0, otherwise the right edge is taken. This assignment 

"determines a unique path from a root to a leaf when an attribute vector X is given. The 

probability with which each class is assigned to X is the probability given at the leaf reached. 
That is, stochastic decision trees are regarded as a stochastic analogue of  decision trees 
(see, for example, Rivest (1987, p. 233-234) and Quinlan and Rivest (1989)). 

For a fixed positive integer k, let f~ be the set of  binary tree forms with depth at most k. 
Let P(Y[ X : 0 -~ M) denote a stochastic decision tree specified by a tree form M ~ f~ 

and a probability parameter vector 0 = (pl(1), . • . ,  pl(s  - 1) . . . . .  pm(1 )  . . . . .  p m ( S  - -  1)).  

m is the number of leaves of  the stochastic decision tree. Notice that pi(s) is determined 
Es-1 

by 1 - j=l Pi(J) (i = 1 . . . .  , m). 
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Definition 3 (Class of stochastic decision trees). Let GF~ be a set of all stochastic rules 
with finite partitioning defined on {0, 1} n × {1 . . . . .  S} (s < co). For a fixed k, a class 
of  stochastic decision trees with depth at most k and s classes, which we denote as G~r(s), 
• • k de f  
is defined as: For a given n, GOT(s ) = {P(Y] X : 0 -~ M)  E GFp : M ~ f2~, 0 E O(M)}, 
where O(M)(C [0, 1] re(s-l)) is a set of probability parameter vectors associated wtih M 
and dimO(M) = m(s - 1). Specifically, we denote G~kT(2) as GkDT . When we emphasize 
the number n of attributes, we will indicate this in parentheses as in G;T(s)(n ). [] 

3. A learning criterion for stochastic rules 

In this section, a learning criterion for stochastic rules is proposed. 
Before giving a general definition, let us review Valiant's PAC model to clarify the sig- 

nificance of our new criterion. In the PAC model, an attribute vector X is assumed to be 
generated according to some probability distribution Q(X) over the domain S(. PAC learn- 
ing refers to probably approximately correct identifying an unknown target function which 
is known to belong to some specific class. The following definition of PAC learnability 
appears widely in the literature of computational learning theory. The following definition 
essentially follows the definiton in Valiant (1984). 

Definition 4 (PAC learning criterion for deterministic rules). Let ~Tbe a class of func- 
tions from ) f  to f t . . ~ i s  called polynomially learnable if there exists an algorithm .~  such 
that, for some polynomial No( . . . . .  ), for all n, for all 0 < e < 1, for all 0 < ~ < 1, 
for all N > N0(l/e, 1/& n), for all Q(X) on A ~, for a l l f*(X) ~ .7, when given Nindepen-  
dently drawn examples D N = (Xl, Yl), - . . ,  (Xu, YN) (Yi = f*(xi), i = 1, . . . ,  N, each 
xi is generated according to Q(X)) as input, .~  outputs 3~DNI(X) ~ .7 satisfying (4) 

Prob[O[f f (X)  ~ 3~DNI(X)] _> e] < 6, (4) 

and ~,~ runs in time T0(1/e, 1/6, n) which is polynomial in l/c, 1/6, and n. Here Prob is 
a probability taken with respect to N-product distribution Q(X~ . . .  XN) = I I N = I  Q ( X i )  

(which measures the occurrence probability of D N) on 3(  N and over any coin tosses .~  
may make. n is the number of attributes. Q[f*(X) # 3~ON1(X)] denotes the probability that 
X such that f*(X) # fD~I(X) occurs with respect to the distribution Q(X). [] 

^ 

In the above definition, floNl is called a hypothesis (off*)  made by the algorithm .~. 
We extend Valiant's learnability criterion to the stochastic setting, on the basis of the 

following three viewpoints: 

1) The target objects to be learned are classes of stochastic rules rather than those of deter- 
ministic rules. 

2) Learning confidence (i.e., the probability with which a hypothesis lies within e of the 
target rule) must be evaluated with respect to the product probability distribution over 
g(  x 3j. 

3) An error of a hypothesis must be measured in terms of some variations of statistical 
deviation between two probability distributions: the hypothesis and the target rule. 
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Taking these three points into consideration, we are led to a new learning model for sto- 
chastic rules. The goal of this model is probably approximately correct identification of 
the target stochastic rule belonging to some known specific class. 

Definition 5 (PAC learning criterion for stochastic rules). Let C be a class of stochastic 
rules. G is called statistically learnable (with repsect to the distance measure d) by an 
algorithm .71 if, for some polynomial N o ( . , . ,  .), for all n, for all e > 0, for all 0 < 
6 < 1, for all N >_ No(1/e, 1/6, n), for all Q(X) on 0(, for all P*(YI X) E G, .~/takes 
as input N examples D s = (Xa, Ya) . . . .  , (Xm, YN) drawn independently according to 
Q(X)P*(Y [ X) and outputs P[DN](Y ] X) E G satisfying 

^ 

Prob[d(P*, P[DN]) ~-- 6] ~ 6. (5) 

Here Prob is the probability taken with respect to N-product probability distribution (which 
measures the occurrence probability ofDN); Q(X1 . . .  XN)P*(Ya . . .  YN ] Xa . . .  X) = 
IIN=I Q(Xi)P*(Y i ] Xi) (which we denote, for short, as (QP*)(DN)) on (5)( × ~U) N and over 
any coin tosses ~ makes. PtDNI(YI X) is called a hypothesis of ..,~. n is the mlmber of at- 
tributes. Here e is called an accuracy parameter, and (5 is called a confidence parameter. 
d(P*, /3[DN]) is one of the following deviations: da, dv, dKL, and do: 

dn(P*, /~[DN]) = ~ Q(X) ~ ] 4P*(Y[ x )  - 4~t~N~(yl X) 12, 
x~A ~ YE.~ 

(6) 

dr(P*, /3[DN]) = ~a Q(X) ~ I P*(YI x )  - /3LDN](Y I X) l, (7) 
XE,X YE,~ 

dKL(P*, /3ION]) = ~ Q(X) ~ P*(YI X) log2 P*(YI X) , (8) 
XE,)( YE y P[DN](Y I X) 

dQ(P*, /3[oN]) = ~ Q(X) ~ [P*(YIX)  - /3IDN](Y I X)12. (9) 
XE~ ~( YE9 

G is said to be statistically learnable if there exists an algorithm .~  such that G is statistically 
"learnable by ~7/. 

G is said to be polynomially learnable (with respect to the distance measure d),  if there 
exists an algorithm ~ / such  that G is statistically learnable (with respect to the distance 
measure d) by ~',  and, for all n, for all e > 0, for all 0 < 6 < 1, for all Q(X) on ~ ,  
for all P*(Y[ X) E G, .~  runs in time T0(1/e, 1/6, n) which is polynomial in l/e, 1/6, and n. 

[] 

For fixed e and 6, we call (5) an (e, 6)-criterion. We may weaken the definition of statis- 
tical or polynomial learnability by allowing sample size and computation time to depend 

' on the target rule P*(YI X), the distribution Q(X) or both. For fixed e and (5, define the 
sample complexity of learning a class G of stochastic rules by the minimum samples size 
satisfying the (e, 6)-criterion over all learning algorithms. 
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The deviations de, dv, d~, and do are known as, respectively, the Hellinger distance, 
the variation distance, the Kullback-Leibler divergence, and the quadratic distance. All 
of them are statistical notions of 'distances' between two probability distributions, which 
have often been used in the literature of statistical inference and information theory. Only 
dv is a metric, da and do are symmetric but do not satisfy the triangle inequality, d,:L is 
asymmetric and does not satisfy the triangle inequality, de, dv, and dQ are bounded but 
d ~  is not bounded. Here it should be noted that, as will be seen in Section 5, the sample 
size with which an algorithm satisfies the (e, 6)-criterion depends on the choice of the devia- 
tion from among dH, dv, dicz, and do. In this paper, sample size bounds are derived with 
respect to dt4 and dv only. 

Lemma 1. For any two conditional probability distributions; P1 and P2, the following in- 
equalities hold. 

(dr(P1, P2))2/4 < dH(P1, P2) -< dKL(P1, P2), (10) 

(dr(P1, P2))2/(2 In 2) __<_ d~(P1, P2), (11) 

dH(P1, P2) --< dr{P1, P2), (12) 

dQ(Pl, P2) -< dv(,P1, P2). (13) 
[] 

The first inequality in (10) follows Pitman (1979, p. 7). The second inequality in (10) 
follow Barron and Cover (1991, p. 1047). (11) follows Kullback (1967). (12) follows Kraft 
(1955). (13) is trivial. 

Lemma 1 shows that de and dv are polynomially related to each other, and both are 
polynomially bounded by d~ .  

As mentioned in Introduction, a learning criterion for stochastic rules have also been 
developed in Kearns and Schapire (1990) for the special case Y = {0, 1} independently 
of this work. The learning criterion proposed in this paper follows the definition in Yamanishi 
(1990b). Also related are learning criteria for "density estimation" which have first been 
developed by Laird (1988), followed by Abe and Warmuth (1990) and Cesa-Bianchi (1990) 
independently. Here the density estimation refers to the problem of learning distributions. 
on the set X itself. Various distances have been used as error measures for hypotheses 
in the context of density estimation; the Kullback-Leibler divergence (Laird, 1988; Abe 
& Warmuth, 1990), the variation distance (Laird, 1988), and the difference of expected - 
variation distances (Cesa-Bianchi, 1990). Kearns and Schapire used the expected quadratic 
distance, which can be reduced to the difference of the expected quadratic loss, as an error 
measure of hypotheses over the binary range. 

4. Learning strategy based on the MDL principle 

In this section, an algorithm for learning stochastic rules with finite partitioning is presented. 
The rule selection strategy in this algorithm is based on the Minimum Description Length 
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(MDL) principle (Rissanen, 1978; 1983, 1984; 1986; 1989; Wallace & Boulton, 1968; 
Solomonoff, 1964). Hereafter, "log" denotes the logarithm of base 2, and "ln" denotes 
the natural logarithm. 

4.1. Learn ing  stochastic rules based on the M D L  principle  

Learning stochastic rules can be thought of as being basically estimation of the target rule 
from the given examples. The MDL principle is employed as a criterion for selecting the 
best hypothesis from among possible ones. 

Let N examples D N = D 1 . . .  D N be independently drawn according to an unknown 
probability distribution. Let .7/-be a class of hypotheses. The MDL principle asserts that, 
when given D N, the hypothesis h that one should select from .7/-is the one that minimizes 
the following sum: 

e(h) + g(DN I h). (14) 

Here f(h) is the description length for h and effectively measures the complexity of h. 
I( DN I h) is the description length for D N with respect to h and measures the goodness 
of fit of h to D N, where a shorter description length indicates a better fit. In other words, 
h is selected taking into account the trade-off between its simplicity and its goodness of fit 
to given examples. Here the "description length" is the code-length in bits needed for the 
encoding of h or D N under the condition that no codeword is a prefix of another codeword. 
This condition, which we call the prefix condition, is sufficient for the requirement that 
the code string be uniquely decodable; i.e., every codeword can be exactly decodable even 
if commas are not allowed. It is further known (Gallager, 1986, pp. 45-49, 514) that there 
exists a code satisfying the prefix condition with codeword length f(h) if and only if the 
length function t: J / - ~  R + U {0} (R + denotes the set of all positive real numbers) sat- 
isfies Krafi 's inequality (Kraft 1949): 

2 -e(h) <- 1, (15) 
h ~..7/ 

" where e(h) is the code-length for h. Hereafter, non-integer code lengths are allowed. 
Let D N = D1 . . . .  , O N O i = (xi, Yi) (i = 1, . . . ,  N )  be examples drawn independently 

. according to a product distribution on 0( x ft. In general, when learning stochastic rules 
using the MDL principle, we select a hypothesis that minimizes the total description length 
for the hypothesis space itself plus the description length for yN = Yl • • • YN for given 
x N = x1 • • • XN. Here notice that we need not take the description length for x N into con- 
sideration because the hypothesis to be outputted is a conditional distribution of Y for given 
X, which is independent of the distribution over X. 

Let each hypothesis be specified by a real-valued probability parameter vector 0 and a 
countable model M. e(y N I x N : 0 -'I M)  denotes the description length for yN for given 
x N relative to the distribution P ( Y  I X : 0 ~I M)  specified by fixed 0 and M. Let YT(be 
a set of all countable models and let ON(M) be a set of real-valued parameter vectors 
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associated with a fixed M, such that Ou(M) is a finite set whose size depends on sample 
size N. We describe yN in e(y N I x N : 0 -i M) bits, letting 0 and M be fixed. 2(0 [ M) is the 
description length for 0 for a fixed M and satisfies Kraft's inequality: EOEON(M)2 -e(°lM) <. 1. 
e(M) denotes the description length for M and satisfies Kraft 's inequality: EM~jyC 2 -e(M) 
< 1. The total description length to be minimized with respect to 0 and M, which we denote 
as 5,(y N : 0 -/ M [  xN), is calculated as follows. 

ex(y N • 0 ~ M ]  X N) = e(y N I XN : 0 -~ M)  + X{e(0 [ M) + e(M)}, (16) 

where f(0 [ M) + e(M) denotes the description length for the hypothesis, and k is an adjust- 
ment parameter which is not less than 1. Note that if e(O [ M )  + e(M) satisfies Kraft 's 
inequality: ZO~ON(M ) S, Me~2-{e(OIM)+e(M)} _< 1, t h e n  ~OEON(M ) ~M~Zf(2 -X{e(O]M)+e(M)} <_ 1 
also holds for h ___ 1. 

4.2. M D L  algorithm fo r  learning stochastic decision lists 

Details of the methods for learning stochastic decision lists based on the MDL principle 
are described in the discussion to follow. Hereafter the degree k is assumed to be fixed. 

Let N independent random examles D N = D 1 . . .  D N, D i = (xi, Yi) E ,X × ,~1 (i = 1, 
. . . .  N) be given. Let S = {D 1 . . . . .  DN} be a multiset of examples. Let x Jv ~f xl • • • XN, 
N def 

Y = Yl . .  • YN. Nj denotes the number of examples in S in such that tl(X ) = . . .  = 
tj_l(X) = 0, and tj(x) = 1. Nj + denotes the number of examples in S such that tl(X ) = 

• . .  = tj_l(X ) = 0, tj(x) = 1 and y = 1. Nj- denotes the number of examples in S such 
tha th (x)  = . . .  = tj-l(X) = 0, tj(x) = 1 a n d y  = 0. Notice here that N1 + . . .  + Nm 
= N, Nj+ + Nj-  = Nj, (j = 1, . . . , m ) .  

For a fixed k, let P(Y] X : 0 ~ M)  ~ GEL(n) be the conditional probability distribution 
defined by a stochastic decision list specified by 0 and M such that M E P~. For given 
examples D N, the conditional likelihood (hereafter, for short, called likelihood) of P ( Y  I X 
: 0 -~ M) for yN when given x u is defined as 

N 

p(yN [ X N : 0 ~ M)  = I I  P(Yi I Xi : 0 -~ M )  
i=1 

m 

= YI p S ( 1  - p S ,  
j = l  

where m is the depth of M. Notice here that the description length for yN for given X N 

relative to 0 and M; e(y  N [ X N " 0 -~ M ) ,  is  calculated as  l ( y  N ] x N : 0 -~ M )  = --lONg 
p ( y N  ] xN : 0 -~ M ) ,  s i n c e  e(y  u [ x N : 0 ~ M )  sa t i s f i e s  K r a f t ' s  inequality: ~,,yU 2 - l (y  : 

o-~ M) = r.yS p (yU  [ X N : 0 ~ M) = 1. The code-length defined by the minus logarithm 
of the occurrence probability is called Shannon complexity (see e.g., Rissanen (1989, p. 38)). 
Thus, the description length for yN for given x u relative to 0 and M; e(y N I xN : 0 -~ M), 
is calculated as follows. 
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e(Y N I XN " 0 -~ M )  d~f - l o g  p(yN I XN " 0 ~ M )  

= - l o g  f l  pjNj+(1 - pj)NS 
j=l  

- Nj{H(/~j) + D(Oj ]l P/)}, 
j=l 

(17) 

where H(x) ~f - x  log x - (1 - x) log (1 - x) is the entropy function, and/~j = Nj+/N). 
D(Oj II pj) =/~j log @/pj) + (1 -/~j)  log ((1 -/~j)/(1 - pj)) is the Kullback-Leibler diver- 
gence between ~j = (/~j, 1 - / ; j )  and pj = (pj, 1 - pj) (j = 1, . . . ,  m). 

Since 0 = (Pl . . . . .  Pro) is unknown, we must estimate 0 from O N. Let 0 = (/~1, • • . ,  
/~m) be a maximum likelihood estimator of 0. Here the maximum likelihood estimator is 
the estimator whose value maximizes the likelihood for the given examples, or equivalently 
minimizes the minus logarithm of the likelihood for the given examples. Notice here that 
D(pj II Pj) --> 0 and that D(pj [] pj) = 0 if and only if/~j -- pj. Thus the maximum like- 
lihood estimator 0 = (Pl,  . . . , /~m) is given by/3j =/~j = Nj+/Nj (j = 1 . . . . .  m). ~ 

We must describe 0 with finite precision in order to apply the MDL principle to hypothesis 
selection. Letting 0 ~f 0 + 6 be a truncated vector for 0 and 6 = (61, . . . ,  6m) be an m 
dimensional precision, let us derive the optimal size of precision by considering the mini- 
mization of the description length for yN for given x N plus the description length for the 
precision 6; - l o g  p(yN [ X N : ~ .~ M) - zjm=l log 6j, where  -Emj=l log 6j is the descrip- 
tion length for the precision 6 (Rissanen, 1989, p. 55). When 0 </~j  __ 1/2 (j = 1 . . . .  , 
m), assume that 0 < 6j < 1/2 (j = 1 . . . . .  m). Then, from (17), we have 

- l o g  p(yN I xN : ~ + ~ -~ M) 

= NjH(%) Nj 
i=1 j=l  

#j 
l°g/3j + 6j ) (1 - / ~ j )  log 1 - ~j - -  6j 

• = - l o g  p ( y U  ] x N : ~ ~ M )  

< - l o g  p(yN I XN : ~ "~ M )  

2)1 
6j + I  1 j=l  
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where we have used general inequalities: log(1 + x) _> (x - xZ)/ln 2 (x _> 0) and 
log(1 - x) _> ( - x  - xZ)/(ln 2) (0 _ x < 1/2). Let 6 = (61 . . . . .  6m) be the value of 6 
minimizing - l o g  p(yX [ xN : ~ ~ M) + ~?=1 Nj(t52/(/3j( 1 -- /3j) In 2)) -- r~mj=l log 8j, then 
we obtain that 8j = ~f~j(1 - /3 j ) /2N] .  Notice here that the following inequality holds. 

When for some j ,  1/2 _</3j _< 1, we assume that 6j < 0. As with the case where 0 _< 
/3j _ 1/2, we can easily obtain an optimal precision as follows: ~ = -x/~fij(1 - /3 j )2Nj .  

To realize this optimal precision, we quantize O(M) to obtain ON(M), which is a rec- 
tangular grid of truncated vectors, as follows: For each direction of [0, 1] m, the set of trun- 
cated vectors consists of two sets: {ilk} (1/2Nx/N < Pk <-- 1/2) and {/3[} (1/2 </St '  _< 1 - 
1/(2Nx/-N)), which are defined by 

where s 1 satisfies/~s~ -< 1/2,/3s,+1 > 1/2 and s 2 satisfies/5~' 2 > 1/2,/Ss'+ 1 _< 1/2. Notice 
here that while the optimal precision is proportional to 1 / ~ ,  which depends on exam- 
ples, the precision for the above quantization method is proportional to 1/x/N, which depends 
only on sample size. This precision is accurate enough because 1/Nj > 1/N. The m e t h o d  
for truncation of each component of a maximum likelihood estimator is as follows: If  
0 _ /3 _< 1/2, then we let the truncated value for/3 be/~k such that/3k_ 1 < /3 _< ilk. I f  
1/2 < /3 _< 1, then we let the truncated value for/3 be fil such that/5 l _< /3 < /31-~.. 
Hereafter, we fix the method for quantization (19), by which we define ON(M). 

For this method for quantization of O(M), we see that the precision_is not larger than 
and thus 62/(/3j(1 - ~j) in 2) _< m. Thus, from (18),it is verified that i f0 fi ON(M ) is a trun- 
cated vector for the maximum likelihood estimator 0 ~ O(M), the following inequality holds. 

Further notice that for a fixed M, arg min0~ON(M ) {--log p(yN I XN : 0 -~ M)} is calculated 
as a truncated vector (in ON(M)) of the maximum likelihood estimator 0. 

(20) 

(19) 

180 
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Let 2(0 I M) be the description length for any point 0 E ON(M ) for fixed M and k. The 
total number of elements in ON(M) for a fixed M is bounded as 

ll2Nx/N x(1 - x) < (4"~-N)m' 

where m = dim O(M). It follows that log(4"]2-N)m bits are sufficient for encoding any 
0 ~ ON(M). Thus, 2(0 ] M) is given by 

2(0 I M) - mlog2 N +_~_5m (21) 

Notice here that ~ O E O N ( M  ) 2 -e(°IM) "< 1. 
Let 2(M) be the description length for M. The description for the i-th decision t i requires 

log(I 7~'1 - i  + 1) bits because ti ~ :l~ - {ti, . . . ,  ti-1}. Thus, 2(M) is calculated as 
follows. 

e(M) = log #T~[m], (22) 

where def I (I zffl - 1) (I V I - m + 1). 

17;] = 2  2i + 1 
i=1 

is the total number of elements in T~. Notice that the m-th decision is always the constant 
function "1." Thus the number of all possible ordered sets in the form of ( t l ,  . . . ,  tin) 
• n n n - e ( M )  IT~I IS (] T I - 1) (I T, [ - m + 1) = #1?,.[m]/[ T ] Hence, ~Mern 2 = E,~ 

k " ' "  n k ~ k " k " - = -  
n n log#T~ [m] (#T£[m]/I T~ 1) 2 -  = 1. Therefore the code-length function (22) satisfies Kraft s 

inequality. Of course, any other code-length functions can also be used provided they satisfy 
Kraft's inequality• 

If an algorithm ~/always outputs a hypothesis h belonging to .7-/, we say that .~  uses 
a hypothesis space 2K. Notice that a hypothesis space depends on the number of examples 

. because, for each M, 0 is selected from ON(M) with finite precision of O(1/xf-N). For 
GkL(n), w e  define JfN(GDkL(n)), which is a subset o f  GkL(n), as 

. ) ~ t - N ( C k D L ( n ) )  de f {P(YI X : 0 -~ M) ~ GkL(n) : M E F~, 0 e 0N(M)}, (23) 

where ON(M) is a rectangular grid of probability parameter vectors with cell of width 6 = 
O(1/x/-N) in each direction of the m-dimensional space [0, 1] m where m is the depth of M. 

An MDL algorithm (with the adjustment parameter X and the code-length function g) 
for learning GgL(n) is an algorithm which takes independent random examples D N as input 
and outputs a rule P in "Y-/N(CokL(n)) that attains the total minimum description length over 
.7/N(G/~L(n)) by letting the adjustment parameter be X and by using the code-length func- 
tion t : F~ ~ R + U {0} (such that F~MeI, ff 2 -e(M) ~ 1) in (16). 
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Below, we more precisely describe the MDL algorithm for learning GkoL(n), which we 
denote as .~MDL. "-71MOL uses a hypothesis space ..7-[N(G~L(n)), which depends on sample 
size N. Fix an adjustment parameter ~ and a code-length function g : rff --* R + U {0} 
such that EM~rff 2-e(M) -< 1. 

1 ° ~/MDL draws N independent examplesD N. 
2 ° For each M E I'~, J~MOL calculates 0 = arg min0~o.~(M ) e(y N I xN : 0 ~I M) and 

ex(y N: o ~I M I x N) d___ef e(yN [ xN: ~ ~I M) + x(e(o ] M) + e(M)). 
3° - ~ o L  chooses one countable model M ~ I an which attains the minimum ofex(y N : k 

~I M ] xN). If there exist more than one M that attain the minimum, .17/MD L choose 
37/from among them such that e(0 [ 37/) + f(,~/) is shortest. 

4° ff/MDL outputs P(Y I X : 0 -~ iVI) ~ J[-N(GkDL(n)). 

We call an output of ~'~MDL an MDL rule and the optimal countable model )17/an MDL 
estimator. 

Maximizing the likelihood for given examples is equivalent to minimizing the description 
length for the examples relative to a rule, ignoring the description length for the rule itself. 
An ML algorithm is an algorithm which takes independent random examples as input and 
outputs a rule which maximizes the likelihood (we refer to such a rule as an ML rule). 
We refer to a countable model that the ML algorithm chooses as an ML estimator. 

The ML algorithm is an analogue to the "minimum disagreement algorithms" (Kearns 
& Li, 1988; Sloan, 1988; Angluin & Laird, 1988, etc.) used in the conventional PAC model 
in the sense that both algorithms output a rule which best fits the given examples. The 
"Occam algorithm" (Blumer, et al, 1987) proven to perform well in the conventional PAC 
model, can be thought of as an algorithm outputting a rule minimizing the description length 
for the rule, having minimized the description length for given examples. This kind of min- 
imization of description lengths (for given examples and a rule) would result in outputting 
nothing but a ML rule in our stochastic setting. 

Notice that both of the MDL and the ML algoritt}ms are not efficient because, in compu- 
tation of an MDL estimator (an ML estimator) M, the number of countable models for 
which the total description lengths (likelihoods) should be compared is [i, kn I : O(3 [Tffl 
I Tff I!) and [T~k I = O(n k) (see Rivest (1987, p. 243)), which is exponential in n. However, 
in this study we will confine our investigation to the question of sample complexity alone 
and ignore time complexity in the subsequent sections. 

4.3. MDL algorithm for learning general stochastic rules with finite partitioning 

Letting .~ = {0, 1}, the MDL algorithm for general classes of stochastic rules with finite 
partitioning is stated below. 

Let GFp be a set of all stochastic rules with finite partitioning defined on 3( x .~. Let 
G be a subset of GFp. That is, G = {P(Y [ X : 0 -~ M) ~ GFp : M E YH, 0 ~ O(M)}, 
where Y/Vis the finite set of all countable models specifying partitioning of the domain 
~X, and @(M) = [0, 1] m is the set of all real-valued probability parameter vectors associated 
with M. m is the number of disjoint cells partitioned by M. 
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As with the class of stochastic decision lists, the MDL algorithm for learning G uses 
the hypothesis space .7-fg(G), which is defined as 

j / t-N(C) de f {P(YI  X : 0 ~ M)  ~ C : M ~ 27(, 0 ~ ON(M)}  , (24) 

where ON(M) is a rectangular grid of probability vectors with cell of width of an order 
O(1/~-N) in each direction of the m-dimensional space [0, 1] m where each direction of 
[0, 1] m is quantized according to (19), and ION(M) I <-- (4~/2--N) m. 

When given N independently drawn examples; D N = (Xl, Yl) . . .  (XN, Yl) ( XN d=ef 
xl • • • xn, yU de=f Yl . • • YN), the total description length for D N to be minimized with 
respect to 0 and M is calculated as follows. 

+ + I(M ~. (25) 

e(Y N I XN : 0 ~ M)  is the description length for yN for given X N with respect to fixed 
0 = (Pl  . . . . .  Pro) E ON(M) and M E Y/C, where Pi is the probability that any example 
that falls in the i-th cell belongs to the class 1. It is calculated as the minus logarithm of 
the likelihood as follows. 

f l  N .+ -- f (yN I xN: 0 ~ M) = - l o g  pj~ (1 pj)~-~'+ 
j=l  

- Nj{H( j) + D(Oj [I pj)}, 
j=l  

(26) 

where H(~j) ~f  - ~ j  log/~j - (1 - /~ j )  log (1 - /~j) , /~j  ~f Nj+/Nj (j = 1, . . .  m). Nj is 
the number of examples whose attribute vector belongs to thej-th cell, and Nj + is the num- 
ber of examples whose attribute vector belongs to thej-th cell and whose class is 1 (j = 1, 
. . . ,  m). D(fJj II Pj) dm-ef Pj log (pj/pj) "b (1 - / ~ j )  log ((1 - /3j)/(l - pj)). 

(m log N)/2 + 5m/2 is the description length for an m-dimensional real-valued probability 
parameter vector 0 ~ ON(M). This description length is derived as with stochastic deci- 
sion lists. 

l (M) is the description length for M E YTg, which is calculated using a code-length func- 
tion satisfying Kraft's inequality: ~M~Y.U 2-e(M) -< 1. k is an adjustment parameter such 
that X _> 1. 

Fix an adjustment parameter k and a code-length function Y7(~ R ÷ U {0}. The MDL 
algorithm (with the adjustment parameter h and the code-length function g) for learning 
G takes examples D N as input, and then chooses one hypothesis in .7FN(C,') that attains 
the minimum of (25) over .7-fw(G), and outputs it. That is, an MDL rule is written as 

P(YI 
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where for each M fi 

~f arg min e(y N [ x N : 0 -~ M), 
OEON(M) 

and 

3) ~f arg min {e(y N [ x N : 0 ~ M) + X(g(0 [ M) + e(M))}. 
MEJT( 

Notice here that when for a fixed M, for the truncated vector 0 for the maximum likelihood 
estimator 0, the following inequality holds (the proof can be done as with (20)). 

- l og  p(yN I XN : ~ ~ M) < --log p(yN [ X N : ~ .~ M) + m. (27) 

Further notice 0 = arg mlnOEON(M ) e(y N [ X N : 0 -~ M) is calculated as a truncated vec- 
tor of the maximum likelihood estimator 0. 

5. Sample complexity bounds 

In this section, ignoring time complexity, we derive upper bounds on the sample size required 
by the MDL algorithm to learn stochastic rules with finite partitioning within the (c, 6)- 
criterion. These bounds are derived by applying the type of information theoretic proof 
techniques used in Barron (1985, pp. 92-93) and Barron and Cover (1991) (proof of Theorem 
1). Next, we derive upper bounds on the sample size required by some other information- 
criteria based learning algorithms and compare them with the upper bound for the MDL 
algorithm. Hereafter, we assume that ,~ = {0, 1}. Results will be easily extended to classes 
of stochastic rules with finite partitioning over the continuous domain. 

5.1. Target-dependent sample size bounds for the MDL algorithm 

Let GFp be a set of all stochastic rules with finite partitioning defined on S( × ft. Let 
G = {P(YI X : 0 ~ M) E GFp : M E YT~, 0 E O(M)} be a class of stochastic rules with 
finite partitioning where Y-F(is a finite set of countable models specifying partitioning of 
the domain, and, for each M E ~F, @(M) is a set of all probability parameter vectors asso- 
ciated with M. Hereafter, assume that the target rule is in G; i.e., there exist a true count- 
able model M* E YT('and a true probability parameter vector 0* E O(M*). 

Let ~¢ be the MDL estimator from N independently drawn examples D u and let 0 be 
a maximum likelihood estimator from D N for the fixed M. It is known from the theory 
of maximum likelihood estimation (Fisher, 1956), that 0 converges to 0". The main concern 
is whether or not P(Y ] X : 0 -~ ~¢) converges to P(Y I X : 0* -~ M*). The almost sure 
convergence of the MDL estimators has been shown in Rissanen (1978; 1983; 1984; 1986; 
1989); Barron (1985); and Barron and Cover (1991). In the literature of computational learn- 
ing theory, however, it is a more important concern for sample complexity evaluation how 
fast the MDL rule converges to the target rule. In this subsection, we evaluate the rate 
of convergence of the MDL rule to the target rule and also derive target-dependent sample 
size bounds for the MDL algorithm. 
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Theorem 1 (Target-dependent upper bound on the sample size required by the MDL 
algorithm). Let G be a class of stochastic rules with finite partitioning in the form; 
G = {P(Y I x : o M )  CFp : M 0 0(g)} where YTFis a finite :set of count- 
able models, and 0(M) is a set of probability parameter vectors associated with M. Let 
acode-length function e : Y-'Y" ~ R + U {0} such that r,M~9-rC2 -e(M) _.< 1 be fixed. Let 
P[D N] E JfN(C) be a hypothesis that the MDL algorithm (with the adjustment parameter 
X = 2 and the code-length function e) outputs from N independent random samples D s 
drawn according to the product probability distribution Q(X)P(Y[ X : 0* -~ M*) on 
S~- x ft. Letting P*(Y I x) = P(Y I x : 0* -~ M*), assume that the target rule P*(Y ] X) 
belongs to G; i.e., M* E YTgand 0* E O(M*). Then, for any e > 0, for any Q(X) on Of, 
for any P*(Y[ X) E G, the following inequality holds. 

(QP*)[D N " dH(P*, P[DN]) >-- e] < exp - ~ -  d- N(M*) + In 2 . (28) 

Here gN(M*) Oe__f (m* log N)/2 + 5m*/2 + f(M*) and m* = dim O(M*). f(M*) denotes 
the description length for M* E Y-Z(. dH is the Hellinger distance (see (6)). 

Fo r0  < 6 < 1, and sample size 

e ~m 64m* ½~ 
N_> e ( e -  1) *In e + (2 ln2)e(M*) + 2 In  , (29) 

the probability in the lefthand side in (28) is at most 6. [] 

Note that, without loss of generality, we assume that P* is a rule with the minimum 
dimensional probability parameter vector over all the equivalent rules. Here we say that 
for e l ,  P2 E C, P1 is equivalent to P2 if and only if for all (X, Y), PI(Y [ X) = P2(Y ] X). 

The following lemma, which was used in Haussler and Long (1990), is also employed 
in the proof of Theorem 1. 

Lemmas 2. Let x, y E R+. Then 

l nx  <_ xy - lney.  

(See Haussler and Long (1990, p. 16) for the proof.) F2 

" Proof of Theorem 1. Let gm(O, M) def e(0 I M) + elM) = (mlog N)/2 + 5m/2 + e(M) 
where m = dim O(M). Specifically, we let gN(M*) ae=Igs(O, M*) = (m* log N)/2 + 5m*/2 
+ e(M*). Let .7-[m(C) (for short, .7{x) be the hypothesis space which the MDL algorithm 
uses for learning G, where the notation follows the previous section. 

First, by the definition of the MDL estimator in the case of h = 2 (see 4.2), notice 
that the following inequality holds for given examples D N = (Xl, Yl), . . .  (XN, YN) E 
( , ~ ) <  ~ ) N  (we let x N ~f X 1 N dee . 

" . . .  X N ,  Y = Y l  . . .  Y N ) .  
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min min 
ME'J'-U OEON(M ) 

r a i n  {e(yN I xN : 0 "~ M) + 2go(O, M)} 
P ~: ,JTf N 

= min min { - log  p(yN I X N: 0 -~ M) + 2gN(O, M)} 
M~.dQ(" O~ON(M ) 

_< - log  p(yO [ x o : 0 ~ m*) + 2go(m*), (30) 

where 0 is the truncated vector for 0". 
Let 0 be the non-truncated maximum likelihood estimator from D N. From the relation- 

ship between the likelihoods for 0 and its truncation 0 (see (27)), the following inequality 
holds. 

_p(yN  I XN : ~ "~ M*) + 2go(M* ) 

< - - l o g  p ( y U  I xN:  0 -~ m*)  q- m* + 2go(M* ). (31) 

Since 0 is the maximum likelihood estimator for M*, the following inequality holds. 

- - l o g  p ( y N  [ X N : 0 ~ m*) + m* + ego(m*  ) 

< - l og  p(yU [ x N : O* ~ M*) + m* + 2go(M*). (32) 

By combining (30), (31), with (32), we have 

{- log  p(yO [ xN: 0 -~ M) + 2go(O, M)} 

< - log  p(yN I xN : O* -~ M*) + m* + 2go(M* ). (33) 

* ^ N Notice that if d~l(P , PIp 7) -> e, then the minimum value of the total description length 
is attained by one of rules Ps such that P ~ .7{ N, d~(P*, P) >_ e. It follows that - log  
p(yU [ X u : O* -~ M*) + m* + 2go(M* ) > minp~Yfu,dn(p*,p)_> E {e(y N ] X N : 0 -~ M) + 
2go(O, M)}. Hence we have the following inequalities using (33). 

(QP*)[DN: dH(P*, /3[DN]) --> e] 

< (QP*)[-log p(yN [ xN : O* -~ M*) + m* + 2go(M* ) 

> min {e(yU [ xN: 0 -~ m)  + 2gN(O, m)}] 
PE,~CN,dH( P ,P ) >. E 

= (Qp*)[p(yN [ x N : O* -~ M )2 -egu(m )-m 

< maxM~,0~eu(M) p(yN I xN : 0 ~ M)2 -2gu(°'M)] (34) 
dH(P*,P) >- e 
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~- ~MEffZ( ~OEON(M) (QP*)[Q(xN)p(yN I xN : O* -~ M*)2 -2gN(M*)-m* 
dH(P*,P ) >- e 

<-- Q(xN)p(yN I xN: 0 ~ M)2-2gN(O'M)]. (35) 

For the sake of simplicity, we write P(Y ] X : 0* q M*) as P*(Y I X) and P(Y I X : 
0 -~ M) as P(Y I X). For each P(YI X) satisfying dn(P*, P) >- e, we have the following 
inequalities using a Chernoff style inequality. Below, (E,cv ~yN) t denotes the summation 
with respect to x N and y~ under the constraint that Q(xN)p*(y N ] xN)2 -2gN(M*)-m* <_ 
Q(xN)p(yN I xN)2-2gN (O'M). 

(QP*)[Q(xn)P*(y N I xN) 2-2gN(M*)-m* <- Q(xN)p(yN I XN) 2-2gu(°'M)] 

I t = ~-a Q(xN)p*(Y  N ] xN) 

< I I t Z Z  
xN yN 

(- 22gN(M*)-2gN(O,M)+m * p(yN I xN) 1 
Q(xN)p*(yN I X N) ~ P*(YNI X N) 

½ 

I t = 2gN(M*)-gu(O'M)+m*/2 Z Q(xN)(p*(yN[ xN)p(yN[ ~;N))~/2 
,,N 

<-- 2gu(M*)-gN(O'M)+m*/2 Z Z Q(xN)(p*(yN I xN)p(yN ] XSV))'/: 
x N yN 

N 
= 2gN(M*)-gN(O'M)+m*/2 Z Z I-I (Q(xi)(P*(yi] xi)P(Yi I xi)) v~) 

x~ yN i=1 

= 2 gu(M*)-gN(°'M)+'*/2 ~ Q(xN) ~ (P*(YNI XN)P(YN] XN)) y: 
XN YN 

• "" Z Q(xl) Z (P*(yl I x0P(yt ]x~)) '/2 
xl Yl 

= 2gN(M*)-gN(O'M)+m*/2 Z Q(x)(P*(yl x)P(y t x)) 
(x ,y) 

<_ 2 gN(M*)-gN(O'M) +m*/2 e-Ne/2. (36) 
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The last inequality follows: For P such that dH(P*, P) > 6, 

~] Q(x)(P*(y [ x ) P ( y  I x ) )  '~ = 1 - (1~2)de(P*, P) 
(x,y) 

<_ e-dH(P*,P)/2 

e -d2 

(see Barron (1985, pp. 92-93)) ,  where we have used the property of the Hellinger distance: 
dH(e* ,  P)  = ~x a (x)  ~]y I P N / ~ ; I  x) - ,ffP(y ] x) 12 = 2 - 2~(x,y) a(x)(P*(yl x) 
e(y] x)) 1/2. 

Therefore, by plugging (36) into (35), we obtain the following inequalities: 

(QP*)[D N : dH(P*, /~tDN]) ~ 6] < ~MEff]'(~OEON(M) 2gN(M*)-gN(O'M)+m*/2 e-N~/2 
dH(P*,P ) >- 

Z Z 2gu(m*)-gN(O'M)+m*/2 e-Ne/2 
MEff](" 0EON(M) 

_< exp - -~- + N(M*) + In 2 . 

In the last inequality, we have used Kraft 's inequality: 

Z Z 2-gN(O'M)= Z 2-e~m) ~a 2-(ml°gN)/2-5m/2 

ME JeT( 0 E ON(M ) ME ff]~ 0 E ON(M ) 

< 1 .  

Thus we have (28). 
The inequality (28) yields the following equivalent expression: 

N _ _ _ - -  
m I n N  

+ - 3m* + e(M*)) In 2 + In . 6 (37) 

Since by Lemma 2 for any v E R + such that 0 < v < 1, 

m* I n N  < v6N + l n - -  
m v6e 

Thus the following is sufficient to guarantee (37). 

N > - -  - -  + In + - 3m* + e ( M * ) ) l n 2  + In . 
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'Choosing p = 1/e for readability and solving for N yield 2 

N _> - -  e ~m 64m* 
E(e -  1) * In e + (21n2 )e (M*)+  2 1 n l l ,  

which gives (29). This completes the proof of Theorem 1. [] 

Here notice that the righthand side of (28) exponentially goes to zero as N increases and 
that it depends on the target complexities; m* and e(M*). For example, for stochastic deci- 
sion lists, m* denotes the depth of the target rule and e(M*) = log #T~[m*] (see (22)). 
Assume that the code-length function for Y-~has the property that g(Ma) >- e(M2) for M x, 
M2 ~ YTgif dim O(M1) >- dim O(M2). Then it follows from Theorem 1 that the simpler 
the target rule is (i.e., the smaller both of m* and e(M*) are), the faster the MDL rule 
converges to it. 

Next, let us derive a target-dependent upper bound on the sample size with which the 
MDL algorithm, with probability at least 1 - 8, outputs a hypothesis that lies within e 
of the target rule with respect to the variation distance. 

Theorem 2 (Target-dependent upper bound on the sample size with respect to the varia- 
tion distance). Under the same assumption and notation as Theorem 1, for any e > 0, 
for any Q(X) on 3(, for any P*(YI X) ~ G, the following inequality holds. 

(QP*)[D N : dr(P*, /3[DN]) --> 6] < exp -- + N(M*) + In 2 . (38) 

Here dv is the variation distance (see (7)). 
Fo r0  < 6 < 1, and sample size 

4e(m 
N -> ~2(e- = 1) * In 62 -~- (2 In 2)e(M*) + 2 In , (39) 

the probability in the lefthand side in (38) is at most 6. The notation follows Theorem 1. [] 

.Proof. First notice the general relationship (10) between the Hellinger distance dn and the 
variation distance dv: for all P1, P2: stochastic rules, (dv(P1,/°2))2/4 -< dn(P1, P2). Using 
this relationship and (28) in Theorem 1, we have the following inequalities. 

(QP*)[DN: dv(P*, /:~[DN]) ~ {~] <- (QP*) D N" dn(P*, P[DN]) > 

< exp[-N---~ + ~gN(M*) + 2 ~ 1 n 2 ] .  

"Thus we have (38). 
As with the proof of Theorem 1, setting the bound (38) to 6 and solving for N yield 

the result on the sample size. This completes the proof of Theorem 2. [] 
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Theorem 1 shows that letting the target rule be P*, the smallest sample size Nn (l/e, 
1/6, P*) required by the MDL algorithm (with X = 2 and the code-length function e) to 
satisfy the (e, 6)-criterion (5) with respect to the Hellinger distance is estimated as 

Q1 1 , 1 ~ m* e(M*) 1 1 1 N~ , ~ , P  = 0 l o g - -  + + - l o g  . 
c 6 E 

(40) 

Theorem 2 shows that letting the target rule be P*, the sample size Nv (l/e, 1/6, P*) re- 
quired by the MDL algorithm (with X = 2 and the code-length function e) to satisfy the 
(e, 6)-criterion (5) with respect to the variation distance is estimated as 

~1  1 .~ ~m* m* g(M*) 1 1 ~  
Nv , g , P  = O -~-log--e + ~ + ~ l o g  . (41) 

Here it should be noticed that both bounds depend on e, 6 and the target complexities; 
m* and f(M*), only. Further notice that the sample complexity bounds depend on the 
choice of a distance measure. Using the relationship (13) between the quadratic distance 
and the variations distance, it is easily verified that the smallest sample size with respect 
to the quadratic distance is also bounded as (39). 

5.2. Sample size bounds for the AlL algorithm 

In this subsection, for classes of stochastic rules with finite partitioning, let us give an 
upper bound on the sample size required by the ML algorithm to satisfy the (e, 6)-criterion 
and let us compare it with that required by the MDL algorithm. We stress that the two 
upper bounds are obtained via a similar technique and thus admit a fair comparison although 
they are both upper bounds. 

Theorem 3 (Upper bounds on the sample size required by the ML algorithm). Let 
G be a class of stochastic rules with finite partitioning; i.e., G = {P(Y [ X : 0 -~ M) 
E Gvp: M ~ Y~, 0 ~ O(M)} where YT~is a finite set of countable models and O(M) is 
a set of probability parameter vectors associated with M. Further we assume that ~ i s  
written as YTg = Umm__m~ _27C (m) where YT~ (m) is a set ofM(~ YTG) such that dim O(M) = m." 
mm~ is an upper bound on m. Let a hypothesis^space Y-I-N(G) (for short, we denote it 
as Yt-N) be the same as that in Theorem 1. Let P[DN] E .~c~(c) be a hypothesis that the 
ML algorithm outputs from N independent random examples D N drawn according to the" 
product probability distribution Q(X)P(YI X : 0* -~ M*) on A c x ~ .  That is,/3[o~](Y [ X) 
= P(Y ] X : 0 -~ M) ~ .7f~(C), where M is an ML estimator from D N i.e., M = arg 
minM~Y/C {--log p(yN [ x N : ~ ~ g )}  and/~ = arg min0<oN(M ) {-log p(ym [ x N : 0 -~ M)} 
for each M ~ Y~. Letting P*(Y] X) = P(Y[ X : 0* -~ M*), assume that the target rule 
P* belongs to G; i.e., M* ~ Y~and 0* ~ O(M*), where we let m* = dim O(M*). Then, 
for any e > 0, for any Q(X) on ~ ,  for any P*(Y[ X) ~ G, the following inequality holds.. 
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'(QP*)[DN: dH(P*, /~[DN]) ~ {5] 

E I 1 N{5 m* In 2 (42) < exp - - ~ -  + In ~ (4x/~N)ml yl~(m) + ~ . 
m=l 

Here dH is the Hellinger distance. 
For 0 < 6 < 1, the ML algorithm, with probability at least 1 - 6, outputs a hypothesis 

that lies within {5 of the target rule with respect to the Hellinger distance, with sample size 

N = O I m'n°x ln mmax + l°g [ Y-~ {5 {5 +11og1~ .{5  (43) 

The ML algorithm also outputs, with probability at least 1 - 6, a hypothesis that lies 
within {5 of the target rule with respect to the variation distance (and also with respect to 
the quadratic distance), with sample size 

[] 

N =  o (mm~ln mma x+ log[ YE'[ 1 1 ~  
[ {52 {5 {52 + ff  log 6_) " (44) 

Proof. The outline of the proof is the same as that in Theorem 1. Let M be the ML esti- 
mator of the true countable model. We use the following property of the ML estimator 
instead of that of the MDL estimator: Forziven examples D N = (xx, Yl), • • . ,  (XN, YN) E 

N def ( ) f  x .~) (we let x u = Xl • •. XN, y N  d~=f Yl  • • • YN) ,  the following inequalities hold. 

min min { - log  p(yN I xN : 0 -~ M)} < - log  p(yN I XN : O ~ M*) 
M~ ~U OEON(M ) 

< - log  p(yN I xN : ~ ~ )VI*) + m* 

_< - l og  p(yN I XN : 0* ~ )~'/*) "~- m*, 

• where 0 is the non-truncated maximum likelihood estimator from D N for M*, and 0 is 
the truncated vector for 0 in ON(M*). In the second inequality, we have used (27). The 
process for estimating (QP*)[D u : dH(P* , /3[DN]) > {5] is essentially the same as Theorem 

" 1. However, (34) in the proof of Theorem 1 is replaced by (45), and (35) is also replaced 
by (46). 

(QP*)[DN: dH(P*, P[DN]) ~ {5] 

-< (QP*)[- log p(yN ] X N : O* -~ M*) + m* 

> minM~2?6,0~ON(M ) {--log p(yN I XN : 0 -~ M)}] 
dtt(P *,P)>e 
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= (QP*)[p(yN I x N" O* -~ M*)2 -m* 

< maXMEYT~,OEON(M) P(Y• ] XN : 0 -~ M)] (45) 
dH(P *,e)>_e 

<- EM~g7CF, O~ON(M) (QP*)[Q(xN)p(y N I xN: 0* -~ M*)2 -m* 
d lt( P ,P ) > e 

< Q(xN)p(y N [ xN: 0 -~ M)]. (46) 

As with the proof of Theorem 1, for each P(Y  I X : 0 -~ M) E .7-f N satisfying dH(P*, P) 
-_. e, the following inequality holds (see also (36)). 

(QP*)[Q(xN)p(yNI xN: 0* -~ M*)2 -m* < Q(xN)p(yNt  xN: 0 -~ M)] < 2m*/2e -g~/2. 
(47) 

Thus, plugging (47) into (46) yields 

(QP*)[DN : dH(P* , /3[DN]) _> e] 

< ~ME.]eSC~OEON(M) 2m*/2e-Ne/2 
dH(P *,P)~e 

<-- E E 2m*/2e-NE/2 
ME JTC OEON(M ) 

= exp E m, ln2J - ~-  + In ~ (4~-N)m I ~-(-(m) + ~ , 
m=l 

where we have used the fact (see the derivation of (21) with regard to the size of ON(M)): 

mmax 

~ 1 ~]~(4~f2Ar)ml~u(m) l .  
MEff-'](" OEON(M) m= 1 

Hence we obtain (42). 
Notice that ln(Zmm____]'(4",/2-N) m ] ~-~m) 1) < mmax In N q- (5mmaJ2) In 2 + In ] ~-T]. 

Thus, we have 

(QP*)[DN: dH(P* , P[DN]) ~--- C] 

< exp - ~-  + max logN + log ] ~7"1 + + In2  . (48) 

As with the proof of Theorem 1, setting the bound (48) to 6 and solving for N yield (43). 



STOCHASTIC RULES 193 

As with Theorem 2, we have (44) using the bound (43) and the relationship (10) between 
the variation distance and the Hellinger distance. Using the relationship (13) between the 
variation distance and the quadratic distance, it is easily verified that (44) is a]lso an upper 
bound on the sample size with respect to the quadratic distance. This completes the proof 
of Theorem 3. [] 

Theorem 3 shows that the sample size bounds (43) and (44) depend on not the target com- 
plexities; m* and e(M*), but the parameters of the hypothesis space; mm~x and log [ 27~1. 

Let us consider the "worst-case" where the target rule is P(Y [ X : 0* -~ M*) such that 
dim O(M*) = minas. We use the following code-length function over 2U." For all M E 

e(M) = log l ~CI,  (49) 

which is derived by e(M) = - log P(M) where P(M) is a uniform distribution over 
P(M) def 1/[ Y--Y'[ for all M fi Y-2T(we call the code-length function (49) the uniform code- 
length function). Then the bound (40) for the MDL algorithm is equivalent with the bound 
(43) for the ML algorithm. Similarly, in this worst-case, (41) for the MDL algorithm (with 
X = 2 and the uniform code-length function) is of the same order as (44) for the ML algo- 
rithm. This implies that the upper bound on the sample size for the ML algorithm is of 
the same order as the worst-case upper bound for the MDL algorithm with )~ = 2 and 
the uniform code-length function. Except for this worst-case, the ML algorithm requires 
larger sample size to satisfy the (e, 6)-criterion (5) than the MDL algorithm. 

Let us consider more general cases where learning algorithms are based on information 
criteria which select P specified by M that minimize the following statistic: 

- l og  p(yN ] X N : O ~ M) + fu(O, M), (50) 

where 0 is a maximum likelihood estimator for a fixed M, and fN(O, M) is a function of 
and M, which depends on N. 
LetfN(0, M) = O(log ~ N) (O < c~ < 1) with respect to N. For example, we have the 

ML algorithm by letting f~O, M) = O, and we have Akaike's information criterion 
(Akaike, 1974) by letting fN(O, M) = m log e, where m = dim O(M). In this case, using 
the same type proof technique as that used in the proof of Theorem 3, we obtain the follow- 
"ing upper bound on the sample size with respect to the Hellinger distance. 

N =  o Immaxlnmmax + l°g e e ~ 1  + -¢11°g11 '  (51) 

which is of the same order as the bound for the ML algorithm. 
Next, let us consider the case wherefN(O, M) = O(log" N) (c~ > 1). Using the same 

type proof technique as that used in the proof of Theorem 1, we obtain an upper bound 
on the rate of convergence: 
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I 1 (QP*)[D N : dH(P*, P[oul) -> e] < exp - -~- + O(log ~ N) , (52)' 

^ 

where P[D N] is an output of the algorithm. For some finite positive integer No, the right- 
hand side of (52) is larger than that in (28) for all N _ No. It follows that the upper bound 
for this case is also larger than that for the MDL algorithm for sufficiently small E and ~. 

Therfore, the upper bound (40) on the sample size required by the MDL algorithm gives 
the least upper bound on the sample complexity (which is defined by the 'smallest' sample 
size needed for the (e, 6)-criterion (5)) of learning stochastic rules with finite partitioning 
with respect to the Hellinger distance. 

6. Results on learnability of stochastic rules with finite partitioning 

In this section, we first give upper bounds on the worst-case sample complexities of learn- 
ing stochastic rules with finite partitioning and also give a sufficient condition for statistical 
learnability of any given class. The worst-case sample complexity is the sample complexity 
of learning the target rule such that the probability that a hypothesis cannot lie within 
of the rule is largest over all rules in the target class G. Based on the results, we prove 
statistical learnability of G~L and G~r and derive worst-case sample complexity bounds 
of learning them. Further, we derive a sufficient condition for polynomial learnability of 
any given class of stochastic rules with finite partitioning. 

6.L Worst-case sample complexity bounds and statistical learnabUity 

We introduce a notion of 'sound code-length function' in order to derive bounds on worst- 
case sample complexities. 

Definition 6 (Sound code-length function). Let GFp be a set of all stochastic rules with 
finite partitioning defined on Of × ft. Let G be a subset of Gee i.e., G = {P(Y I X : 
0 ~ M) E Gee : M E ~ 0 E O(M)} where YY'is a finite set of countable models and 
O(M) is a set of probability parameter vectors associated with M E ~ .  We define ~(G) 
by ~(G) %f maxM~y/cdim O(M). Let e be a code-length function over ~ i.e., a function" 
e : YTT--> R + U {0}, satisfying Kraft's inequality: ~M~Y~<G~ 2 -e<M) < 1. We define the 
maximum complexity of G associated with e as maxM~ y/of(M), and we denote it as emo~(C). 
We say that g is sound if emax(G) = e(M) holds for M such that dim O(M) = ~(G). [5]" 

The following lemma gives a lower bound on the maximum complexity for any given G. 

Lemma 3. Let G be a class of stochastic rules with finite partitioning. Let YT~be a finite 
set of countable models specifying G. Then for any code-length function ¢, the maximum 
complexity of G; emax(G), satisfies the following inequality. 
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emax(O ) ~-~ log} (53) 

The equality holds only for the uniform code-length function: e(M) = log [ .2U I, for all 
M ~ .  [] 

ProoL Let e(M) be the code length for M E G. First note 

2 -e(M) -> I 2z~12 -e~(c)- 
M~YTF 

Here the equality holds only for the uniform code-length function: f(M) = log I 2781, 
for all M fi Y78. Notice that the uniform code-length function is sound. 

On the other hand, by Kraft's inequality, we have 

Z < 1. 2-e(M) 
M~ Yl( 

Notice that the equality holds for the uniform code-length function. 
Hence, from the above two inequalities, we have 

emax(G ) ~-~ log l ~1. 

Here the equality holds only for the uniform code-length function. This completes the proof 
of Lemma 3. [] 

The following theorem gives a sufficient condition for statistical learnability of stochastic 
rules with finite partitioning and worst-case upper bounds on the sample complexities of 
learning them. 

Theorem 4 (Worst-case sample complexity bounds and sufficient condition for statisti- 
cal learnability). Let C be a class of stochastic rules with finite partitioning and YT~be 
a finite set of countable models, each of which specifies partitioning of the domain. Fix 
a sound code-length function e : ~T ~ R + O {0} such that F,M~yl(2 -e(M) _< 1. Whenever 
gample size N satisfies 

e I f  64~(G) 1 1 N -> e(e 1-------~ (G) In e - + (2 In 2)e,.~(G) + 2 In , (54) 

the MDL algorithm (with X = 2 and the code-length function e), with probability at least 
1 - 6, produces a hypothesis/3 such that dH(P*, P) < e for all Q on ~X and for all 
P* E G. Here dr-/is the Hellinger distance. 

Further, there exists an algorithm which learns G within the (e, 6)-criterion ,with respect 
-to the Hellinger distance for sample size 
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e I~ 64~(G) ½1 N->  e ( e -  1) (G) ln -e + (2 In 2) log I ~-TI + 2In  . (55)" 

That is, an upper bound on the worst-case sample complexity NH (l/e, 1/6, n) of learning 
G with respect to the Hellinger distance is given by 

~1 1 nl ~ (G)~(G)  log] ~T] 1 1~ 
N H ~ , ~ ,  = O log e + e + -e log . (56) 

An upper bound on the worst-case sample complexity Nv (l/e, 1/6, n) with respect to the 
variation distance (and also with respect to the quadratic distance) is given by 

( 1  1 n~ I ~  ~ Nv , ~ ,  = 0 log ~(G) + log ] ~/~l + 1 62 f f  log . (57) 

If both of ~(G) and log ] ~-2= I are polynomial in n, then G is statistically learnable with 
respect to the Hellinger distance, the variation distance and the quadratic distance. [] 

Proof. First, notice that if there exists an algorithm which takes independent examples 
D N, drawn according to the target rule as input, and outputs/310~ 1 such that 

max(QP*)[DN:dH(P *, /:~[DN]) ~-~ {7] -~ ~, 
P*E C 

then the (e, 6)-criterion (5) holds even for the worst-case where the target rule P* attains 
maxp*ea(QP*)[D N " dH(P*, /3[DN]) --> e]. That is, (5) holds for all P* fi G. 

Next, notice that, by Theorem 1, the following inequality holds for the MDL algorithm 
with k = 2 and the code-length function e. 

max(QP*)[DN: dH(P*, /~[DN]) ~-~ 6] 
PEG 

[ .0 (m*,og. 
< M*E2z~max exp -- -2- + 2 + e(M*) + 3m l n2  , 

r 

where ['[D g] is an output of the MDL algorithm from D N. We define FN(M*) by FN(M*) 
def = exp[-  (Ne)/2 + ((m* log N)/2 + e(M*) + 3m*) In 2], where m* = dim O(M*). 

Since, by the assumption, the code-length function e is sound, maxM*EY7F FN(M*) is" 
attained by M* such that dim O(M*) = ~(C). Hence, maxM*EY7~ FN(M*) is given by 

max FN(M* ) = exp - + 
M*EJ]F 2 -  

+emax(G) + 3~(G)~ In 21 . 

As with the proof of Theorem 1, setting maxM*~ YTC FN(M*) to 6 and solving for N give" 
the sample complexity bound (54). By Lemma 3,/ma~(G) -> log I YT(I and the equality 
holds only for the uniform code-length function. Therefore, an upper bound on the sample 
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"complexity, which is defined by the "smallest" sample size (required for the (e, 6)-criterion 
to be satisfied) over all algorithms, is obtained by plugging emax(C) = log ] ~ 1  into (54). 
This bound is attained by the MDL algorithm with k = 2 and the uniform code-length 

'function. Thus we have (55). 
The upper bound (55) on the sample complexity is polynomial in l/e and 1/6. (55) implies 

that if both ~(C) and log ] J~('[ are polynomial in n, then the upper bound on the sample 
complexity of learning any P* fi C is also polynomial in n, and thus G is statistically 
learnable with respect to the Hellinger distance. Since the Hellinger distance and the variation 
distance are polynomially related each other and the quadratic distance is bounded by the 
variation distance (see Lemma 1), C is also statistically learnable with respect to the varia- 
tion distance and the quadratic distance if G is statistically learnable with respect to the 
Hellinger distance. 

As with Theorem 2, (55) and the relationship (10) between the Hellinger ,distance and 
the variation distance yield (57). Using the relationship (13) between the variation distance 
and the quadratic distance, it is easily verified that (57) is also an upper bound with respect 
to the quadratic distance. This completes the proof of Theorem 4. [] 

The worst-case sample complexity bound (55) is attained by the MDL algorithm using 
the uniform code-length function. However, if we like to let the MDL rule converge to the 
target rule faster when the target rule is simple, it is better to use any other encoding scheme 
such that g(M1) -< g(M2) if dim @(M1) _< dim O(/I,/2). Because, when we consider not 
worst-case but the target-dependent case, the rate of convergence depends on the descrip- 
tion length for the countable model of the target rule (see (28)). 

As corollaries of Theorem 4, we have results on statistical learnability of C~L and C~r 
and upper bounds on the sample complexities of learning them. 

Corollary 1 (Statistical learnability of C~L and sample complexity bound). For a fixed 
k, GEL is statistically learnable with respect to the Hellinger distance, the variation 
distance, and the quadratic distance. The following sample size N is sufficient for learning 
G~L(n) within the (e, 6)-criterion with respect to the Hellinger distance. 

e I[ 64 I T/~ I I' ~ ,  N_> e(e - 1) T~ ] In - - e  + 2 In I T~ + 21n (58) 

where I Tff ] denotes the number of all elements in T~; 

I T S ]  = Z 2  i . 
i=o 

That is, an upper bound on the sample complexity N/4 (l/c, 1/6, n) of learning G~L(n) 
with respect to the Hellinger distance is given by 

Nu , ~ ,  = O log n 1 
6 e 

(59) 
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Proof.  For CokL(n), the code-length function (22) over 2-7(" = I'ff is sound. Notice 

~(CkL(n)) = I Tff I = t ~  ° =  2 i = O ( n k ) ,  

emoAC~L(n)) = log l T~' 1! = O(n k log n). 

Thus, we obtain (58) and (59) using (54). The upper bound (59) on the sample com- 
plexity is polynomial in i/e, 1/6 and n. Hence GokL is statistically learnable with respect 
to the Hellinger distance. [] 

C o r o l l a r y  2 (Statistical learnablity of G~r and sample complexity bound).  For a fixed 
k, Cokr is statistically learnable with respect to the Hellinger distance, variation distance 
and the quadratic distance. The following sample size N is sufficient for learning Gokv(n) 
within the (e, 6)-criterion with respect to the Hellinger distance. 

~2 2/~+6 (2k_l 1 ~  e k In + In 2)(log n ( k ) )  + 2 in , (60) 
N _> e(e 1----~ e 

where n ( k )  ~f  (n + 1 ) ' n  . . . . .  (n - k + 1). [] 

Proof.  Let us define a terminal node in a path (from a root to a leaf) by a node which is 
the farthest node (except a leaf) from the root in the path. For a given P ~ G~r(n), let the 
length (=the number of inner nodes) of the path from the root to the i-th terminal node be 
t i (i = 1, . . . ,  m), where m is the number of terminal nodes. Each node is selected from 
{xl, . • . ,  xn, *} where * is a symbol indicating a terminal node, and thej-th node from the 

• . . def t 
root can be descnbed in log(n + 2 - j)  bits. Thus, log n ( t i )  = Eji  1 log(n + 2 - j)  + 
log(n - ti + 1) = log(n + 1) + l o g n  + . . .  + log(n - ti + 1) bi tsare  sufficient to 
encode the path from the root to the i-th terminal node, where the last log(n - t i + 1) bits 
are necessary for describing "being the terminal node." Thus, r'mi=l (log n( t i )  ) bits are suf- 
ficient to encode a tree form M ~ f]~ with m terminal nodes. See Quinlan and Rivest (1989) 
for more details of methods for encoding decision trees. It is easily verified that this code- 
length function scheme is sound. Also it is easily verified that fmo~(G~r(n)) = 2k-1 (log 
n ( k ) )  and ~(G~rr(n)) = 2 k. Thus the worst-case sample complexity bound (60) is obtained ' 
using (54). Since this sample complexity bound is polynomial in l/e, 1/6, and n, CokT is 
statistically learnable with respect to the Hellinger distance. [] 

For any class • of deterministic rules, it is known (see Blumer, et al. (1989)) that the 
smallest sample size N O (l/e, 1/6, n) that any consistent algorithm, with probability at least 
1 - 6, outputs a hypothesis such that Q(f*(X) ;~ f (X))  < e is bounded as No (i/e, 1/6, n) 
= O((VCdim(27)/e)  log (l/e) + (I/e) In (1/6)), where VCdim(.7)  is the Vapnik-Chervonenkis 
dimension of .7 (Vapnik & Chervonenkis, 1971; Blumer, et al., 1989). It is further known 
(Blumer, et al., 1987) that when .Tis finite, the sample complexity of learning ~Tis given by 
N O (I/e, 1/6, n) = O((1/e) log [ ..7 1 + (I/e) log (1/6)). For the class of deterministic deci- 
sion lists with degree at most k (i.e., the class of stochastic rules in CokL whose probability 
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"parameters are all 0 or 1), which we denote JkL(n), it is known that VCdim(.-7~L(n)) = 
O(n k) (Ehrenfeucht, et al. 1989) and I .-~kL(n) I -,',IT~I !) = Ot~ I Tffl (Rivest, 1987). Thus 
we have the following upper bound on the sample complexity of learning JkL(n ) (Ehren- 

"feucht, et al., 1989). 

No e ' 5 '  O min og e e (61) 

Comparing the bound (61) with the bound (59), we can see that log (n/e) in (59) is replaced 
by min{log (l/e), log n} in (61). This sample complexity comparison with respect to the 
upper bounds suggests that, when we ignore time complexity, learning stochastic decision 
lists with respect to the Hellinger distance may require only slightly more examples than 
learning deterministic decision lists with respect to the symmetric erroneous measure. Notice 
here that there exists an efficient algorithm for learning deterministic decision lists in the 
noise-free case (Rivest, 1987), but the MDL algorithm is not efficient. 

6.2. Sufficient condition for polynomial learnability of stochastic rules 

In this subsection, we derive a sufficient condition for polynomial learnability of any given 
class of stochastic rules with finite partitioning. In learning deterministic rules, the problem 
of finding the shortest rules among those that are consistent with given examples is often 
computationally intractable (Pitt & Valiant, 1988). We may also conjecture thai: the problem 
of finding the MDL rule from .7-fu(CkDL(n)) (see 4.2) is computationally intractable. Thus, 
in order to learn stochastic rules within our criterion efficiently, we need an algorithm 
that outputs, in polynomial time, not an MDL rule itself but a rule that approximates the 
MDL rule. We call such an algorithm an approximately-MDL algorithm. Let a class C 
of stochastic rules be given. The following theorem shows that if there exists a polynomial- 
time approximately-MDL algorithm which outputs a rule that lies within some accuracy 
of the MDL rule P[D N] E .~7[N(C) with respect to the variation distance, then C is poly- 
nomially learnable with respect to the variation distance. 

• Theorem 5 (Sufficient condition for polynomial learnability of  general stochastic rules 
with finite partitioning). Let C be a class of stochastic rules with finite partitioning. Let 
YTfbe a set of all countable models, each of which specifies a target rule belonging to 
C. We assume that C satisfies the sufficient condition for statistical learnability given in 
Theorem 4. If there exists an algorithm ~7/such that, when given N input examples D N, 
for some constants c~ >_ 0 and 13 > 0, for any n, for any e > 0, for any 0 < 6 < 1, 
for all Q on ~ ,  for all P * ~ C, ~ outputs, in time polynomial in n and N, a hypothesis 
P[D N] E .YTCN(C) satisfying 

dv(['tDS], /3[DZV]) < n~N -~, (62) 
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for all random examples D N drawn according to Q(X)P*(Y I X) and for any MDL rule" ^ 
P[D N] E ,JEN(C) (which the MDL algorithm (with h = 2 and the uniform code-length 
function) outputs from oN), t h e n  C is polynomially learnable. Here dv is the variation 
distance. Whenever sample size N satisfies 

N _> max 

11) eZ(e ~ 1) (G) In 62 + (2 In 2) log I J'?TI + 2 in , (63) 

.7/ outputs, for all Q on 3(and for all P* ~ G, with probability at least 1 - 6, a hypothesis 
that lies within e of the target rule with respect to the variation distance. Here ( (G)  = 
maxm~97v dim @(M) (Y7( is a finite set of countable models specifying G). [] 

Proof. Assume that there exists an algorithm .~ satisfying (62) for all Q on JY, for all 
P* ~ G, for all random examples O N drawn according to Q(X)P*(Y I X), and for any 
MDL rule PIp N] ~..~2FN(C). Then, whenever N satisfies N ___ (2n~/c) v~, dv(P[DN], P[DN]) 
< e/2 holds for all Q on X, for all P* ~ G, for all random examples D N, where P[D N] 
is an output of .~. 

Next, notice that, for such an algorithm J/, whenever N satisfies N >_ (2n~/e) v~, the 
following inequalities hold. 

(QP*)[DN : dr(P* , /~[DN]) ~-~ tel 

<_ (QP*)[DN : dr(P* , /3[/)N]) + dv(P[DN], /D[DN]) ~' ~] 

e l <_ (QP*) U" dv(P* , P[DN]) >-- ~ " 

Here in the second inequality, we have used the triangle inequality with respect to dv 
metric; dr(P*, PEDN]) <-- dr(P*, P[DNj) + dv(P[DN], P[DN]) for any MDL rule P[D u] in- 
ferred from D N. By Theorem 2 and Theorem 4, we see that, whenever N satisfies N _> 
(16e/eZ(e - 1))((~(G) In (1024~(G))/e 2 + (2 In 2) log I 227('] + 2 In (1/(3)), the MDL 
algorithm (with X = 2 and the uniform code-length function) outputs PIp N] satisfying . 
(QP*)[D N : dv(P* , Jt3[DN]) > E/2] --< (3 for all Q on .)(and for all P* E G. Thus, whenever 
N satisfies (63), the following inequality holds for all Q on 3f- and for all P* fi G. 

(QP*)[DN:dv(P  *, /~[DN]) ~ ~] ~--- (3. 

Since G is assumed to satisfy the sufficient condition for statistical learnability (see The- 
orem 4), the sample size N which is given by the righthand side in (63) is polynomial in 
l/e, 1/6, and n. Therefore, if .7/runs in time polynomial in n and N, C is polynomially 
learnable. This completes the proof of Theorem 5. [] 
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Theorem 5 is a criterion for determining whether or not any given class of stochastic 
rules with finite partitioning is polynomially learnable. The condition (62) implies that 
the output hypothesis must come within accuracy O(N -~) of the MDL rule with respect 
to the variation distance, over the class of hypotheses. 

7. Conclusion 

In this paper, we have developed a learning criterion for stochastic rules by extending Valiant's 
PAC learning criterion to the stochastic setting. We have presented the MDL algorithm 
for learning stochastic rules with finite partitioning. Further, we have derived upper bounds 
on the sample complexity of learning stochastic rules with finite partitioning and have given 
sufficient conditions for statistical learnability and polynomial learnability of any given 
class. From target-dependent sample-size bound analysis, it has turned out that the MDL 
algorithm performs well within our learning model in the sense that it is more sample-size 
efficient than other known information-criteria-based learning algorithms. 

In our proposed learning framework, the following problems remain open for future study. 

(1) The necessity for improving the sample complexity bounds. 
We feel that our upper bounds on the sample complexities are still in need of refining 
and that they should be compared to lower bound estimators, which we as yet have 
no method of determining. Further, the sample complexity estimation with respect to 
the Kullback-Leibler divergence or other distances looks very challenging. 

(2) The necessity for developing efficient approximately-MDL algorithms. 
We need efficient approximately-MDL algorithms in order to generate nearly optimal 
(in the sense of the MDL principle) stochastic rules in time polynomial in n. It would 
be interesting if we could characterize what approximately-MDL algorithms satisfy the 
sufficient condition for polynomial learnability (which is given in Theorem 5). 

(3) The necessity for investigating learnability of general classes of stochastic rules. 
We have focused on learnability of classes of stochastic rules with finite partitioning. 
It would be interesting if we could characterize statistical learnability and polynomial 
learnability of more general classes, e.g., classes of stochastic rules specified by infi- 
nite countable models, etc. 

" (4) The necessity for extending our learning model to an agnostic one. 
In this paper, we have assumed that the target rule according to which examples are 
generated belongs to some known parametric class. However, this assumption seems 
too strong for the practical application. It would be interesting if we could extend our 
learning criterion to that in which no assumption is made about the nature of the target 
rule. We call such a learning model an agnostic one (see Haussler (1990, p. 32)). 
Haussler, from the decision theoretic viewpoint, has developed an agnostic learning 
model (Haussler, 1989; 1990) in which the uniform convergence technique is available 
for the sample complexity estimation. However, it has not yet been clarified how the 
computational complexity of the MDL algorithm is related to his agnostic approach. 

These questions will be dealt with in future papers. 
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Notes 

1. When Nj + = 0, or Nj + = Nj, in order to avoid setting/3j = 0, or 1, we often use the Laplace estimator (see 
for example, Schreiber (1985));/~ = (Nj + + 1)/(Nj + 2) (j = 1 . . . . .  m) rather than the maximum likelihood 
estimator. 

2. The technique for solving N is due to Haussler and Long (1990, p. 17). 
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