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Abstract. One problem which frequently surfaces when applying explanation-based learning (EBL) to imperfect 
theories is the multiple inconsistent explanation problem. The multiple inconsistent explanation problem occurs 
when a domain theory produces multiple explanations for a training instance, only some of which are correct. 
Domain theories which suffer from the multiple inconsistent explanation problem can occur in many different 
contexts, such as when some information is missing and must be assumed: since such assumptions can be incor- 
rect, incorrect explanations can be constructed. This paper proposes an extension of explanation-based learning, 
called abductive explanation-based learning (A-EBL) which solves the multiple inconsistent explanation prob- 
lem by using set covering techniques and negative examples to choose among the possible explanations of a train- 
ing example. It is shown by formal analysis that A-EBL has convergence properties that are only logarithmically 
worse than EBL/TS, a formalization of a certain type of knowledge-level EBL; A-EBL is also proven to be com- 
putationally efficient, assuming that the domain theory is tractable. Finally, experimental results are reported 
on art application of A-EBL to learning correct rules for opening bids in the game of contract bridge given ex- 
amples and an imperfect domain theory. 

Keywords. Explanation-based learning, theory revision, theory specialization, probably approximately correct 
learning ~. 

1. Introduct ion 

1.1. Motivation 

An important problem in machine learning is that of extending explanation-based learning 
(EBL) methods to domain theories which are imperfect: i.e., theories which are either 
incomplete or incorrect. A solution to this problem would be an important step toward 
integration of explanation-based and similarity-based approaches to learning. One difficulty 
which frequently surfaces when appying EBL to imperfect theories is the multiple incon- 
sistent explanation problem, also called the multiple explanation problem (Fawcett, 1989; 
Pazzani, 1988; Rajamoney & DeJong, 1988). The multiple inconsistent explanation prob- 
lem occurs when a domain theory produces multiple explanations for a training instance, 
only some of which are correct. Domain theories which suffer from the multiple explana- 
tion problem can occur in many different contexts. 

Incomplete domain theories. One situation in which the multiple explanation problem 
occurs is when some information is missing and must be assumed. For instance, in do- 
main theories which involve some element of plan recognition, the goals of one or more 
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agents are typically unknown and must be assumed (Pazzani, 1988). Often, there are several 
plausible assumptions which would suffice to explain an action, but only explanations based 
on the correct assumption will be valid. The multiple explanation problem also arises when 
the domain theory is missing inference rules and some external mechanism (Fawcett, 1989; 
Hall, 1988; Roy & Mostow, 1988; Mahadevan, 1989) is used to supply these rules as needed. 
Typically, the newly-supplied inference rules are not necessarily valid, and hence invalid 
explanations can be constructed. 

Incorrect domain theories. Finally, the multiple explanation problem can occur when 
the domain theory is incorrect because it contains one or more over-general rules. This 
may be a result of flaws in whatever knowledge acquisition system was used to acquire 
the domain theory. In other circumstances, the imperfections in the domain theory may 
be deliberate. For instance, an incorrect but tractable approximation to an intractable do- 
main theory may be used, as in Rajamoney and DeJong (1988); or, EBL may be used induc- 
tively (as in Carbonell et al., (1987); Flann and Dietterich (1989); and Hirsh (1990)) to 
find some particular specialization of an over-general domain theory. 

Standard explanation-based systems cannot handle the multiple explanation problem. 
Typically, they either assume that there will be only a single explanation for each instance, 
or that all explanations will be valid. Existing approaches to the multiple explanation prob- 
lem have relied on additional mechanisms to either evaluate (as in Fawcett (1989) and Paz- 
zani (1988)) or validate (as in Rajamoney and DeJong (1988)) the various explanations of 
a training example. However, the evaluation metrics that are proposed in Fawcett (1989) 
and Pazzani (1988) have not been rigorously justified, and are to some extent domain specific; 
the validation technique described in Rajamoney and DeJong (1988) requires the ability 
to interact with the outside world via experimentation. 

There are two contributions of this paper. The first contribution is to formalize a certain 
type of knowledge-level EBL called explanation-based learning for theory specialization, 
or EBL/TS. The second and more important contribution is to propose and validate an 
extension of EBL/TS called abductive explanation-based learning (A-EBL) which addresses 
the multiple explanation problem. In contrast to the techniques mentioned above, A-EBL 
is a general technique which does not require the ability to conduct experiments and which 
makes no assumptions about the domain theory beyond those made by EBL/TS. A-EBL 
does, however, require additional information in the form of negative examples. 

A-EBL uses set covering techniques and negative examples to select a minimal consis- 
tent subset of the set of possible explanations of a training example. We show by formal 
analysis that selection of this subset leads to good convergence properties: in the worst 
case, A-EBL converges only logarithmically slower than EBL/TS. The number of examples 
needed for A-EBL to produce a good approximation to an unknown concept increases only 
with the complexity of the unknown concept, not with the number of explanations per train- 
ing example. A-EBL is also shown to be computationally efficient, assuming a tractable 
domain theory; execution time increases fairly slowly as the number of explanations per 
training example increases. A-EBL has also been experimentally validated, although it has 
not been systematically tested on all of the types of domain theories described above. 

A final desirable feature of A-EBL is that it is, in many senses, a natural extension of 
standard EBL. If A-EBL is invoked in a situation in which each instance has only a single 
explanation, the result will be exactly the same as for EBL/TS. Moreoever, the conditions 
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necessary for A-EBL to "work" (in a formal sense which we will introduce in Section 
3) are less restrictive than the conditions necessary for EBL/TS to work. 

This paper is an expanded version of Cohen (1990d); Section 3.1 also draws on results 
presented in Cohen (1990a). 

1.2. Overview 

Before presenting A-EBL, we would like to clearly state the problem that it is intended to 
solve. It is not sufficient to merely say that the goal is to solve the problem solved by "stan- 
dard EBL systems" in the presence of multiple explanations because there are many different 
kind~s of EBL systems. Therefore, we begin by defining the "theory specialization prob- 
lem" and presenting a standard algorithm for solving this problem without multiple explana- 
tions. This algorithm, called EBL/TS, formalizes a particular type of inductive EBL system. 
It will serve as a sort of yardstick against which the A-EBL algorithm will be measured. 

We then present the A-EBL algorithm. We show that A-EBL is no more restrictive than 
EBL/TS, and also show that the worst-case asymptotic behavior of A-EBL is acceptable. 
More precisely, we show that when examples are selected stochastically, both algorithms 
converge using a sample size polynomial in the complexity of the concept being learned 
and the accuracy of the hypothesis produced. In short, we present a comparative analysis 
of A-EBL and EBL/TS viewed as probably approximately correct learning algorithms 
(Blumer et al., 1986; Valiant, 1984). The analysis shows that the sample complexity of 
A-EBL is within a logarithmic factor of that of EBL/TS according to this criterion. 

The formal analysis gives a rigorous understanding of the asymptotic behavior of the 
algorithm given stochastically presented examples. In addition to experimentally evaluating 
A-EBL in this context, we also experimentally evaluate the behavior of the algorithm given 
a small set of examples provided by a friendly and informative teacher who does not know 
the internal workings of the learning algorithm. In particular, we use the examples given 
in a well-known introductory book on playing bridge (Sheinworld, 1964) to test the 
algorithm's behavior on several domain theories which are "imperfect" in slightly different 
ways. In addition to helping us evaluate A-EBL's behavior given small samples, this sec- 
tion also serves as an extended example of what sorts of imperfections in a domain theory 
can be corrected. We conclude by discussing related work, identifying further research 
problems relating to A-EBL, and summarizing our results. 

In this paper, we will assume that the domain theory is a Horn clause theory. We will 
alsc, assume that it is tractable, in a strong sense: we assume that all proofs of a goal can 
be generated in time polynomial in the size of that goal. We emphasize that this is a fairly 
strong assumption about the domain theory; many Horn clause theories produce an ex- 
ponential (or even infinite) number of proofs. 

2. Abductive EBL 

l%r the reasons discussed above, we preface our discussion of A-EBL with the definition 
of a particular problem (which we call the theory specialization problem) that is solvable 
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by EBL, and also a definition of a particular EBL algorithm (which we call EBL/TS) that 
solves this problem. 

2.1. The theory specialization problem 

Flann and Dietterich (1989) have observed that explanation-based generalization (EBG), 
although often used to improve performance of a problem solver, can also be used to ac- 
quire new knowledge. The input of EBG is a domain theory T defining some concept C~ 
and a training example that is an instance of C~-; the output of EBG is a rule R that 
generalizes the training example. Since the new rule is in the deductive closure of T, it 
must be that anything recognized by that rule is also recognized by T as belonging to Cz; 
in other words, it must be that R encodes sufficient conditions for membership in C~-. 

R(x) = G ( x )  

Alternatively, one could interpret R to be necessary and sufficient conditions for member- 
ship in a new concept C, of which the training example is also a member. 

R(x) =- C(x) 

This is an inductive leap, since it is not shown that R is also a necessary condition for 
C. In this case, EBG is being used as a mechanism for generating a specialization of the 
original domain theory. Many of the examples in the literature on EBL have this character: 
for instance, in Section 7 of DeJong and Mooney (1986) a theory of social interactions 
is specialized to form a concept roughly corresponding to "suicide." 

However, this is a somewhat oversimplified model of EBL; many EBL systems that per- 
form specialization learn a set of rules, rather than a single rule. For example, LEAP 
(Mahadevan, 1985) can be viewed as learning the specialization "useful transformation 
from a specification to a design artifact" given a domain theory for the related concept 
"legal transformation from a specification to a design artifact;" the specialization is en- 
coded by a set of useful transformation rules. In this case independent applications of EBL 
are used to produce a series of rules R1, . . . ,  Rn, and the disjunction of these rules defines 
the new concept C: 

RI(X ) V . . .  V Rn(x ) ~ C(x) 

Since the set of rules R1, • • . ,  Rn is a new theory that is less general than the original 
domain theory, this use of EBL will be called "theory specialization." The theory specializa- 
tion problem is to correct an over-general domain theory by finding a specialization of 
that theory which accurately models the world. Adopting the terminology of Mitchell et 
al., (1986), the theory specialization problem can be stated more precisely as follows. 1 

Definition 1 The theory specialization problem (TSP) is defined as follows. 
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• Given: 
- A domain theory T defining a base concept C~ which is a superset of the concept to 

be learned. 
- An operationality criterion (9 indicating what predicates from T can be used in the 

~learned concept definition. 
- A  sample S + of positive examples of an unknown concept C. 
- A sample S -  of negative examples of an unknown concept C, (optional). 
- A  symbol to use as the name of the unknown concept C. 

• Find: 
- A  domain theory T' defining the unknown concept C. 

Notice that the examples are not only examples of the concept C~ defined by the do- 
main theory, but are also examples of the unknown concept C. 

The theory specialization problem is closely related to the problem of "theory-based 
concept specialization" as defined in Flann and Dietterich (1989)? Further motivations for 
study of the theory specialization problem, and other techniques for solving it, can be found 
in Carbonell et al., (1987); Drastal et al., (1989); Ginsberg (1988); Hirsh (1988); Laird 
(1988); and Rosenbloom and Aasman (1990). 

In all of our examples of theory specialization, the rules of the specialized theory T' 
cannot call one another. This means that the concept C is defined as the disjunction of 
several conjunctively described sets (the sets defined by R1 . . . . .  Rn). Also notice that 
we are not excluding the possibility that additional constraints--for instance, efficiency 
constraints--might be placed on the specialization. In particular, constraining the opera- 
tion~tlity predicate to only be true on predicates which are "efficiently evaluable" is not 
disallowed, although it is not required. 

As an example of a theory specialization problem, consider the domain theory shown 
in Figure 1. This is a simplified domain theory for opening bids in the game of contract 
bridge? The first rule states that given a hand of opening-strength that has two biddable 
suits, one should bid the suit that is preferred. The next few rules state that any 4, 5, or 
6 card suit is biddable; that a hand that is a weak-opener or a strong-opener is of opening- 
strength; and finally, that given two biddable suits, one should prefer either the longer suit 
(the ~3ne with most cards) or the higher suit. On bridge, the "highest" suit is spades, preceded 
by hearts, diamonds, and clubs.) All predicates used but not defined in Figure 1 are 
operational. 

This domain theory is a simplification of a more realistic theory manually extracted from 
a textbook on contract bridge. As in the theory that it simplifies, the rules for the prefer 
predicate in this domain theory are over-general: in particular, the conditions under which 
one should choose the longer suite and/or the higher suit are not fully specified. The inac- 
cura!~ of the theory is reflected by the name of the concept defined by the theory: bids 
suggested by the theory are plausible but not necessarily correct. 

A corrected version of the theory of Figure 1 is shown in Figure 2. The theory of Figure 
2 is a specialization of the theory of Figure 1; it specializes the prefer predicate by stating 
that one should prefer the higher suit only on hands with two suits of equal length or on 
weal: hands with 5-4 distribution, and the longer suit in other cases. The rest of the theory 
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CT= plausible-bid(H,S) 

opening-strength(H) A biddable(H,S1) A biddable(H,S2) A prefer(H,Sl,$2) ~ plausibIe-bid(H,S1) 
4cards(H,S) =~ biddable(H,S) 
5c~rds(H,S) =~ biddable(if,S) 
6cards(if,S) ~ biddable(if,S) 
strong-opener(ii) ~ opening-strength(H) 
weak-opener(H) =~ opening-strength(ii) 
longer(H,S1,S2) ~ prefer(ii,Sl,S2) 
higher(S1,S2) ~ prefer(ii,S1,S2) 

Figure 1. Domain theory for opening bids. 

C = correct-bid ( It~S) 

opening-strength(H) h biddable(H,S1) A biddable(if,S2) A prefer(H,S1,S2) ~ correct-bid(H,Sl) 
6cards(if,S) =¢- biddable(H,S) 
5cards(H,S) ~ biddable(H,S) 
4cards(if,S) ~ biddable(H,S) 
strong-opener(H) :¢- opening-strength(H) 
weak-opener(H) :~ opening-strength(H) 
higher(S1,S2) A 
higher(S1,S2) A 
higher(S1,S2) A 
higher(S1,S2) A 
longer(H,S1,S2) 
longer(H,S1,S2) 
longer(H,Sl,S2) 

4cards(H,S1) A 4cards(H,S2) ~ prefer(H,S1,S2) 
5cards(H,S1) A 5cards(H,S2) ~ prefer(ii,S1,S2) 
6cards(if,S1) A 6cards(H,S2) ~ prefer(ii,S1,S2) 
5cards(H,S1) A 4cards(if,S2) A weak-opener(if) ~ prefer(H,S1,S2) 
A 5cards(H,S1) A 4cards(H,S2) A strong-opener(H) =~ prefer(H,S1,S2) 
A 6cards(if,S1) A 4cards(if,S2) ~ prefer(H,S1,S2) 
A 6c~rds(ii,S1) A 5cards(II,S2) ~ prefer(H,S1,S2) 

Figure 2. Accurate theory for opening bids. 

is essentially identical to the theory of Figure 1; the only additional change is that the name 
of the top-level concept has been changed from plausible-bid to correct-bid. 

In Figure 2, the theory of Figure 1 has been specialized by explicitly adding conditions 
to certain rules. EBG does not explicitly add such conditions; however, under certain cir- 
cumstances the effect can be the same. The next section will describe an algorithm that 
specializes a theory by repeatedly using EBG. 

2.2. The EBL/TS algorithm 

Crucial to explanation-based generalization is the notion of an explanation structure, which 
is a generalized version of the proof of a training example. Examples and elaboration of 
these definitions can be found in Mitchell et al., (1986). 

Definition 2 Let Px be an AND-OR proof  for  the training example x. 
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• An abstract proof for x is obtained by pruning from the proof tree Px every subtree with 
a toot which is operational (that is, a root on which the operationalitypredicate succeeds.)4 

• An explanation structure for a proofpx is obtained by replacing every instantiated rule 
used in the proof px by the associated general rule. 

• An abstract explanation structure for a proofpx is obtained by pruning from the explana- 
tion structure every subtree with a root which is operational. 

Using these constructs, the operation of explanation-based generalization, and hence algo- 
rith•as which use it, can be easily specified. Figure 3 describes the EBL/TS learning algo- 
rithna, which uses EBG to solve the TS problem, using a set of examples of the specialized 
theory. The basic idea is very simple: the EBG algorithm is used to generalize each example, 
and the union of these generalizations is returned as a hypothesis. For completeness, we 
also present our algorithm for explanation-based generalization. Note that we define EBG 
as a procedure for generalizing a proof, rather than an instance. This distinction has not 
been important before, because previous systems assumed a single proof for each instance. 

As an example, consider the operation of EBL/TS given the domain theory of Figure 
1 and the examples of Table 1. In this example, whether it is appropriate to bid the higher 
of two suits or the longer of two suits depends on two things: the strength of the hand, 
which is reflected in the structure of the proof of the subgoal opening-strength; and the 
nature of the two suits under consideration, which is reflected in the structure of the proofs 
of the two biddable subgoals. This means that the over-generalprefer predicate can be cor- 
rectly specialized simply by embedding it in an EBL rule: the context in which the predicate 
is used serves to specialize it. Therefore, even though the domain theory itself is over-general, 
generalizations of proofs constructed using the domain theory are not over-general. Thus 
in this case, EBL/TS can be used to correct the domain theory, without explicitly refining 
the over-general rules that it contains; instead, EBL/TS implicitly refines overgeneral rules 
by embedding them in macro-rules. 

For instance, given the domain theory and operationality predicate of Figure 1, the training 
examples of Table 1, and the symbol correct-bid to use as the name of the unknown con- 
cept, EBL/TS will output the following set of rules. These rules define a specialization 
of the original concept of plausible-bid. 

strong-opener(H) A 6cards(H,S1) A 5cards(H,S2) A longer(H,S1,S2) = correct-bid(H,S1) 
weak-opener(H) A 6cards(H,S1) A 5cards(H,S2) A longer(H,S1,S2) = correct-bid(H,S1) 
weak-opener(H) A 6cards(H,S1) A 4cards(H,S2) A longer(H,S1,S2) = correct-bid(H,S1) 
weak-opener(H) A 5cards(H,S1) A 4cards(H,S2) A higher(S1,S2) = correct-bid(H,S1) 

This set of rules does not cover all of the cases covered by the theory of Figure 2; however, 
given enough examples, EBL/TS will find a set of rules which together are equivalent to 
the theory of Figure 2. In this case, a total of twelve rules (shown in Figure 4) are needed. 
Not!tce that the rules generated by EBG have not been added to the original domain theory 
as macro-rules, but have been used to construct a definition of a new concept different 
from the concept defined by the original domain theory; thus EBL/TS is a sort of knowledge- 
level learning (Dietterich, 1986). 
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A l g o r i t h m  E B L / T S ( T ,  O, S +, N): 

Inputs: 
a domain theory T defining a concept CT 
an operationalJty predicate O 
a set S + of positive examples of an unknown concept C 
a name N to use for the unknown concept 

O u t p u t :  
a hypothesis H for the unknown concept C 

beg in  
H ~ - ¢  
for each positive example x E S do 

if x ~ H t h e n  
p~ *- the proof that  x ~ CT 
R ~ EBG(T,  O,p~) 
H ~- H U {R} 

e n d i f  
e n d f o r  
r e t u r n  rename(N, H)  

end  

s u b r o u t i n e  E BG( T, O, p~): 

I n p u t s :  
a domain theory T and an operationality predicate (.9 
a proof p~ of an instance x 

O u t p u t :  
a description of a set G such that  {x} C_ G C_ CT, 

where CT is the concept defined by the domain theory 
beg in  

a:~ ~- the abstract explanation structure for p~ 
L E A V E S  ~- {L : L is a leaf of a~} 
r e t u r n  the rule whose consequent is the root of a~ and whose antecedent is /~LeLEAVES L 

end  

s u b r o u t i n e  rename(N, H): 

beg in  
r e t u r n  a copy of R in which the principle functor of the consequent of each rule 

has been replaced with the symbol N 
end  

Figure 3. Algorithms for EBL/TS and EBG. 

Table L Example of correct bids. 

H a n d  Co r r ec t  Bid 

1 & K Q J 7 4  ~9 K2 ~ A Q J 9 8 7  & -  d i a m o n d  

2 & A Q 9 8 7  ~9 K Q J 7 4 2  ~ 32 & -  h e a r t  

3 & 32 (3 AQ98  ~ KQ9742  & 9 d i a m o n d  

4 ~b 3 ( P A Q 9 7  ~ J98  & K Q 9 6 3  h e a r t  

F e a t u r e s  

s t r o n g - o p e n e r  

w e a k - o p e n e r  

w e a k - o p e n e r  
w e a k - o p e n e r  
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C= correct-bid(ft, S) 

strong-opener(H) h 5c~rds(tt,S1) h 4cards(H,S2) h longer(H,S1,S2) ~ correct-bid(H,S1) 
strong-opener(H)/~ 6cards(It,S1)/~ 4cards(H,S2)/~ longer(H,S1,S2) ~ correct-bid(H,S1) 
strong-opener(H) A 6cards(H,S1)/~ 5cards(It,S2)/~ longer(tI,S1,S2) =~ correct-bid(H,S1) 
wee~k-opener(H) /~ 6cards(H,S1)/~ 4cards(H,S2)/~ longer(H,S1,S2) =~ correct-bid(It,S1) 
we~k-opener(H) h 6cards(H,S1)/~ 5cards(H,S2) h longer(H,S1,S2) ~ correct-bid(H,$1) 

strong-opener(H) A 4cards(H,St) A 4cards(H,S2) A higher(Sl,$2) =~ correct-bid(H,S1) 
strong-opener(H) A 5cards(H,S1) A 5cards(H,S2) A laigher(S1,S2) ~ correct-bid(H,S1) 
strong-opener(It) A 6c~rds(H,S1) A 6cards(H,S2) A higher(S1,S2) =¢- correct-bid(H,St) 
weak-opener(H) A 4cards(H,S1) h 4cards(H,S2) A higher(S1,S2) =~ correct-bid(H,S1) 
weak-opener(It) A 5cards(H,S1) A 5cards(H,S2) A higher(S1,S2) ~ correct-bid(H,Si) 
we~tk-open.er(H) A 6cards(H,S1) A 6cards(H,S2) A higher(S1,S2) =~ correct-bid(H,S1) 
wea, k-opener(H) h 4cards(H,S1) ,~, 5cards(H,S2) ^ higher(S1,S2) =~ correct-bid(H,S1) 

Figure 4. Theory for opening bids converged to by EBL/TS. 

In contrast to the definition of EBL presented in Mitchell et al,, (1986), EBL/TS relaxes 
the assumption that the domain theory is complete and correct. Instead, it is assumed that 
the theory is incorrect in a particular way. The theory must encode necessary but not suffi- 
cient conditions for membership in the concept to be learned; additionally, the rules formed 
by EBG must be specific enough so that they do not over-generalize an instance relative 
to the unknown concept C. The latter condition may not be met if the level of operation- 
ality is too high, or if there are properties relevant to membership in C that are not reflected 
in the domain theory. Thus, EBL/TS cannot be used with an arbitrary domain theory and 
operationality predicate; since some engineering of the domain theory and operationality 
predicate is usually needed, EBL/TS should perhaps be viewed as a partial solution to the 
theory specialization problem. 

The question of precisely when EBL/TS and similar algorithms can be used to solve 
a theory specialization, problem is discussed in more detail in Section 3.1. 

2.3. A domain theory generating multiple explanations 

One problem with EBL/TS is illustrated by the following bridge bid. 

, 

I . ~ l ~ o d  Bid [Features 
& AQJ987 ~ K2 ~ KQJ74 & - spade strong-opene'~' 

There are two possible explanations (shown in Figure 5) as to why this is a plausible 
bid: the spade suit might have been preferred because it is the longer suit or because it 
is the higher suit. However, only one of these explanations (the first one) is correct with 
respect to the intended specialization of the theory shown in Figure 2. Since EBL/TS has 
no way of choosing between these two explanations, it must either discard this example 
or run a risk of over-generalizing by making an arbitrary choice. 
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o p e n i n g - s t r e n ~ d 5 , s p a d e , d i a m o n d )  
l biddable(spade,hand5) biddable(diamond,hand5 ) l 

strong-opener(hand5) ~ ~ longer(handS,spade,diamond) 
6cards(spade) 5c~rds(diamond) 

plausible-bid(hand5,spade) 

o p e n i n g - s t r e n g ~ d 5 , s p a d e , d i a m o n d )  
l biddable(spade,handS) biddable(diamond,hand5) [ 

strong-opener(hand5) ~ l higher(spade,diamond) 
6cards(spade) 5cards(diamond) 

Figure 5. Possible explanations for hand 5. 

The strategy of discarding examples that have multiple explanations is not always feas- 
ible: with some domain theories all examples will have multiple explanations. Consider 
the domain theory of Figure 6. This theory is a partial definition of the term weak-opener, 
which is used in the theory of Figure 1. Again, this theory is a simplification of one manually 
extracted from a textbook. 

The first rule of the theory states that a hand is a weak-opener if it has ten or eleven 
high card points, two or more quick tricks and "good length in the major suits." In the 
textbook, high card points and quick tricks are precisely defined, but "good length in the 
major suits" is not defined: instead, interpretation of this phrase is left to the reader. One 
reasonable interpretation of this phrase is "having length in the major suits greater than 

C= weak-opener(H) 

high-card-points(H,HCP) A (HCP _> 10) A (ItCP _< 11) A quick-tricks(H,QT) A (QT _> 2) 
A good-length-in-major-suits(H) =~ weak-opener(H) 

length-in-major-suits(H,L) A minimum-good-length(Th) A (L _> Th) =~ good-length-in-major-suits(H) 

minimum-good-length(0) 
minimum-good-length(I) 
: 

minimum-good-lengt h(13) 

Figure 6. Domain theory for weak-opener. 
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some threshold length Th ;" the second rule in the theory reflects this interpretation. These 
two rules are an incomplete definition of weak-opener; to complete the definition, we need 
to fi~d a correct definition of the predicate minimum-good-length. 

Notice, however, that the threshold length Th is bounded by thirteen (the number of cards 
in a bridge hand) and is integral; hence there are a finite number of possible definitions 
of the undefined predicate. In Figure 6, the theory has been completed by adding all of 
the possible definitions of the predicate minimum-good-length. The motivation for adding 
all possible completions to the theory is that now using this theory with a standard backchain- 
]ng theorem prover has a similar effect to using the incomplete version of the theory with 
an abductive theorem prover. Abductive reasoning is, intuitively, reasoning from effects 
to possible causes (in contrast to deductive reasoning, which can be thought of as reason- 
ing from causes to effects.) Abductive reasoning is often performed by using a backchain- 
ing theorem prover that has been augmented with the ability to make assumptions in order 
to c~,mplete a proof; often the assumptions are taken from some predetermined class. 

Fo:r example, given the observation that weak-opener (~ 32 CPAQ98 ~KQ9742 & 9) is true, 
an abductive theorem prover might find the proof shown in Figure 7 by assuming that the 
minimal-good-length for a hand is three; this is of course only one of several possible assump- 
tions that could be made to complete the proof. If all possible assumptions are added as 
axioms, as in Figure 6, then a standard backchaining theorem prover will produce the same 
set of proofs that would be produced by an abductive theorem prover. 5 Again, notice that 
only one of these many proofs (the one that assumes the correct threshold value) will be 
correct. 

Since different assumptions will lead to different proofs, an abductive theorem prover 
will normally generate many different proofs. In general, if there are k points where the 
theory is incomplete, and for each of these points there are n possible assumptions that 
might complete the theory, there can be up to n k different proofs for an example. Since 
all of the proofs generated by the abductive theorem prover will also be generated by a 
stamtard backchaining theorem prover using the theory of Figure 6, for such theories, every 
example will have many alternative proofs. Some mechanism is clearly needed to choose 
among these alternative inconsistent explanations. Such abductive theories have been describ- 
ed several times in the literature on EBL (Pazzani, 1988; O'Rorke et al., 1989), and are 
an important motivation for studying the multiple explanation problem. 

weak-opener(hand3) 

high-card-points(han 2>_2 

good-length-in-major-suit s(hand3) 

lengt h-in-major-suit s(hand3,6) minirnum-9ood-leng¢h(3) 6_ 
(assumption) 

Figure 7. One possible proof for weak-opener ( ~32 ~AQ98 ~KQ9742 ~9). 
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2.4. The abductive-EBL algorithm 

How can the multiple inconsistent explanation problem be solved? We will constrain the 
extended learning algorithm to return as output a disjunction of sets, each of which is the 
generalization of some proof of a training example. In other words, we require the output 
to be of the form 

C(x) = nl(x ) U R2(x ) t.J . . .  U Rn(x ) 

where each R i is found by applying the EBG algorithm to some proof of some training 
example x. Since we assume that all the possible proofs for a training example can be 
generated in a reasonable amount of time--in other words, that all the possible candidate 
generalizations Ri can be easily generated--the main question seems to be: which of the 
many possible generalizations Ri should be included in the concept C? 

One possible choice is to pick the set of generalizations that accounts for all of the train- 
ing examples, but which has the simplest description. If  S ÷ is the set of all positive ex- 
amples of the concept C, A-EBL tries to find the smallest set of rules {R1, . . . ,  Rn } such 
that U R i ~_ S +, where "smallest" means having the simplest description. Biases towards 
simple representations are common in machine learning systems; it will be shown in Sec- 
tion 3.2 that in this case, this bias leads to a system that learns simple concepts relatively 
quickly. 

To satisfy this bias (i.e., to find the smallest set {RI . . . . .  e n }  such that U R i ~_ S +) 
one must solve the minimum set cover problem, which is known to be NP-complete. For- 
tunately, however, good heuristic solutions to the set cover problem exist. One such heuristic 
solution is the greedy set cover algorithm, first described in Johnson (1974) and extended 
in Chv~tal (1979). This algorithm simply repeatedly adds to the set cover that rule Ri which 
maximizes the ratio of the number of as-yet-uncovered examples in R i to the size of the 
description of Ri. The greedy set cover is guaranteed to find a cover of size no greater 
than n log m, where n is the size of the description of the smallest cover, and m is the 
number of examples to be covered. In this problem, n is the size of the description of the 
unknown concept, and m is the number of examples. 

The size measure may be defined arbitrarily: the only constraint is that the size of a 
description of a cover be the sum of the sizes of the descriptions of the component sets. 
In A-EBL, the size measured for generalizations is simply the number of nodes in the asso- 
ciated abstract explanation structure. This is a heuristic estimate of the complexity of a 
generalization. It was chosen partially because of its analytic tractability, and partially for 
its ease of implementation; in particular, using this measure makes the arguments of Sec- 
tion 3.2 much cleaner, and also makes possible the program optimizations discussed in 
Section 2.6. 

The greedy set cover algorithm is a reasonable approach to generating a hypothesis for 
the unknown concept C. However, our motivating example of bridge bidding, and also for- 
mal analysis (see Section 3) suggests that some negative information is also required to 
ensure convergence. Fortunately, negative information is easy to incorporate into our learn- 
ing algorithm. If  we are given a negative example--i.e., some element x ~ C--then we 
know that n o  R i containing x is a disjunct of C. So these Ri's can be eliminated from con- 
sideration by the set cover algorithm. 
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Algor i thm A-EBL(T ,  O, S +, S - ,  N): 

Inputs: 
a domain theory T defining a concept CT 
an operationality predicate 0 
a set S + of positive examples of an unknown concept C 
a set S -  of negative examples of an unknown concept C 
a name N to use for the unknown concept 

Ou tpu t :  
a hypothesis H for the unknown concept C 

begin 
RS ~- {Ri : consistent(R~, S - )  A Ri = EBG(T,  O,p~) 

for some proof p,  of some positive example x E S +} 
H ~- greedy-set-cover(RS, S +) 
r e tu rn  rename(N, H) 

end 

Algor i thm greedy-set-cover( RS,S+ ): 

begin 
RS'  ~- a minimal subset of RS such that I.JR~eG, Ri _D S + 
r e tu rn  RS 1 

end 

Algor i thm consistent(Ri,S-): 

begin 
r e tu rn  t rue  iff --3 a negative example x E Ri 

end 

Figure 8. High-level description of the A-EBL algorithm. 

Putting this all together, we arrive at the algorithm of Figure 8. This algorithm is the 
main result of  this paper. It starts out by explictly computing all the possible generaliza- 
tions of every positive example. It then finds a hypothesis for the unknown concept C by 
using the greedy set cover algorithm to find a cover of the set of positive examples, using 
the set of consistent generalizations of  positive examples as candidate elements of the cover; 
a generalization is consistent if it does not also cover some negative example. 

2.5. An example 

This section will present a simple example of the operation of  A-EBL. The inputs are the 
theory and operationality predicate shown in Figure 1, the examples shown in Table 2, 
and the name correct-bid for the unknown concept. Notice that in addition to examples 
of correct bids, some examples of plausible but incorrect bids are also given; these incor- 
rect  bids are negative examples. 
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Table 2. Examples of correct and incorrect bids. 

(~) 
(b) 
(c) 
(d) 

Hand Correct Bid Features 
ll~ AQJ987 q) K2 ~ KQJ74 & - spade strong-opener 
ll~ KQJ74 (P K2 ~ AQJ987 & - diamond strong-opener 
& 3 ~9 AQ97 ~ J98 & KQ963 heart weak-opener 
tb 3 ~ KQ963 ~ J98 & AQ97 heart weak-opener 

Hand Incorrect Bid Features 
& 3 q) AQ97 ~ J98 & KQ963 club weak-opener 
& 3 q) KQ963 ~ J98 & AQ97 club weak-opener 

(c) 
(d) 

The first step of A-EBL is to compute the set of possible generalizations of each positive 
example. Hands (a) and (d) have two possible explanations each, so there are a total of 
six generalizations of the four positive examples; these generalizations are shown below. 
Of these rules, rule (d-2) is the only inconsistent rule; it covers the negative example 
associated with hand (c). 

(a-l) 

(a-e) 

(b) 

(c) 

(d-l) 

(d-2) 

strong-opener(H) A 6cards(H,S1) 
A 5cards(H,S2) A longer(H,S1,S2) = plausible-bid(H,S1) 

strong-opener(H) A 6cards(H,S1) 
A 5cards(H,S2) A higher(S1,S2) = plausible-bid(H,S1) 

strong-opener(H) A 6cards(H,S1) 
A 5cards(H,S2) A longer(H,S1,S2) = plausible-bid(H,S1) 

weak-opener(H) A 4cards(H,S1) 
A 5cards(H,S2) A higher(S1,S2) = plausible-bid(H,S1) 

weak-opener(H) A 5cards(H,S1) 
A 4cards(H,S2) A higher(S1,S2) = plausible-bid(H,S1) 

weak-opener(H) A 5cards(H,S1) 
A 4cards(H,S2) A longer(H,S1,S2) = plausible-bid(H,S1) 

The next step is to find a small subset of the consistent rules that cover the set of positive 
examples S + using the greedy set cover algorithm. The first rule that is added te the cover 
is the rule Rt that maximizes the ratio 

IRt f) (uncovered examples in S+)I 

size(R1) 

As it turns out, all of the rules in this example are of size nine. Rules (a-l), (b), (c), and 
(d-l) cover two examples each, and rule (a-2) covers one example. Therefore the greedy 
set cover will add one of the rules (a-l), (b), (c), or (d-l) to the cover; let us assume that 
the rule added is rule (a-l). 

Now the positive examples associated with hands (a) and (b) have been covered. Rules 
(a-l), (a-2) and (b) thus cover no as-yet-uncovered examples, and hence the ratio of 
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IR O (uncovered examples in S+)[ 

size(R1) 

for tihese rules is 0/9 = 0. The rules (d-l) and (c) both cover the remaining two examples, 
and hence one of them will be added to the set cover. After renaming the rules, the final 
output of A-EBL is the theory below. 

strong-opener(H) A 6cards(H,S1) A 5cards(H,S2) A longer(H,S1,S2) = correct-bid(H,S1) 
weak-opener(H) A 5cards(H,S1) A 4cards(H,S2) ^ higher(S1,S2) = correct-bid(H,S1) 

Notice that the greedy set cover algorithm, and hence A-EBL, incorporates several 
heuristics for choosing between explanations. First, it chooses explanations that (like the 
explanation associated with rule (a-l)) explain several positive examples over explanations 
that explain a single positive example. Second, it rejects explanations that (like the ex- 
planation associated with rule (d-2)) are shown to be inconsistent by negative data. Finally, 
it prefers simple explanations to more complex ones; this preference is not demonstrated 
by this simple example. 

2.6. Optimizations of the algorithm 

Figure 8 is a high-level description of the A-EBL algorithm. In fact, our implementation 
of A-EBL incorporates some optimizations which improve the algorithm's run-time without 
affecting its correctness. The goal of these optimizations is to replace membership tests 
in the sets Ri, which tend to be slow, with comparison operations between abstract explan- 
ation structures, which can be done efficiently. 

• First, we explicitly compute, not the set of generalizations of each example, but the set 
of abstract explanation structures for the proofs of each example. These abstract explanation 
st~ctures are stored as trees whose nodes are labeled with the names of domain theory 
clauses, 6 rather than the clauses themselves. This makes comparison operations relatively 
fast; it also means that we can delay the operation of converting the abstract explanation 
structures to rules (an operation which we call peval, for partial evaluation), and per- 
form it only on those rules which are actually part of our hypothesis. 

• Second, we represent each example x internally as the set of abstract explanation struc- 
tures associated with the explanations of x, and represent each generalization internally 
aS the abstract explanation structure from which that generalization is derived. To test 
i fx  E Ri, it is now sufficient to test whether the abstract explanation structure represent- 
ing g i is in the set of abstract explanation structures representing x. 

Code incorporating these changes, and also giving the details of the greedy set cover 
algorithm, is given in Figure 9. 
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Algor i thm A-EBL(T,  O, S +, S - ,  N): 

Inputs: 
a domain theory T defining concept CT 
an operationality predicate O 
a set S + of positive examples of an unknown concept C 
a set S -  of negative examples of an unknown concept C 
a name N to use for the unknown concept 

Ou tpu t :  
a hypothesis H for the unknown concept 

begin 
H ~ - 0  
(PO S and N EG are each sets of sets of abstract explanation structures) 
POS +- 0 
N E G  ~- 0 
(precompute the explanation structures for all the examples) 
for each positive example x do 

add to POS the set of all abstract explanation structures for x 
for each negative example x do 

add to N E G  the set of all abstract explanation structures for x 
(find the minimal set cover) 
while POS ~ ~ do 

ax ~- optimal-consistent-explanation-structure( PO S, N EG) 
H ~ H t2 {peval(a~)} 
POS , -  POS - {p ~ POS : a~ ~ p} 

endwhile  
r e t u r n  rename(N, H) 

end 

Algor i thm optimal-consistent-explanation-structure(POS, NEG): 

begin 
r e t u r n  the abstract explanation structure ax such that 

I{p~POS:~e,)l -~2n 6 N EG : az ~ n and size(ax) is maximal 
end 

Algor i thm peval(az): 

see Appendix B 

Figure 9. Implemented algorithm for A-EBL. 

3. Formal analysis of A-EBL 

In Section 4 we will return to the domain of bridge bidding and investigate the perfor- 
mance of A-EBL on a larger and more realistic version of the bridge bidding problem. 
Questions will doubtless remain, however, regarding the generality of the technique. 
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A-EBL learns an unknown concept using a particular sort of domain-theory induced bias: 
under what circumstances is this bias appropriate? A second question concerns how well 
this technique will scale up: can A-EBL be applied equally well to larger learning tasks, 
with more data? 

To answer the first question, it is necessary to characterize the types of concepts for 
which EBL/TS and A-EBL are "competent'--that is, to characterize the class of concepts 
for which A-EBL's inductive bias is not too strong. This sort of analysis is usually not 
necessary for an inductive learner, because usually it is clear what sorts of hypotheses can 
be formed, and hence when the bias is not too strong; however, since A-EBL's inductive 
bias is derived in part from the domain theory, the class of concepts that it can hypothesize 
is not immediately obvious. A complete characterization is beyond the scope of this paper; 
however, we do give a relative characterization of the competence of A-EBL and EBL/TS. 
The characterization shows that A-EBL is applicable in a broader range of circumstances 
than EBL/TS. 

To answer the second question, we will adopt the pac-learnability model, a formal model 
of learnability. Our calculations will show that in the worst case, the number of examples 
needed by A-EBL to learn a theory specialization which has size n is only polynomial in 
n. Moreover, the number of samples needed by A-EBL is only worse by a logarithmic fac- 
tor from the corresponding figure for EBL/TS. We also analyze the run-time of the algorithm, 
to werify that it is efficient. The results show that, excluding the time spent in theorem- 
proving, our implementation runs in time O(n log m • PIN + P]) where n is the size of 
the anknown concept, m is the number of training examples, P is the number of proofs 
of positive examples, and N is the number of proofs of negative examples. 

3.1. Competence results 

3.1.L Analysis of EBL/TS and A-EBL 

Let a sample of an unknown concept C be a pair of sets S ÷, S - ,  where S ÷ ~_ C and 
S -  ~_ ~.  We define "competence" as follows. 

Definition 3 An algorithm L is competent for C if and only if  for every sample of C, L 
can output a hypothesis that is consistent with the sample. 

Intuitively, an algorithm L is "competent for C"  unless its inductive bias is too strong 
to learn C. The motivation for this particular definition of competence is that normally 
one detects that the bias of an inductive learner is too strong only when the learner fails 
to find a hypothesis consistent with some sample. 

If  L is competent for C, then it immediately follows that L must be able to hypothesize 
C (or the description of some equivalent set.) If  C is of finite cardinality, the competence 
of L for C also implies that L will eventually converge to C as the sample size is increased; 
hence competence is closely related to Gold's criterion of learnability in the limit (Gold, 
1967). For infinite sets C, competence implies that L has the somewhat weaker property 
of AE-convergence to C (Kelly, 1988). 
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Of course, just because the bias of a learner is not too strong does not imply that the 
bias is appropriate; the bias might be so weak that learning is impractically slow. Com- 
petence does not imply that L will learn C efficiently; the efficiency of learning is con- 
sidered in the next section. 

Given this formalization of competence, it is now possible to characterize the concepts 
for which EBL/TS and A-EBL are competent. Since the competence of these algorithms 
clearly depends on the domain theory T and the operationality predicate O, we will con- 
sider the competence of versions of these algorithms parameterized by particular domain 
theories and operationality predicates: for example EBL/TSzo denotes the EBL/TS 
algorithm using the theory T and the operationality predicate O. 

One final observation should be made at this point. We have not, up to this point, specified 
what action EBL/TS should take if there is more than one proof of some example x. There 
are two obvious possibilities. 

1. One could require that there be only one explanation for each positive instance. 
2. One could assume that EBL/TS makes an arbitrary choice among the possible 

alternatives. 

In this section, we will make the assumption that an arbitrary choice is made. This choice 
is more favorable to EBL/TS, since (as we will see) it leads to competence in a somewhat 
broader range of circumstances than requiring only a single explanation for each example. 
However, this choice requires extending the definition of competence. We extend the defini- 
tion of competence for algorithms L that make arbitrary choices as follows: L is defined 
to be competent for C if for every sample of C and for every possible sequence of choices 
made by L, L outputs a hypothesis that is consistent with the sample. 

Theorem 1 EBL/TSze9 is competent for  an unknown concept C i f  and only i f  

1. C = R a tA . . .  U Rk, where v l  < i < k, there is some proo f  Pxi o f  some xi ~ C such 
that R i is the output o f  EBG(T, O, Pxl), and 

2. Yx ~ C, ~Px : Px is a proof  o f  x, EBG(T, O, Px) ~- C. 

In other words, EBL/TS is competent when the concept to be learned can be described 
as a disjunction of EBG rules, and when every rule formed by applying EBG to a positive 
example does not over-generalize that example relative to the unknown concept C. Notice 
that these conditions do not imply that the theory is complete and correct for C; in par- 
ticular, there can be proofs of negative instances. Also note that this condition is somewhat 
less restrictive than saying that there is exactly one proof for each positive example. 

Proof: First we show the "only if" part. If the first condition does not hold, then EBL/TS 
cannot hypothesize C, so clearly for some sufficiently large sample it must be unable to 
produce a consistent hypothesis. If the second condition does not hold, then there is some 
x + ~ C with a proofpx÷ such that EBG over-generalizes given that proof. If EBL/TS is 
given a sample containing x + and selects the proof px+ to generalize, it will output a 
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hypothesis H D C; since a sample can contain negative examples in H - C, this hypothesis 
will be inconsistent with some samples containing negative examples. 

The "if" part is straightforward. First, notice that by the first condition, if x fi C then 
x ~ ~i, and hence x has some proof. Thus EBL/TS always outputs a hypothesis that covers 
all the positive examples. If  the second condition holds, then EBL/TS will never include 
an ever-general rule in its hypothesis; thus its hypothesis H is a subset of C and hence 
consistent with the negative data as well. 

Theorem 2 A-EBLzo is competent for  an unknown concept C if  and only i f  

1. C = R~ t_J . . .  tA Rk, where Vl ~ i < k, there is some proof  pxi o f  some x i E C such 
that e i is the output o f  EBG(T, O, pxi), and 

2. Vx ~ C, 3px : Px is a proof  o f  x and EBG(T, (9, Px) ~- C. 

The difference between these conditions and the conditions of Theorem 1 is that it is 
not longer necessary that every rule formed by applying EBG to a positive example does 
not over-generalize relative to the unknown concept C; instead it is sufficient that one of 
the explanations of each example is not over-generalized. 

Proof: First we show the "only if" part. Again, if the first condition does not hold, 
then A-EBL cannot hypothesize C, so clearly for some sufficiently large sample it must 
be unable to produce a consistent hypothesis. If  the second condition does not hold, then 
there is some x + fi C such that EBG over-generalizes every proof o fx  +. Letp l  . . . . .  p~ 
be the proofs ofx +, R1 . . . .  , R n be the rules obtained from applying EBG to these proofs, 
and let x~- . . . . .  x~-be negative examples included in RI . . . . .  Rn respectively. Notice that 
the Ri's are the only rules that include x +, since if some other rule R' formed from proof 
p '  included x + then p '  would also be a proof of x +. Hence if A-EBL is given a sample 
conialning the positive example X + and the negative examples xi- . . . . .  x~- it will be unable 
to find any consistent rule that includes x +, and therefore will be unable to produce a con- 
sistent hypothesis. 

As before, the "if" part is straightforward: if the conditions above hold, A-EBL will 
always be able to find a consistent rule that covers each positive example, and hence will 
always form a consistent hypothesis. [] 

3.1.2. Discussion 

In introducing EBL/TS, we gave an informal characterization of when EBL/TS was ap- 
plicable. Intuitively, there are two prerequisites for using EBL/TS: the domain theory must 
be complete, in the sense that explanations can always be generated, and the rules formed 
by applying EBG must be specific enough so that they do not over-generalize an instance 
relative to the unknown concept C. In this section, that intuition was confirmed; the condi- 
tion necessary for EBL/TS to work includes the condition that 

Yx ~ C, Vpx : px is a proof  o f  x, EBG(T,  O, px) ~- C. 
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This can be interpreted as a sort of "granularity condition" on the generalizations pro- 
duced by EBG; the generalizations cannot be so general that they extend past the boundary 
of the unknown concept C. This condition may not be met if the level of operationality 
is too high, or if there are properties relevant to membership in C that are not reflected 
in the domain theory. 

For A-EBL, the corresponding condition is 

Yx ~ C, 3Px : Px is a proof  o f  x and EBG(T, (9, px) ~_ C 

The change of the quantification on the proofs of x from " ¥ "  to "3" is consistent with 
the intuition that A-EBL can tolerate incorrect explanations, while EBL/TS cannot; A-EBL 
only requires that some explanations not do over-generalize, rather than requiring that all 
explanations do not over-generalize. 

Notice that the conditions for competence for EBL/TS also imply that for every positive 
example x, x ~ Ri for some rule R i produced by EBG, and hence that x has some proof. 
(The proof ofx  will be some instantiation of the abstract explanation structure from which 
Ri is derived.) Thus, an immediate consequence of the results above is that A-EBL is com- 
petent for a strictly larger class of concepts than EBL/TS. 

3.2. Convergence results 

3. 2.1. Preliminary definitions 

Our definition of learnability is the usual one of "distribution-free" or "probably approx- 
imately correct" learnability (Blumer et al., 1986; Valiant, 1984). We start by formalizing 
the notion of a concept class. A concept is a familiar notion; a concept class simply for- 
malizes the notion of the "inductive bias" of a learning system. We define a concept class 
~ to be a set of concepts, where a concept is simply a subset of some base set X, called 
the domain. We will consider concept classes which are parameterized by the "size" of 
the concepts relative to some size measure, and use ~ (n) to denote {C E ~ : size (C) <_ n }. 

What we would like is some way of measuring the likely error of a learning program, 
given samples of a reasonable size. Computing the likely error of a hypothesis is easier 
if we assume that examples are drawn randomly, according to some fixed probability distribu- 
tion D. The error of the hypothesis can then be measured relative to this probability distribu- 
tion. Informally, we would like to say that the hypothesis is "good" if its error is below 
some arbitrarily set threshold; that is, if the hypothesis is "approximately correct," To for- 
malize these notions, define a sample of  C drawn according to D to be a sample S +, S -  
of C such that the elements of S + tJ S -  are drawn randomly according to the probability 
distribution function D. The error of a hypothesis H is just D(HAC) ,  where C is the 
unknown concept, and A denotes symmetric difference. A hypothesis is e-good if its error 
is less than e. 

Since the samples are drawn randomly, there will be some small chance of getting an 
unrepresentative sample; in this case, it is unreasonable to require the learning algorithm 
to generate a good hypothesis. Therefore, we must require that the learning algorithm return 
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an e-good hypothesis only with high probability, not in every case. To account for this, 
let us introduce another parameter 6, and allow the learning system to be wrong--that is, 
to produce a hypothesis that is not e-good--with probability at most 6. It is also desirable 
to allow the learning algorithm to require more examples as one increases the complexity 
of the concept to be learned, or as one decreases e or 6. Finally, it is unreasonable to ex- 
pect the learning system to work if its inductive bias is too strong. We thus arrive at the 
following definition: 

Definition 4 A pac-learning algorithm for a parameterized concept class C(n) is an 
algorithm LEARN with an associated polynomial function m(1/e, 1/6, n) so that for every 
n> O, every C ~ ~ (n ), every O < e < 1, every O < 6 < 1, and every probability distribu- 
tion D, given a sample of C drawn according to D such that Is÷l ÷ Is-  I > m(1/e, 1/6, 
n ), the output of LEARN is a hypothesis H such that 

Prob(D(HAC) > e) < 6 

In other words, LEARN will probably produce an approximately correct hypothesis, given 
that the unknown concept C is in the concept class which represents LEARN's inductive 
bias. Furthermore, LEARN will do this using a sample size polynomial in the size of C 
and the inverse of the error parameters. 

The function m(1/e, 1/6, n) is called the sample complexity of the algorithm. It gives 
an upper bound on the number of examples needed to produce a probably approximately 
correct description of an unknown concept of size n, analogous to the way that the time 
complexity of an algorithm gives an upper bound on the number of steps before termina- 
tion.. A concept class with an associated pac-learning algorithm is said to be pac-learnable. 

3.2.~2. Analysis of EBL/TS and A-EBL 

Let C~,o(n) denote the class of concepts C such that 

1. C = R1 t3 . . .  t0 Rk, where Vl _< i < k, there is some proofpx i of some xi E C such 
that Ri is the output of EBG(T, (9, Pxi), and 

2 ~'qk=l size(Ri) <_ n, and 
3. vx ~ C, Vpx : Px is a proof of x, EBG(T, (9, Px) ~- C. 

In the definition, size(Ri) denotes the size measure used in the A-EBL algorithm: name- 
ly, the number of nodes in the associated abstract explanation structure. The class C ~o (n) 
is defined identically except that the final condition is changed to 

Yx ~ C, 3px : Px is a proof of x and EBG(T, (9, Px) ~- C 

The class ~ at, ~ (n) is defined identically to ~ ~,o (n) except that it is also required that 
there be only one abstract explanation structure for each positive example x. Notice that 
the concept classes ~ ~-.~ (n) and ~ ~.e (n) are (except for the restrictions on size) precisely 
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the classes of concepts for which EBL/TS and A-EBL were shown to be competent in the 
previous section. Also, ~ , ~ ( n )  is the class of concepts for which EBL/TS can be used 
without making arbitrary choices; choices are avoided by requiring that each example have 
only a single explanation. Notice also that, since the condition that C = R 1 to . . .  tO 
Rk (where the R's are rules produced by EBG) implies that every positive example has 
at least one explanation, the following inclusions hold: 

e~c,v(n) c _ e~-,v(n) c _ e ~ Lo(n) 

The sample complexities of EBL/TS and A-EBL as pac-learning algorithms can now be 
bounded for these concept classes. 

Theorem 3 For all theories T and all operationality predicates O, EBL/TS~,e9 is a pac- 
learning algorithm for ~ ~,eg(n ) with sample complexity 

~ 1 1 1 ~ 1 1 n l o g r  1 1 ~  m - ,  , n  = O - - l o g  , - - l o g - -  
~ ~5 ~ ~ ~ e 

where r is the number o f  rules (i.e., Horn clauses) in T. 

Proof: Any set of outputs of EBG is determined by a set of abstract explanation structures, 
which in turn is uniquely defined by the sequence of clause labelings generated by the follow- 
ing procedure: arrange the abstract explanation structures in any arbitrary order, and traverse 
the nodes of each tree in postfix order, reading off the names of the clauses which were 
used to prove each term. The symbol nil is used to indicate when an operational leaf is 
reached. The result of this is a string of length n whose letters are either the names of 
one of the r clauses in the theory, or nil. (To see that this uniquely determines the set of 
abstract explanation structures, notice that since the number of sons of each node can be 
determined from the name of the clause labeling the node, the tree of clause names which 
is used internally in the A-EBL to represent an abstract explanation structure can be 
reconstructed; the abstract explanation structure itself can then be generated using the 
algorithm in Appendix B.) There are of course, only (r + 1) n such strings; hence the 
number of sets of abstract explanation structures with total size n is at most (r + 1) n. 

It is clear that EBL/TS will produce a concept of minimize size; it uses the minimum 
number of disjuncts to cover a set of examples, and since there is only one generalization 
for each example, there is no flexibility in choosing the size of these disjuncts. The re- 
mainder of the theorem follows from the observation that the VC-dimension (Blumer et 
al., 1986) of a concept class ~ is bounded by log2l ~ [ and Theorem 2 of Blumer et al., 
(1986). • 

The result above cannot be extended to the broader class v ~ r,o. If an adversary is al- 
lowed to pick T, (9, and the choices made by EBL/TS, there are concepts in ~ ~,o that 
EBL/TS cannot pac-learn. An example is the theory of Figure 10. This theory contains 
two alternate definitions of a predicate for list membership, one which is operational and 
one which is not. The desired specialization of the theory is the theory consisting of the 
single rule below, defining the new concept mem':  
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CT=mem(X,L)  

meml(X,L) =a mem(X,L) 
mem2(X,L) ~ mem(X,L) 

true =~ mem2(X,[XlY]) 
mem2(X,Y) =~ mem2(X,[ZlY]) 

mere1 is an operational predicate with the same definition as mere2 

Figure 10. Theory with a specialization that EBL/TS cannot pac-learn. 

meml(X,L) = mem'(x,L) 

However, EBL/TS can output hypotheses of arbitrary size by consistently choosing to form 
rules using the non-operational theory of membership mem2. For example, EBL/TS could 
output a hypothesis of the form 

true = mem'(A,[A[B]) 
true = mem'(A,[B, AIC]) 
true ~ mem'(A,[B,C, AID]) 

: 

Each of these rules is formed by applying EBG to a proof constructed using the mem2 
predicate. Notice that the number of examples needed for convergence does not depend 
only on e, 6 and n, as required by the definition of pac-learnability; instead it depends 
on the number of special case mem2 rules needed to make the approximate theory above 
accurate. Thus the desired specialization will not be pac-learned. 

In contrast, A-EBL pac-learns the following class of concepts. 

Theorem 4 Let r denote the number of rules in T. Then for all theories T and all opera- 
tionality predicates O, A-EBL is a pac-learning algorithm for C},o(n) with sample 
complexity 

I 1 1 1 ( I  1 1 n l o g r  I n l o g r ~ 2 ~ l  m - ,  , n  = O - - l o g  , - -  log - 
e ~ ~ 6 e e 

Pr~,of: The learnability result and the sample complexity follows directly from the count- 
ing argument above, the fact that the greedy set cover will produce a concept which is 
within n log m of the minimal size, and Theorem 2 of Blumer et al., (1986). • 

The final theorem of this section gives a lower bound on the covergence rate of any pac- 
learning algorithm for this concept class. 

Lemma 1 There exist theories T such that, if e <_ 1/8, 6 _< 1/100, and d(n) >_ 2, every 
pac-learning algorithm for C ~r must have a sample complexity of at least 
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m , , n  = ~  l n - - +  
e 6 6 

Proof: Recall that the fl notation is analogous to the big O notation, but used for lower 
bounds; more precisely, g(n) = fl(f(n)) if 3c : cf(n) > g(n) for all but finitely many 
n. Consider the following theory T, defining the concept C~- = p (X). T contains exactly 
n Horn clauses of the form true ~ p(bi), where each bi is a distinct constant symbol. 
No predicates of Tare marked as operational. It can easily be verified that for every subset 
C of the set {p (bi) . . . . .  p (b,)}, there is a specialization H E ~ ~,o (n) of size no greater 
than n such that H = C. Hence the VC-dimension (Blumer et al, 1986) of ~ , o ( n )  is at 
least n; the theorem is now immediate from Theorem 1 of Ehrenfeucht et al., (1988).[] 

3.3. Complexity results 

The only problem in performing a time analysis of A-EBL is that the cost of computing 
all the proofs of each training example cannot be bounded, since it is well known that Horn 
clause theorem-proving can be undecidable. However, a relativized result can be obtained: 
if we ignore the cost of theorem-proving, we have the folIowing complexity result for our 
implementation. 

Theorem 5 Consider a learning problem in which 

• n is the size of  the unknown concept, 
~ m is the number of  training examples, 
• P is the number of proofs of  positive examples, and 
• N is the number of proofs of negative examples. 

I f  we neglect the time required to generate and abstract all the proofs, A-EBL runs in time 

O(n log m • P[N + P]) 

Proof: (Please refer to Figure 9). The majority of t.he time is spent in the while loop in 
the main program. Since the set cover algorithm produces a cover a size at most ntogm, 
and each element of the cover is of size at least 1, this loop can be traversed at most nlogm 
times. Inside the loop are three operations; it can easily be shown that finding the optimal 
consistent explanation structure dominates the other two in cost. This operation involves 
looping over each positive explanation structure and a) testing its consistency and then b) 
computing the ratio of the number of examples covered to the size of the explanation struc- 
ture. The former operation takes time O(N) using the simplest test--simply looping through 
the negative examples and testing for equivalence. The latter operation takes time O(P), 
again by using the simple operation of comparing the explanation structure to every other 
explanation structure for a positive example. [] 

It is easy to show that, by improving our naive consistency tests, the run-time can be 
improved to O(nlogm • P[log P + log N]). 
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3.4. Discussion 

To summarize, we have presented three substantial formal results. The first result con- 
cerns the domains of applicability of EBL/TS and A-EBL. In Section 3.1, we characterized 
the concepts C for which A-EBL and EBL/TS are competent; the notion of competence 
that was used was the ability to produce a consistent hypothesis for every sample of a con- 
cept. As an absolute characterization of the competence of A-EBL, the results of Section 
3.1 were somewhat unsatisfying, since they are based on difficult-to-verify conditions regard- 
ing the behavior of EBG on proofs in the domain theory. However, the results are infor- 
mative as a relative characterization of the competence of A-EBL and EBL/TS; they show 
that A-EBL is applicable in a wider range of circumstances. 

The second result concerns the sample complexity of EBL/TS and A-EBL. If  we adopt 
the assumption that examples are presented stochastically according to some fixed prob- 
ability distribution D, then the worst-case sample size needed for learning of EBL/TS and 
A-EBL are comparable: the sample complexities are within a factor that is logarithmic 
in the complexity of the concept being learned. These worst-case results are fairly tight; 
the bound for EBL/TS is within an additional logarithmic factor of a known lower bound 
on the number of examples needed for learnability. 

To get a better feel for how the sample complexity of EBL and A-EBL compare, let us 
make some assumptions to simplify the expressions for the sample complexities. If  we 
assume that the size of the domain theory is fixed, and that the second term of the max 
expressions dominate (which they will, unless/5 is exponentially much smaller than e), 
we get the following functions. The final line of the table uses the lower bound theorem. 
We see that according to this worst-case analysis, A-EBL requires only a logarithmic number 
of additional examples over the number needed by EBL/TS. 

I n12 For A-EBL: n log - -  - -  

~ 6 

For EBL/TS: n log 1 - -  

6 6 

For any pac-learner: n - -  

6 

The third result concerns the time complexity of the algorithm. It is not possible in general 
to restrict the time spent in theorem proving; however, if we neglect the time spent in theorem 
proving, and consider the proofs of each example to be an input to the algorithm, our 
implementation runs in time polynomial in its inputs. Although our implementation is not 
optimally efficient, it is possible to bring this complexity down to a very low-degree 
polynomial: linear in the complexity of the concept being learned, and O (n log n) in the 
total number of explanations. 

I t  is important to realize, however, that these results are worst case results; in particular, 
the analysis of sample complexity is a worst case result over all possible probability 
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distributions. It is possible that more efficient learning algorithms could be designed for 
some particular probability distribution, for instance for uniform distributions. The con- 
stants associated with the bounds on sample complexity are also quite high, and hence 
it is not clear from the analysis how fast A-EBL would converge given small sets of represen- 
tative examples of some unknown concept. A final drawback of the analysis is that it does 
not help us assess certain other attributes of the algorithm of practical interest, such as 
the ease of implementation, and the dependence of the sample complexity on the syntactic 
form of the domain theory. 

In the next section, we will use experimental techrdques to answer some of these questions. 

4. Experimental validation of A-EBL 

In this section, we will first evaluate the behavior of the algorithm when given a small 
set of examples provided by a friendly and informative teacher who does not know the 
internal workings of the learning algorithm. The goal of these experiments is to determine 
if the learning system is "easily instructable": whether it can be taught a concept, or a 
good approximation to a concept, given a small number of examples. The constraint that 
the teacher does not know the internal workings of the algorithm raises our confidence 
that learning would also be successful if some other representative set of examples were 
chosen. As an additional verification of the formal results, we will also evaluate the algorithm 
on randomly generated data. 

To enforce the constraint that the teacher does not know the internal workings of the 
algorithm, our learning problems are taken from a well-known introductory book on ptay- 
ing bridge (Sheinwold, 1964). The domain theory is transcribed, as directly as possible, 
from information presented in the book; the examples used for learning are the examples 
used in the book to illustrate application of the bidding system. Learning is necessary because 
the rules presented in the book are not a complete, correct, consistent bidding system; 
some of the bidding rules are heuristics that should not always be followed. 

The following experiments are conducted. 
Experiment 1. A domain theory for the concept plausible opening bid is specialized to 

a domain theory for the concept correct opening bid using A-EBL, as in our example of 
Section 2.2; the difference between this experiment and the example of Section 2.2 is that 
this theory is much larger and more realistic. The correctness of the specialization learned 
by A-EBL is evaluated by testing it on a sample test from Sheinwold (1964). This experi- 
ment demonstrates that A-EBL can be applied to domain theories of reasonable size and 
complexity, and that it can obtain good results not only asymptotically, but also on samples 
of moderate size. 

Experiment 2. Evaluation of the concept learned in Experiment 1 shows that there is 
some room for improvement. In particular, some of the problem hands in the sample test 
are not bid correctly by the specialization learned by A-EBL. Closer investigation of these 
sample problems shows that the strategy used by A-EBL to choose between multiple ex- 
planations is not the cause of these errors: in fact, no strategy for choosing between multi- 
ple explanations would work, because no explanation of any of the training examples is 
also an explanation of the unsolved sample problems. In short, the reason for the failure 
on these problems is that the bias of the learning system is too strong. 
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To solve this problem, we weaken the bias of the learning system by considering as possible 
explanations of an example both the actual explanation and a set of possible abstractions 
of that explanation, where an explanation is abstracted by marking some internal nodes 
of the explanation structure as operational. This has the effect of expanding the set of possible 
specializations of a domain theory. The extended version of A-EBL is then evaluated, as 
before, by testing the specialization it produces on the sample test. 

This experiment has two purposes. First, it demonstrates another application of A-EBL. 
Second, the performance of this extension of A-EBL is indicative of the performance of 
A-EBL on domain theories which produce a large number of explanations for each exam- 
ple. This experiment thus tests (somewhat indirectly) the performance of A-EBL on do- 
main theories which are much "weaker" than the one considered in Experiment 1: that 
is, which produce many more explanations (on the order of several dozen explanations 
for each example). 

Ea',periment 3. Sheinwold does not define precisely the meaning of every intermediate 
concept used in his rules for choosing an opening bid. In Experiments 1 and 2, this prob- 
lem 'was circumvented by hand-coding an appropriate definition for each of these intermediate 
conc.epts, using knowledge of bridge bidding not derived from Sheinwold (1964). (See Ap- 
pendix E for a listing of these hand-coded predicates.) This is undesirable, not only because 
it introduces an element of subjectivity into the transcription of the domain theory, but 
also because it is presumably unnecessary: after all, thousands of people have learned to 
open bridge hands from reading Sheinwold (1964) alone. 

To address this problem, we construct a very weak domain theory for the concept hand oJ 
opening strength, a concept which contains as subconcepts most of these undefined inter- 
mediate concepts. The weak theory is drawn only from information in Sheinwotd (1964) and 
commonsense knowledge, and is a more realistic version of the example of Section 2.3. Using 
the examples presented in the book, and weak "partial defmitions" of the undefined concepts, 
A-EBL is able to learn a correct specialization of this weak theory. The specialization is 
teste, d in two ways: first, against the sample test from Sheinwold (1964), and second, by 
repeating Experiments 1 and 2 using the learned concept in place of the hand-coded concept. 

This experiment has three purposes. First, it tests the performance of A-EBL on domain 
theories which are extremely weak, yielding as many as hundreds of different explanations 
for each example. Second, repeating Experiments 1 and 2 with a domain theory which 
is syntactically different, but semantically the same (at least over the training examples 
and test cases) tests the sensitivity of A-EBL to the way in which the domain theory is 
encoded. Third, it eliminates a source of subjectivity in transcribing the domain theory; 
hence the repetitions of Experiments 1 and 2 give a more reliable indication of the perfor- 
mance of A-EBL than the original versions of the experiments. 

F_z~periment 4. The examples and test data taken from Sheinwold (1964) are a fair test 
of the learner in two ways; they are representatives of a naturally-occurring concept of some 
complexity, and they were chosen without knowledge of the learning algorithm. It is not 
an ideal test, however, because of its small size. To circumvent this problem, a program 
was written that randomly generates bridge hands and then opens them using hand-coded 
bidding rules; this allows larger sets of training and test data to be generated. In Experi- 
me~tt 4, the learning tasks of Experiments 1, 2 and 3 are revisited using larger sets of train- 
ing and test data. 
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4.L The domain 

4.1.1. Source of knowledge and examples 

The domain theories discussed in this paper formalize the first three chapters of Sheinwold 
(1964). The first chapter covers evaluation of the hand in terms of high card points and 
so on; this is a very simple procedure which can be easily coded. This chapter is mostly 
used in the definitions of the operational predicates of our domain theory. Chapters two 
and three cover opening bids of one of a suit and no-trump opening bids, respectively. 
Most of these chapters are devoted to presenting heuristic rules for bidding; these rules 
are primarily used in the definitions of the non-operational parts of our domain theory. 

These three chapters are also the part of the book from which our examples are drawn. 
Our database of examples is comprised of the forty-eight examples used by Sheinwold in 
the first three chapters, with no additions, and only five omissions. The omitted examples 
dealt with opening in third- or fourth-hand position; they were omitted because eliminating 
position information greatly simplified our representation of the bidding problem. 

4.1.2. Motivations for choosing the domain 

The domain of bridge bidding is suited to our purposes for several reasons. 

• It is uncontrived, in the sense that is was not constructed for the purpose of demonstrating 
a learning algorithm. 

• Most of the rules required to understand the examples of the first two chapters are clear- 
ly and explicitly presented, which makes transcription into logic easy and direct, and 
reduces unconscious biases introduced in definition of the domain theory. 

• Finally and most importantly, the information presented is primarily rules and examples 
that clarify their use, which is exactly the type of input needed by A-EBL. 

A disadvantage of the choice of bridge is that in general, games and other artificial do- 
mains are simpler and cleaner then most natural domains; results obtained in such do- 
mains are sometimes difficult to extend to broader classes of problems. 

It is clear from the test that the bidding rules presented are over-general, and that the 
examples are an important part of the author's presentation. Often Sheinwold explicitly 
states that a rule is merely a heuristic, and should not always be followed. In most of these 
situations, a series of clarifying examples follow. For instance, in discussing rules for bid- 
ding two-suited hands (Sheinwold, 1964, page 16), Sheinwold says "the general rule is, 
if your suits are unequal in length, bid the longer one; if your suits are equal in length, 
bid the higher one" but immediately adds that "you have to disregard this general rule 
on some hands." After a short digression into what defines a "biddable suit," he presents 
fifteen examples which clarify this general rule. Again, discussing three-suited hands (Shein- 
wold, 1964, page 23), Sheinwold says "as a rule, start with lowest or middle suit . . .  the 
examples show how easy it is to keep the bidding low." Four examples are then presented 
of three-suited hands and their appropriate bids. 



ABDUCTIVE EXPLANATION-BASED LEARNING 195 

In spite of the general clarify of the presentation of the bidding rules, some judgment 
was required in formalizing the domain. In particular, Sheinwold accompanies each exam- 
ple with an informal discussion. Sometimes this discussion gives a specific bidding rule 
followed; sometimes this discussion explains how the bid satisfied some broad objective, 
such as keeping the bidding low; in four places, a new rule which is an exception to a 
previously given general rule is cited to explain a bid which is not what the reader would 
otherwise expect. In transcribing the domain theory, we did not attempt to formalize the 
discussions following each example. No doubt in doing so, some information was missed; 
however, we felt it was safer to omit information than to run the risk of inserting informa- 
tion which was not explicitly present in the process of transcribing an informal discussion 
into llogic. The only exception to the policy of not formalizing these discussions are the 
four "exceptional" rules mentioned above; these were of course needed to explain their 
associated examples. In two of these exceptional rules, it was also necessary to provide 
an interpretation of some undefined subconcepts. These rules are discussed in Appendix E. 

4.2. Experiment 1: Learning the concept "Correct Opening Bid" 

4.2.1. 7he domain theory and training data 

The first experiment uses a domain theory similar to the theory shown in Figure 1. The 
theory considered here is much more substantial, though. It contains 124 clauses and 539 
lines of code; of this code, about a quarter, 29 clauses and 130 lines of code, is non- 
operational. By way of comparison, the A-EBL learning system itself contains only 243 
clauses and 862 lines of code. 7 

The top-level predicate plausible-bid contains a series of ten clauses that describe when 
to, make various types of bids. These rules are straightforward encodings of rules given 
in Sbeinwold (1964); typically, they check to see if certain conditions are true and then 
reconmaend a bid. For example, the rule for the two no-trump bid is 

hcp(H ,HCP)/\between(HCP,22,24) Abalanced-distribution(H) 
Aall-suits-stopped(H) ~ plausible-bid(H,bid(2,no-trump)) 

which states "bid 2 no-trump on any hand H with between 22 and 24 high card points, 
balanced distribution, and stoppers in all suits." Most of the conditions used in these rules 
(for ,example, "balanced distribution") are clearly defined in the text; two notable excep- 
tion s, are the concepts comfortable-rebid and length-in-majors, which are used in defining 
the predicate opening-strength. In this experiment, definitions for these concepts were hand- 
coded, using knowledge from other sources. Experiment 3 will consider how these con- 
cepts can be learned from examples. 

As suggested by the example of Section 2.2, the parts of the theory that are most prob- 
lematic are the rules used to choose between two or more biddable suits. The theory con- 
tains a preference predicate, similar to that used in the previous example: the predicate 
encodes seven heuristic rules for choosing between two biddable suits, and two rules for 
choosing among three biddable suits. Most of these rules were over-general and required 
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specialization. As in the example, it was possible to use A-EBL to specialize the examples 
because the conditions missing from the over-general rules were used elsewhere in the 
proof, and because an appropriate choice of operationality was made. 

The theory is presented in detail in Appendix E. 
Negative examples, which are required by A-EBL, were obtained by assuming that the 

list of bids recommended for each example hand is a complete and exhaustive list of cor- 
rect bids; that is, all bids for a hand which were not recommended were assumed to be 
negative examples. 

For most of the example hands, only one bid was recommended. For three of the 43 
example hands, two bids were recommended. Each of these examples was treated as two 
separate positive examples; in other words, each recommended (Hand, Bid) pair was used 
as a positive example. Thus there were a total of 46 positive examples. There were 15 non- 
trivial negative examples (a negative example is considered non-trivial if  there is a proof 
that the example is in the concept C~ associated with the domain theory--in this case, if 
there is a plausible but incorrect bid.) The maximal number of proofs for an example was 
3, and the average number of proofs was 1.4. 

4.2.2. Experimental results 

The biggest disadvantage of using A-EBL (relative to standard EBL) is that more examples 
may be needed by the learning program to converge. However, on this learning problem, 
A-EBL learned a set of 30 rules which explain all 46 examples. Notice that even without 
multiple explanations, the standard algorithm EBL/TS would have required at least 30 ex- 
amples to learn this set of rules. This gives some experimental support to the hypothesis 
that the number of additional examples needed by A-EBL to choose between multiple ex- 
planations is reasonable. 

To evaluate the correctness of the learned concept, we tested it on the relevant questions 
from the sample test in Sheinwold (1964). This test is quite comprehensive, covering all 
aspects of bridge discussed in his book. Unfortunately for us, this means that only a small 
portion of it, 16 out of 200 questions, is devoted to opening bids. For purposes of com- 
parison, we also tested the original imperfect domain theory. The original domain theory 
makes errors on four out of the sixteen test problems, where an error is defined as either 
returning some bid which is not recommended, or not returning any recommended bid. 
The specialized theory corrects two of those errors. One of the two remaining mistakes 
is on the hand 

11~KJ642 ~PA5 ~ 3  &AQ732 

The correct bid for this hand is one club; however, the theory learned by A-EBL does not 
recommend any bid. The learned theory is incorrect because the rule learned for bidding 
clubs over spades is specialized to a specific range of points, rather than all minimum hands. 
The other mistake is made on the hand 

II~AKJ10876 qgA762 ~K2 & -  
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for which the correct bid is one spade. Again, no bid is recommended for this hand by 
the learned theory; this is because none of the examples had a seven-card suit, and the 
program is unable to generalize the length of suits given our definition of operationality. 

The results of this experiment are summarized at the end of the next section in Table 3. 

4.3. Experiment 2: Weakening the bias of the learner 

It might be thought that the two mistakes made by the specialization of plausible-bid leamed 
by A-EBL are a result of incorrect choices made in the set-covering routine, which is 
heuristic. However, close examination of these two anomalous test problems shows that 
this is not the case: for both of the anomalous test problems, none of the possible explana- 
tions for the test problem was also an explanation of any of the training examples. In other 
words, no learning strategy which learns simply by examining the training examples, selec- 
ting one or more explanations of each training example as valid, and then generalizing 
these selected explanations to form rules would be able to correctly bid the two anomalous 
test l~roblems, when given the training examples, domain theory, and operationality criterion 
of Experiment 1. 

In short, the anomalous test problems indicate that the bias imposed by the domain theory 
and operationality predicate is too strong to learn a correct concept from the examples 
given. This is unfortunate, because clearly Sheinwold expects an intelligent reader to be 
able to answer these questions correctly, given similar information. 

Further analysis shows that, for each anomalous test case, although the correct explana- 
tion iis not identical to the explanation of any of the training examples, the correct explana- 
tion is very similar to the explanation of some training example. For example, the explana- 
tion of the correct bid of one club for the test case &KJ642 qPA5 ~3 &AQ732 differs in 
only one subproof (the subproof for opening-strength) from the explanation used to justify 
the bid of one club on the training example ~KQJ75 ~95 ~62 &AJ963. This particular pro- 
blem could be handled by marking the predicate opening-strength as operational. Unfor- 
tunately, if this were done, then in some other cases, every rule learnable from a training 
example would be over-general. 

Several extensions to Experiment 1 which would correctly handle the anomalous test 
problems are possible. For instance, the anomalous test problems could be fixed by mod- 
ifying the operationality predicate; one could make the predicate opening-strength opera- 
tional when processing the training example ~KQJ75 ~5 ~62 &A J963. However, there are 
other cases in which it is necessary for the opening-strength predicate to be non-operational, 
in order to distinguish between weak and strong hands. In principle, it is possible to make 
the operationality of predicates dependent on context, so this obstacle is not insurmoun- 
table; however, it is not clear how this new, complex definition of the operationality of 
opening-strength can be determined without prior knowledge of the concept to be learned. 

Another possible modification is to weaken the bias of the learning system by consider- 
ing as possible explanations of an example both the actual explanation, and a set of pos- 
sible abstractions of that explanation. An abstraction of an explanation can be constructed 
by simply taking some non-operational node and marking it as operational. For instance, 
the explanation of the training example &KQJ75 ~5 ~A2 &AK963 could be abstracted 
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by marking the opening-strength predicate as operational; this would produce a more abstract 
explanation which also explains the first anomalous test problem. 

This technique will greatly increase the number of explanations which are considered 
by the set covering algorithm. If  explanations are abstracted by picking a single non- 
operational node and marking it operational, then in addition to the unabstracted explana- 
tions, each explanation will generate O(n) abstracted explanations, where n is the size of 
the original explanation structure. If explanations are abstracted by picking k non-operational 
nodes and marking each of them operational, then each explanation will generate O(n k) 
abstracted explanations. 

This strategy is reminiscent of explanation-based analogical reasoning techniques such as 
those described in Huhns and Acosta (1987) and Kedar-Cabelli (1987). These analogical 
reasoning techniques use EBG with an artifically high level of operationality to produce rules " 
that match any potential analogies. The difference is that instead of generating a single very 
general rule, a large number of slightly more general rules are produced, each corresponding 
to a specific class of analogical instances. A-EBL's mechanism for choosing among multiple " 
explanations can then be used to pick general rules that only match instances that should 
be treated the same as the training example. One can view such a rule as an explicit represen- 
tation of the generalization that would be implicitly made by an analogical reasoner. 

As an experiment, A-EBL was modified to consider in its set cover phase all extensions of 
an explanation which are obtained by picking k non-operational nodes, for k = 1 and k = 2, 
and marking them operational. We call this extension of A-EBL analogical A-EBL, or ANA- 
EBL for short, because of its similarities to the work of Huhns and Acosta (1987) and Kedar- 
Cabelli (1987). The time required for learning was greater for ANA-EBL; however, the con- 
cept learned was more accurate on the test cases, getting fifteen of the sixteen examples right. 
This experiment also indirectly indicates the performance of A-EBL with an even weaker 
domain theory (for k = 1, there are an average of 30 abstract explanations for each example.) 

The results of Experiments 1 and 2 are summarized in Table 3. The table shows that 
A-EBL and its extension do well (although not perfectly) on this learning problem, in spite 
of the presence of multiple explanations; the CPU times indicate that the current implemen- 
tation of the algorithm is reasonably efficient. In Table 3, the augmented version of A-EBL 
is listed as ANA-EBL (notice that the unaugmented version of A-EBL is equivalent to ANA- 
EBL with k = 0). Times are in CPU seconds on a SparcStation 1+. The abstractions of 
each explanation are generated at learning time; the times given in the column headed "Ex- 
plain" are simply the times needed to generate and store the initial set of unabstracted ex- 
planations. The theories learned by ANA-EBL with k = 1 and k = 2 each contain 25 clauses. 

Table 3. Learn ing  plausible-bid with hand-coded  intermediate  concepts .  

Time 

Theory  A c c u r a c y  Expla in  Learn  

Initial domain  theory 12/16 - -  - -  

Opt imal  choice 14/16 - -  - -  

output  o f  A - E B L  14/16 44 .0  58.8 

output  o f  A N A - E B L  (k = 1) 15/16 44 .0  173.6 

output  o f  A N A - E B L  (k = 2) 15/16 44 .0  860.3 



ABDUCTIVE EXPLANATION-BASED LEARNING 199 

4.4. Experiment 3: Learning the concept "Hand of Opening Strength" 

4.41, The domain theory 

In Sheinwold (1964, page s 13-14), the following rules are given for deciding when a hand 
is strong enough to open (i.e., make a bid other than "pass"):  

® Any hand with 14 or more high card points can be opened. 
• Any hand with 12-13 high card points, 2 or more quick tricks, and a comfortable rebid 

can be opened. 
• Any hand with 10-11 high card points, 2 or more  quick tricks, a comfortable rebid and 

good length in the major  suits can be opened. 

These rules can be easily encoded into logic; Figure 11 shows one such encoding. 
However, these rules cannot be easily extended into a complete logical theory, because 
Shei:nwold gives no rules for deciding when a hand has a "comfortable rebid" or for when 
it has "good length in majors":  instead, he seems content to leave the interpretation of 
these terms to the reader. This is a common situation in natural language presentations. 
It is reasonable to assume that some learning mechanism, in conjunction with background 
knowledge, is responsible for inferring the definitions of these terms. 

In fact, by applying some commonsense knowledge, it is possible to come up with many 
constraints on the meanings of these terms. For instance, if a hand has two biddable suits, 
then there is certainly a "comfortable" second bid. 

bidchble(Suitl,Hand) A biddable(Suit2,Hand) A (Suitl ~ Suit2) = comfortable-rebid(Hand) 

A second situation in which there is a "comfortable rebid" is if the hand contains a suit 
which is somewhat longer, or somewhat stronger, than is required to merely be biddable. 
In this case, bidding this strong suit a second time is reasonable. Given that the shortest 
biddable suit contains four cards, we can formalize this situation as follows. 

rebiddable(Suit,Hand) = comfortable-rebid(Hand) 

suit(Suit) A length(Suit,Hand,N) A somewhat-larger(N,3) 
A hcp(Suit ,Hand,HCP) A somewhat-large(HCP) = rebiddable(Hand) 

high-card-points(Hand,HCP) A HCP_>14 ~ opening-strength(Hand) 

qmck-tricks(Hand,QT) A (QT>_2) A comfortable-rebid(Hand) 
A high-card-points(Hand,HCP) A between(HCP,12,1g) ~ opening-strength(Hand) 

quiick-tricks(Hand,QT) A (QT_>2) A comfortable-rebid(Hand) 
A high-card-points(Hand,I-ICP) A between(HCP,12,1g) 
A length-in-majors(Hand) ~ opening-strength(Hand) 

Figure 11. Sheinwold's rules for opening-strength. 
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Similarly, we can infer that a hand has "good length in the major suits" if  it has either 
one long major suit, or (perhaps) two shorter ones. 

length(spade,Hand,NS) A length(heart,Hand,NH) 
A somewhat-large(NS+NH) = length-in-majors(Hand) 

major-suit(Suit)/x length(Suit,Hand,N)/x somewhat-large(N) = length-in-majors(Hand) 

The only thing we are missing now is a definition of the predicates somewhat-large and 
somewhat-larger. Some facts about them can, however, be easily deduced. For instance, 
since all numbers dealt with here are natural numbers, then a number that is "somewhat 
large" will be at least as large as zero, the smallest natural number. Also, if N - 1 is 
"somewhat larger" than M, then N is also "somewhat larger" than M. These observations 
can be formalized as the following definitions. 

somewhat-larger(N,-1) = somewhat-large(N) 
somewhat-larger(N,M) = somewhat-larger(N+l,M) 

Finally, we still need some mechanism to pick out those pairs of numbers N and M such 
that N is "somewhat larger" than M. A natural way of doing this with over-general rules 
is to add the following clause to our theory? 

N > M = somewhat-larger(N,M) 

It is possible to interpret this rule as a possible assumption, which can be made in order 
to construct a proof in the theory above (which would otherwise be incomplete). Since 
the assumption may be false, the rules above are an over-general subtheory for the predicates 
somewhat-large and somewhat-larger. Hence, the domain theory for opening-strength is 
over-general. In a moment, we will see how A-EBL fares in specializing this over-general 
theory. 9 

4.4.2. Discussion of the domain theory 

At first glance, it might seem that there will be an enormous number of proofs for each 
example: if the subgoal somewhat-large(N) is generated, then the rules for somewhat-larger 
will in effect propose a different proof for each possible cutoff point between N and 0. 
Worse, several such subgoals can be generated by a single training example, and the number 
of total proofs is the product of the number of proofs of each subgoal. Since A-EBL has 
to compute all of these proofs, it might seem that the technique is not applicable. 

However, examination of the theory reveals that no single proof will have more than 
three subgoals of the form somewhat-larger(N,M): the worst case is two subgoals from 
the rebiddable predicate, and one from the length-in-majors predicate. Moreover, N will 
be fairly small: at most 13 if it represents the length of a suit or pair of suits, or 11 if 
it represents the number of high card points in a suit. So not knowing the cutoffs multiplies 
the number of proofs for an example by at most a factor of 13 • 11 • 11 in the worst case. 
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The efficiency of our implementation is such that this number of proofs can be handled 
comfortably. 

4.4.3. Experiment results 

Our experimental results for this domain theory are summarized in Table 4. A hand was 
interpreted as a positive example of the concept opening-strength if any opening bid other 
than "pass" was recommended, and a negative example otherwise. All but three of the 
negative examples were trivial. Using approximately nine minutes of CPU time on a Sparc- 
Stati,~n 1+, the A-EBL algorithm learned a set of three rules which explain all 43 positive 
exarnples and three non-trivial negative examples. The maximal number of proofs of an 
example was 289, and the average number of proofs was 96. The correctness of the learned 
concept was tested by applying it to the questions in the sample test, and seeing if the con- 
cept opening-strength corresponded with the hands which Sheinwold recommended by 
opened. 

As the table shows, the learned concept is perfect on the test cases. However, this is 
not a strong test of the correctness of the concept: since the primary goal of the sample 
test is to test selection of the correct suit to bid, and not whether to bid or not, there is 
only a single test question for which the correct bid is to pass. Since the original domain 
theory was over-general--that is, it classifies hands as being of opening strength strictly 
too often--even the original weak domain theory does well on the test cases. (The original 
domain theory is not, however, a correct theory of opening strength, as is indicated by 
its imperfect performance on the training set.) 

As a second test of the concept learned for opening-strength, the definition of the learned 
concept was spliced into the domain theory for plausible-bid used in Experiments 1 and 
2, and Experiments 1 and 2 were repeated. This is a stronger test because the opening 
bid subtheory, in addition to deciding if a hand is strong enough to open, is used indirectly 
in learning preference rules. The results of these experiments are summarized in Table 
5; they indicate that the learned subtheory for opening-strength is useful in this secondary 
t~sk of supporting learning, as well as in determining if a hand is of opening strength? ° 

In addition to providing another test of the correctness of the opening-strength concept, 
repeating these experiments tests the sensitivity of A-EBL to the syntactic expression of 
the domain theory, since the learned definition of opening-strength is quite different from 
the hand-coded definition. In this case at least, A-EBL performed comparably on the two 
versions of the domain theory: although the concepts learned were different, they performed 
identically on the test cases. 

Table 4. Learning opening-strength. 

Accuracy Time 
Theory Training Examples Test Set Explain Learn 

Domain theory 41/43 16/16 -- -- 
output of A-EBL 43/43 16/16 78.8 449.9 
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Table 5. Learning plausible-bid with learned intermediate concepts. 

Time 
Theory Accuracy Explain Learn 

Domain theory 12/16 -- -- 
Domain theory w/learned opening-strength 12/16 -- -- 
output of A-EBL 14/16 54.5 100.2 
output of ANA-EBL (k = 1) 15/16 54.5 364.3 
output of ANA-EBL (k = 2) 15/16 54.5 *** 

4.5. Experiment 4: Learning from random data 

The examples and test data taken from Sheinwold (1964) are a fair test of the learner in 
two ways; they are representatives of  a naturally-occurring concept of some complexity, 
and they were chosen without knowledge of the learning algorithm. It is not an ideal test, 
however, because of its small size. To circumvent this problem, a program was written 
that randomly generated bridge hands and then opened them using hand-coded bidding 
rules. The hand-coded rules are a reasonable implementation of the bidding system presented 
in Sheinwold (1964); for instance, they bid all the problem hands in the sample test cor- 
rectly. By using this program as a classifier, an unlimited amount of training and test data 
can be generated. However, it should be noted that this introduces another source of poten- 
tial bias, because the data no longer consists of true representatives of Sheinwold's opening- 
bid concept, but of representatives of our own interpretation of that concept. 

Two experiments were performed using this source of data. First, the behavior of A- 
EBL and ANA-EBL in learning correct-bid using the domain theory of Experiments 1 and 
2 was studied. A test set of 1000 hands was generated and classified by the generation 
program, as well as a separate training set of 300 hands. A-EBL and ANA-EBL with k 
= 1 and k = 2 were then given progressively larger subsets of the training set; the ac- 
curacy of each hypothesis was measured by using it to classify the hands in the test set, 
and comparing the classifications to the correct ones. This experiment was repeated 10 
times and the error rates were averaged, using the same test set in each trial. The result 
is the "learning curve" shown in Figure 12 that plots the accuracy of the hypothesis against 
the number of  training examples. For comparison, the accuracy of the original over-general 
domain theory is also known. 

The experiments confirm that increasing k can improve the sample complexity of learn- 
ing; going from A-EBL (which is equivalent to ANA-EBL with k = 0) to ANA-EBL with 
k = 1 substantially improves the learning rate, and going from k = 1 to k = 2 also leads 
to an additional slight but statistically significant 11 improvement. 

Randomly generated data was also used to learn the opening-strength predicate using 
the domain theory of Experiment 3. Again, a test set of 1000 hands was generated and 
classified by the hand-coded bidding program. Then a separate training set of 50 hands 
was generated and classified by the hand-coded program. A-EBL was then given the first 
10 examples from the training set, the first 20 examples, the first 30, the first 40, and finally 
the entire set. The accuracy of each hypothesis produced was measured by using it to classify 
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the hands in the test set and comparing the classifications to the correct ones. These ex- 
periments were repeated 10 times and the error rates were averaged. The resulting learning 
curve is shown in Figure 13. 

5. Related work 

5.1. Other research in EBL 

In Pazzani (1988), mechanisms are described that choose between alternative explanations 
in an imperfect domain theory for plan recognization, which is an abductive task. Pazzani 
identifies five heuristics for selecting explanations. Some of these were specific to plan " 
recognition domains. One of these, the heuristic of preferring explanations which account 
for a larger number of observed changes, bears some similarity to the basic method of 
A-EBL. Similar heuristics for choosing between multiple explanations in the context of ~ 
completing an incomplete theory are proposed in Fawcett (1989). Our work extends the 
evaluation heuristics proposed by Pazzani and Fawcett by giving a precise way of weighting 
the complexity of an explanation and the number of observations that it covers, and justify- 
ing this heuristic with a pac-learning analysis. 

An advantage of the heuristics used by Pazzani and Fawcett is that they refer to a single 
explanation and the observations that it explains, and hence applying these heuristics to ~ 
a set of explanations can be done in time linear in the total size of the set of explanations. 
In contrast, the heuristics used by A-EBL in the greedy set cover do not refer to a single 
explanation, and hence A-EBL runs in time that is superlinear in the number of explana- 
tions. This suggests that A-EBL's time complexity could be improved by using heuristics 
such as those suggested by Pazzani and Fawcett to filter the set of candidate explanations 
and eliminate the least plausible ones. 

Pazzani also considers collecting more data to rule out alternative hypothesis via ex- 
perimentation. In a similar vein, Rajamoney and DeJong (1988) describe a system for choos- 
ing between multiple explanations based on experimentation. Their approach is based on 
a techrfique called active explanation reduction. One can think of active explanation reduction 
as a way of collecting informative examples; one would expect such a technique to have 
a lower time and sample complexity of learning than A-EBL. The advantage of A-EBL 
is that experimentation is not always possible. 

Hirsh has used the incremental version-space merging (IVSM) method (Hirsh, 1990) 
to choose between multiple explanations. Like A-EBL, IVSM is a general technique, with 
strong formal justifications; it is also incremental. However, the IVSM method requires 
an additional source of information in the form of a concept description language which 
provides an additional bias to the learning system. The bias toward disjunctive explana- 
tions used in A-EBL could be used as a concept description language; however, if this 
were done, the space requirements of the IVSM algorithm would grow exponentially with 
the number of explanations per example. IVSM is thus effectively limited to domain theories 
which generate a small number of explanations per example or to conjunctive concept 
description languages. 
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The initial domain theories used by A-EBL and EBL/TS are similar to "plausible low- 
belief domain theories" described in Rosenbloom and Aasman (1990). However, our 
mechanisms for making use of these theories are quite different; Rosenbloom and Aasman 
enc(~de an inductive learning algorithm directly in the domain theory, rather than using 
inductive postprocessing of the rules created by EBG (as is done in A-EBL.) The learning 
algorithm they use is an extended version-space algorithm that has many of the same limita- 
tions as the algorithm of Hirsh (1990). 

At a high level, A-EBL is similar to Flann and Dietterich's induction over explanations 
(IOE) algorithm (Flann & Dietterich, 1989). Both A-EBL and IOE begin with an over- 
general domain theory and learn a specialization of it. However, IOE learns a specializa- 
tion that is defined by a single rule, and A-EBL learns a specialization that is defined by 
multiple rules. IOE also assumes that the domain theory generates only a single explana- 
tion for each example, while A-EBL does not. An advantage of IOE is that it can be used 
to learn co-reference constraints and other constraints on variable values that are not learn- 
able by A-EBL. 

5°2. Research in similarity-based learning 

The basic procedure that A-EBL uses to specialize a theory is to form a set cover of the 
posillive examples. Set covering techniques have been used in several similarity-based learn- 
ing system, such as the AQ family of algorithms (Kietterich & Michalski, 1983; Michalski 
et al., 1986), the CN2 learning algorithm (Clark & Niblett, 1989), and Haussler's algorithm 
for learning pure disjunctive concepts (Haussler, 1988). In all of these algorithms, the basic 
procedure is to start with an empty cover and repeatedly add to it some conjunctive set 
or "complex"; often this complex is one that is chosen to cover as many positive examples 
as possible. A-EBL differs from the algorithms above in the nature of "complexes" that 
are added to the set cover: A-EBL adds rules derived by applying EBG to some explana- 
tion,, rather than rules derived using similarity-based methods on the data. A-EBL also 
uses slightly different heuristics for choosing a rule to add to the set cover than previous 
algorithms; A-EBL adds the rule that maximizes the ratio of coverage to size. This makes 
A-EBL relatively insensitive to the number of rules that could be potentially generated by 
EBL, but more sensitive to the total size of the concept to be learned. 

5.3. Research in abduction 

A-EBL bears some similarity to set-covering based implementations of abduction, for ex- 
ample, Allemang et al., (1987) and Reggia (1983). The resemblance is especially strong 
to those abductive systems which use explicit logical theories to define the space of pos- 
sible abductive explanations of a set of phenomena (Poole, 1988; Reiter, 1987). In fact, 
learning and abduction are very similar tasks. In both cases, the goal is to come up with 
a hypothesis which explains a particular set of data points; and in both cases, a simpler 
hypothesis is desired. 
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However, the goal of abductive reasoning systems is different from the goal of A-EBL. 
Set-cover based abductive reasoning systems produce as output the set of all possible 
hypothesis which satisfy some relatively weak definition of minimality (for instance, 
minimality under the partial order of set inclusion). The criterion of success is whether 
this set contains all of the most likely hypotheses. A-EBL, in contrast, produces a single 
hypothesis explaining a set of phenomena, uses a relatively strong definition of minimality 
(small syntactic size, relative to a particular encoding) and incorporates a completely dif- 
ferent formal model of correctness--the pac-learnability model. This model guarantees 
the correctness of future classifications made by the hypothesis in a probabilistic sense. 

This difference in aims is very important. Put another way, A-EBL differs from abduc- 
five reasoning systems in that it has a weaker goal. The goal of abduction is to find a set 
of most plausible explanations for a set of phenomena, given a set of possible explana- " 
tions. A-EBL finds instead a set of explanations which are probabilistically guaranteed 
to make good predictions, if the phenomena that A-EBL are asked to predict are drawn 
from the same population from which training instances were taken. In satisfying this goal, " 
A-EBL does quite well; its sample complexity is within a logarithmic factor of a known 
lower bound. 

There are two other less important differences between A-EBL and abductive reasoning 
systems. First, most abductive reasoning systems confirm that the assumptions made in 
completing a proof are mutually consistent; in A-EBL, however, no such "consistency check" 
is performed. A-EBL can be thought of as using the examples to probabilistically check 
that the set of explanations is "consistent" in the (somewhat weaker) sense that they lead 
to correct predictions; one justification for this weak consistency check is that sound and 
complete consistency checks are usually computationally intractable. A second difference 
is that no parts of the theory used by A-EBL are explicitly marked as "assumptions": in- 
stead, every explanation is viewed as potentially incorrect. This simplification reflects our 
own research emphases, and could probably be relaxed by slight modifications to the set 
cover algorithm without disturbing our results. 

A second connection between EBL with multiple explanations and abduction is that a 
sufficiently powerful abductive reasoning system would be a solution to the multiple ex- 
planation problem, since it could be used to determine directly which explanation of an 
example is correct. In most domains, however, abductive reasoning does not produce a 
single explanation of a set of phenomena, but a fairly large set. Our research can be viewed 
as an effort to sidestep the difficulties imposed by the existence of only weak abductive 
reasoning systems: by relaxing the problem of abduction to the problem of ensuring ac- 
curate prediction on later problems, we are able to learn effectively from a weak, explanatory 
domain theory without solving the problem of abduction. 

6. Further  work  

The experiments reported in this paper used a fairly simple and somewhat artificial do- 
main. Another disadvantage of the domain is that it was used as a test case in developing 
A-EBL, and hence is not a good prospective test of the learning system. Further experimen- 
tation in larger and more realistic domains would be desirable. One obstacle in applying 
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A-EBL to real-world domains is that A-EBL is sensitive to noise; extending A-EBL to deal 
with noise is an important issue for future research. 

Another drawback of our algorithm is that it is non-incremental. Finding an incremental 
version of the set-covering algorithm on which A-EBL is based would make the algorithm 
appliicable in a wider range of circumstances, and is another topic for further research. 
Some initial results on this problem have been reported in Cohen (1990b, Chapter 5). 

Another topic for later research is learning rules with exceptions, that is rules which 
are applicable only if some other set of rules are not applicable. Our algorithm cannot 
learn rules which have exceptions unless the domain theory explicitly encodes the excep- 
tions to every rule. An interesting research topic would be to extend the set cover algorithm 
to discover this information, and thus automatically learn rules with exceptions from a 
simpler domain theory. 

AJ~other set of topics to investigate are further applications of the A-EBL technique. We 
would like to investigate the usefulness of A-EBL is using a weak theory to complete an 
incomplete domain theory, as in Hall (1988); Mahadevan (1989); and Roy and Mostow (1988). 
Since multiple explanations can easily arise in these situations, this seems like a natural 
application of A-EBL. A second application is weakening the bias of explanation-based 
learning system by considering "abstracted" explanations, as was done in Experiment 2. 
A final application of A-EBL (of special interest to us because it was one of the original 
motivation for pursuing this research) is learning control rules for search programs. Some 
initial results in this area have been reported in Cohen (1990c). 

7. Conclusion 

A much-investigated research topic in machine learning is using prior knowledge of a 
learning problem to improve the performance of similarity-based learning techniques. One 
approach to this problem is to attempt to extend explanation-based learning (EBL) methods 
to imperfect domain theories: that is, domain theories that are not a complete and correct 
description of the concept to be learned. One problem that many types of imperfect theories 
demonstrate is the multiple inconsistent explanation problem. This problem occurs when 
a domain theory produces multiple explanations for a training instance, only some of which 
are correct. This paper has described an extention of EBL called A-EBL that handles the 
multiple explanation problem. A-EBL makes use of additional positive examples and negative 
examples to choose among the multiple explanations. 

We have evaluated the behavior of A-EBL in two ways. A formal evaluation was used 
to show that the technique will scale well in efficiency and required sample size. An em- 
pirical evaluation was used to demonstrate that it can succeed in some learning tasks of 
interest using a reasonable number of representative examples and a modest amount of 
CPU time. 

ThLe formal evaluation is based on Valiant's definition of probably approximately correct 
learnability; this theory is applicable since both A-EBL and EBL/TS (the formalization 
of "standard" explanation-based learning with which we compare A-EBL) can be viewed 
as inductive learning systems which learn a particular specialization of an initial domain 
theory. We compute the sample complexities of A-EBL and EBL/TS, and show that they 
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are within a logarithmic factor of one another; in other words, that the presence of mul- 
tiple explanations requires only a modest  increase in the number of  examples necessary ~ 
to learn with high probabil i ty an approximately correct description of an unknown con- 

cept. These worst case sample complexities are shown to be tight, within a logarithmic 
bound. We also show that A-EBL runs in time polynomial  in the complexity of the concept 
to be learned and the total number of  explanations, and that A-EBL is "competent" in a 
strictly broader  range of  circumstances. 

The empirical  evaluation is in the domain of bridge opening bids, and is based on a 
database of forty-three well-chosen, representative examples, as well as on larger randomly- 
generated databases, and several different non-trivial domain theories. The domain theories 
and examples used by A-EBL closely parallel the information given in the text of an intro- 
ductory book  on playing bridge (Sheinwold, 1964). All  the theories suffer from the mul- 
tiple explanation problem. To use these theories, A-EBL has to make many of  the same 
inferences a person would, including inferring the meaning of undefined terms from back- 
ground information and examples, and inferring the exact conditions under which heuristic ° 
bidding rules should be applied from knowledge of  these rules and examples. In these ex- 
periments, A-EBL is successful in improving the accuracy of the original domain theories 
when given either randomly selected examples or "textbook examples" taken from Shein- 
wold (1964). 
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No~s 

1. This terminology was adopted when EBL was used for the purpose of finding a more efficiently useable 
representation of the concept defined by the original domain theory; therefore, many of the terms have unfor- 
tunate connotations for inductive versions of EBL. However, they are so widely used that we hesitate to change 
them substantially. In particular, the term "operational" is misleading; the subgoals that the 0 predicate should 
succeed on are those subgoals which are supported by subproofs whose exact structure is irrelevant to the 
concept being learned. Also, the term "target concept" or "goal concept" is frequently used for the concept 
C r defined by the domain theory; in the inductive learning literature, however, target concept refers to the 
unknown concept C that the learner is trying to discover. To avoid confusion, we avoid all use of the term 
"target concept." 

2. The main difference in the two definitions is that in the theory specialization problem negative information 
may be used. The term theory specialization was also chosen to emphasize the fact that the unknown concept 
C might be defined by a set of rules, rather than a single rule. 
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3. Readers unfamiliar with bridge are referred to Appendix A. 
4. This definition assumes that if a node is operational, every descendant of that node is also operational. 
5. Or nearly the same set of proofs; one important difference between using abduction on the incomplete theory 

and using standard theorem proving on the completed theory is that many abductive reasoning systems con- 
firm that the assumptions made in completing a proof are mutually consistent. 

6. The name of a clause is just some unique identifier associated with a clause. Use of this representation is 
possible because variable binding information (and hence the generalization produced by EBG) can be recovered 
from a tree which is labeled only with clause names; one technique for doing this is described in Appendix B. 

7. Actually, the A-EBL algorithm described in this paper is embedded in ELGIN, a larger and more flexible 
learning system (Cohen, 1990b); the statistics above reflect the code in ELGIN used directly in running A-EBL. 

8. The theory actually used in the experiments was modified slightly to make it possible to use a simple backchain- 
ing theorem prover; the modification is discussed in Appendix E. 

9. Notice that this encoding takes advantage of the fact that A-EBL can easily learn a different specialization 
of a predicate for each context in which that predicate is used; in this case, the specialization of the predicate 
somewhat-large as used in length-in-majors will be different form the specialization of the predicate somewhat- 
large as used in rebiddable. This is a side effect of the fact that A-EBL learns an operationalized theory. 

10. CPU times for ANA-EBL with k = 2 are not given because these experiments were performed on a dif- 
ferent version of Prolog and a different machine. 

11. Using a z-test on the differences of the error rates of ANA-EBL using k = 1 and k = 2 yieldsp > 99.95% 
(z = 3.53) that the difference is real. 

12. Ideally, they would be learned by another application of A-EBL (as the concept opening-strength will be 
learned, as described in Section 4.4), but, because they are only used in exceptional circumstances, only 
one or two examples were available for each; hence we were forced to hand-code these definitions. 

A p p e n d i c e s  

A. Summary of the game of bridge 

Bridge is a card game, somewhat  s imilar  to whist ,  spades, or  hearts, and is played by two 

partnerships of  two persons  each. The  object  in play is to take tricks, i .e . ,  to capture the 

other  players '  cards. Tricks are usual ly  taken with a high card (like the ace, king or  queen) 

in the suit led or  a card in the suit designated as the trump suit. Play is p receded  by an 

auction in which  partnerships compe te  for the r ight  to n a m e  the t rump suit. Each  bid in 

the ~mction is a number  and a suit name,  or  a number  and the word no-trump, which means  

that there wi l l  be  no t rump suit. The  heart  and spade suits a re  called major suits and the 

club and d iamond  suits are  minor suits. M o r e  points  are awarded for tr icks taken with  a 

major  suit as trump. 

The  first b id  is cal led an opening bid. Subsequent  bids must  be  " h i g h e r " :  ei ther they 

name  a h igher  suit, or  a higher  number ,  or  both.  Suits are ordered  (from lowest  to highest) 

as follows: clubs, diamonds,  hearts, spades and no-trump. Players bid in order  going around 

the table; i f  a player does  not  want to bid,  he may pass. The auct ion ends when  there have 

been  three consecut ive  passes. The  partnership making  the highest  bid is then obligated 

to take a certain number  of  tricks, o r  else they wi l l  be  penalized.  The  t rump suit wi l l  be  

the t rump suit named  by the highest  bid;  the number  of  tricks that must  be  taken is related 

to the number  o f  the highest  bid. 

To decide  what  to bid,  players compute  cer ta in  evaluation metr ics  on their  hand. One  

of  these is high card points, which  is related to the number  of  face cards in the hand: an 
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ace counts for four high-card points, a king three, a queen two, and a jack one. Another 
measure is quick tricks, which counts certain configurations of face cards: for instance, 
the ace and king of the same suit count for two quick tricks. 

Bidding is a complicated problem. Typically, a partnership can only make two or three 
bids before the auction gets too high; based on this tiny amount of information, they must 
decide what the collective long suit of  the partnership is (to name the trump suit appropri- 
ately) and how strong the two hands are together. To maximize the amount of  information 
conveyed by each bid, partnerships always adopt some sort of bidding system, in which 
each bid is given some conventional meaning. Needless to say, making a bid which is in- 
correct according to the agreed-on bidding system is a grievous error. These bidding systems 
are usually quite complex. The one used in our examples is a variant of one of the simplest, 
called Standard American, as presented in Sheinwold (1964). Sheinwold devotes 230 pages 
to bidding, and 40 pages to normal (non-forcing and non-preemptive) opening bids alone. 

B. Algorithm for recovering binding information 

Our implementation of A-EBL does not represent abstract explanation structures directly, 
but uses a tree whose nodes are labeled with clause names, where the name of a clause 
is just some unique identifier associated with a clause. This appendix describes how an 
abstract explanation structure can be recovered from this data structure, which we will 
call a "name tree." 

Let a naming relation be some function N from a finite set of  symbols r~ onto the clauses 
of  domain theory T. Let r be a name tree with labels drawn from the set ~ t.J {nil}, where 
nil indicates an operational leaf of the tree. Code for constructing an abstract explanation 
structure from r is given below, in the form of a function convert-name. This function returns 
two values, a tree and its associated substitution. The top level invocation should use a 
variabilized version of the predicate being specialized (e.g., plausible-bid(x, y)) as the sec- 
ond argument. 

Algorithm convert-name(r, G): 

if r is labeled nil then 
return a tree with a single node labeled G, 

and the empty subsitution { } 

else 
let 7-1, . . . ,  rl be the sons of ~- 
let '~4 +- B1, • • . ,  Bk" be N(/) ,  where l is the label of the root of r 
let 00 be the mgu of G and A 
let 0 ~- 00 
for i = 1, . . . ,  k do 

~li, Oi *- convert-name(r/, BiO) 
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let 0 ~- 0 o 0 i 
endfor  
re tu rn  a tree with root labeled GO and subtrees ~0,  . . . ,  rlkO, 

and the substitution 0 
endif  

To make the definitions and algorithm of the preceding section more concrete, we 
reproduce below Prolog code for the two operations actually performed in our system on 
name trees. The predicate aes is a meta-interpreter that proves a goal G and returns an 
abstract explanation structure for G (in name tree form). The predicate peval "partially 
evaluates" an abstract explanation structure in name tree form, producting a Horn clause. 

aes(+G, - A g )  ~ Ag is an abstract explanation structure for G 

aesOG, nil) ~- operational(G),!,call(G). 
aes((G,H),(Ag,Ah)) ~ !,aes(G,Ag),aes(H,Ah). 
aes(G,(Id ~ Ah)) ~- !,theory-clause(G,H,Id),aes(H,Ah). 

peval(+AES, -Clause)  ~- partially evaluate an abstract explanation structure, 
producing a clause for a logic program 

peval(AES,(A *- B)) ~- goal-formula(A),peval(A,AES,B). 

peval(G, nil,G) *- !. 
peval((G,H),(Q,R),Body) *-- !, 

peval(G,Q, Bodyl), peval(H,R,Body2),combine(Bodyl,Body2,Body). 
peval(G,(Id ~ Q),Body) ~- !, 

theory-clause(G,H,Id), peval(H,Q, Body). 

theorY-clause(G,H, Id) *- (G ~- H) is a clause of  the domain theory with name Id 
combine(T1,T2,T3) ~ T3 is the conjunction of  77 and 12 
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C. Training data 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

Hand Recommended Bids 
~J86532 q) A <>KQ9643 & -  
~KQ874 (PKQJ653 OA &3 
tbKQ874 qpQJ8653 OA &3 
~KJ63 ©AKJ63 ~AK2 &4 
&KQ1085 q) KQ2 ~Q76 &43 
&KQ108 <PKQ2 5Q765 &43 
tbAQJ85 qPK10974 ~43 &6 
$KQ73 qPKJ75 OAJ84 &6 
SAQJ85 <PA974 ~43 &62 
~KQJ75 q) 5 (>AJ963 &62 
~J852 ~PAQ2 ~AK8 &762 
~,KJ63 (PAKJ63 ~52 &84 
~AK63 (3KQ532 ~52 &84 
~KQ63 q) 52 ~AK863 &84 
~AK87 q) AQJ9 ~62 &975 
$A2  q) KQ87 (>A J94 &975 
~KQ73 q) KJ75 ~ 6  &A J84 
tbKQ73 (P6 OK J75 &A J84 
tb6 q) KQ73 OK J75 &A J84 
tbKQ87 (PA2 ~975 &A J94 
tbA2 g) KQ87 ~975 &A J94 
tbKQJ75 <P5 ~62 &A J963 
~J852 qPAQ2 ~762 &AK8 
tbKQ63 (P52 ~84 &AK863 
tbKQJ75 q) 5 OA2 &AN963 
$43  ~P6 OAQJ85 &K10974 
tbQJ852 ~)QJ7 OQJ6 &KJ 
~KJ3  ~PKJ4 (>A3 &Q6432 
~KJ3  qgKJ4 ( ,Q J3 &Q J64 
&KQ8 <PAQ74 OKQ92 &54 
SKQ8 (PAQ74 OKQ2 &954 
tbK7 qPKQ873 OAJ94 &A5 
&A J8 q) K4 <~AJ932 &A J5 
&K J5 q) AQ9 OAK J4 &A J6 
&AQ965 <PK104 OAQ8 &AK 
~KQ5 qPAQ9 OAK J4 &AQ6 
$J52  q) AKJ OAKJ &AQ82 
$AQ852 qPKJ5 OAJ &K74 
~AQ85 ~KJ5  OAQ3 &K74 
~QJ8 q) AJ93 ~K92 &K J5 
SKJ8  <OQJ74 ~A62 &KQ5 
~KJ82 <9QJ74 ~ AQ &KQ5 
SAQ6 q) K62 OK5 &KQ1042 

1 spade 
1 heart 
1 spade 
1 heart 
1 spade 
p&s8 

1 spade 
l heart 
1 spade 
1 spade 
1 diamond 
1 heart 
1 spade 
1 diamond 
1 spade 
1 heart 
1 club 
1 club or 1 diamond 
1 club or 1 diamond 
1 club 
1 club 
1 club 
1 club 
1 club 
1 spade 
pass 
pass 
1 club 
1 club 
1 heart 
1 no-trump 
1 heart 
1 diamond 
2 no-trump 
2 no-trump 
3 no-trump 
1 club 
1 spade 
1 club 
1 club or 1 heart 
1 no-trump 
1 no-trump 
1 no-trump 
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D. ~ t  data 

Hand 
1 ~AKJIOS% q) A762 (~K2 & -  
2 ~J9642 ~PAKQ85 ~A5 &3 
3 &KQJ1094 ~)K93 ~54 ~63  
4 ~108643 ~ A K J  ~AQ6 ~63  
5 ~ AJ1084 ~ K93 ~ AQ6 ~ 63 
6 ~ AKQ ~ 107652 ~ AKQJ ~ A 
7 ~KJ642 ~A5  ~ 3  ~AQ732 
8 ~KQJ64 ~A5 ~ 3  ~AQ732 
9 ~ A J4 ~ 9632 ~ AK10 ~ AQJ 
I0 &K~0942 ~AKJ  ~85 ~K~09 
11 ~K1094 ~ n g J  ~Q52 ~ Z t 0 9  
12 ~K1094 ~ A K J  ~85 ~KI094 
13 ~Q64 ~A52 ~AQ5 ~KJ32 
14 ~64 ~AQJ2 ~AQ5 ~KJ32 
15 ~AQ ~AQJ2 ~AQ5 &K J32 
16 ~ AQJ ~ AQJ2 ~ AQ5 $ KQ3 

Recommended Bids-] 
1 spade 
1 spade 
pass 
1 spade 
1 spade 
I heart 
1 club 
1 spade 
1 club or I diamond 
1 spade 
1 no-trump 
1 club 
I no-trump 
1 club or 1 heart 
2 no-trump 
3 no-trump 

E. Domain theories 

E.L Theory for plausible opening bids 

This appendix presents the non-operational portions of the domain theory for opening bids 
used in the experiments. Lowqevel routines (such as the routines to count a hand, etc.) 
are not included. The theory is given in Prolog syntax. 

The top-level predicate plausible-bid contains a series of ten clauses that explain how 
to o~pen several types of hands. The first eight are straightforward translations of rutes from 
the text. 

plausible-bid(Hand,bid(pass)) ~ 
not opening-strength(Hand). 

plausible-bid(Hand,bid(1,Suitl)) ~ 
not one-suited(Hand), 
not notrump(Hand), 
opening-strength(Hand), 
short-minor(Suit,Hand). 

plausible-bid(Hand,bid(t,Suitl)) *- 
not two-suited(Hand), 
not notrump(Hand), 
opening-strength(Hand), 
biddable(Suitl,Hand). 
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plausible-bid(Hand,bid(1,c)) ~- 
hcp(Hand,15), 
balanced-distribution(Hand), 
almost-all-suits-stopped(Hand). 

plausible-bid(Hand,bid(1,notrump)) ~ 
not too-strong-for-lnt(Hand), 
hcp(Hand,HCP), 
between(HCP,16,18), 
balanced-distribution(Hand), 
almost-all-suits-stopped(Hand). 

plausible-bid(Hand,bid(1,Suit)) *-- 
hcp(Hand,HCP), 
between(HCP,19,21), 
balanced-distribution(Hand), 
almost-all-suits-stopped(Hand), 
short-minor (Suit, Hand). 

plausible-bid(Hand,bid(2,notrump)) ,-- 
hcp(Hand,HCP), 
between(HCP,22,24), 
balanced-distribution(Hand), 
all-suits-stopped(Hand). 

plausible-bid(Hand,bid(3,notrump)) ~ 
hcp(Hand,HCP), 
between(HCP,25,27), 
balanced-distribution(Hand), 
all-suits-stopped(Hand). 

The top-level rules for choosing between two and three biddable suits are given below. 

plausible-bid(Hand,bid(1,Suit)) *-- 
not three-suited(Hand), 
not notrump(Hand), 
opening-strength(Hand), 
biddable(Suitl,Hand), 
biddable(Suit2,Hand), 
Suitl ;~ Suit2, 
prefer(Hand, Suit,Suitl, Suit2). 



ABDUCTIVE EXPLANATION-BASED LEARNING 215 

plausible-bid(Hand,bid(1,Suit)) ~- 
opening-strength(Hand), 
biddable(Suitl,Hand), 
biddable(Suit2,Hand), 
biddable(Suit3,Hand), 
Suitl ~ Suit2, 
Suitl ~ Suit3, 
Suit2 ~ Suit3, 
prefer(Hand, Suit, Suitl, S uit2, Suit3 ). 

There are two rules for choosing among three possible suits: to prefer the middle suit, 
or to prefer the lower suit. 

prefer(Hand,Suit,Suitl,Suit2,Suit3) ~ 
middle-suit(Suit,Suitl,Suit2,Suit3). 

prefer(Hand,Suit,Suitl,Suit2,Suit3) ~ 
lowest- suit(Suit, Suitl, Suit2, Suit3 ). 

The rules for choosing among two possible suits are more complicated than in our sim- 
ple example of Section 2.2. First, there are two "exceptional rules;' introduced on pages 
of 20 and 21 of Sheinwold (1964): to prefer a strong 5-card suit to a weaker 4-card suit, 
and to prefer clubs to spades given a weak hand. If neither of these exceptions hold, then 
any of five general rules can be used: to prefer the longer suit, the lower suit, the higher 
suit, the higher of two touching suits, or the lower of two non-touching suits. 

prefer(Hand,Suit,Suitl,Suit2) *-- 
prefer-exception(Hand,Suit,Suitl,Suit2). 

prefer(Hand,Suit,Suitl,Suit2) ~ 
not prefer-exception(Hand,Suit,Suitl,Suit2), 
prefer-default(Hand,Suit,Suitl,Suit2). 

prefer-exception(Hand,Suitl,Suifl,Suit2) ~- 
strong-5-over-weak-4-card-suit (Hand, Suit, Suitl, Suit2). 

prefer-exception(Hand,Suit ,Suitl, Suit2) ~- 
weak(Hand), 
clubs-over-spades((suit,Suifl,Suit2). 

prefer-default(Hand,Suit,Suitl,Suit2) • 
longer (Hand, Suit, Suitl,Suit2). 

prefer-default(Hand,Suit,Suitl,Suit2) ~- 
higher(Suit,Suitl,Suit2). 

prefer-default(Hand,Suit,Suitl, Suit2) ~- 
lower( Suit,Suitl,S uit2). 



216 w.w. COHEN 

prefer-default(Hand,Suit,Suifl, Suit2) *-- 
higher-and-touching(Suit,Suitl,Suit2). 

prefer-default(Hand,Suit,Suitl, Suit2) *- 
lower-and-not-touching(Suit,Snitl,Suit2). 

The rules strong-5-over-weak-4-card-suit and weak required some judgment to define. 12 
The former predicate was defined to succeed when the five-card suit has more high card 
points than the four-card suit. The latter predicate was defined to succeed on hands with 
less than or equal to 14 high card points; this cutoff was selected by choosing the halfway 
point between the high-card count of the single positive example and the single negative 
example. 

The top-level rules for opening strength are as given in Figure 11; the following hand- " 
coded rules for comfortable-rebid and length-in-majors were used. 

length-in-majors(Hand) '-- 
length(s,Hand,NS), 
length(h,Hand,NH), 
N is NS+NH, 
N_>8. 

length-in-majors(Hand) ' -  
major-suit(Suit), 
length(Suit,Hand,N), 
N_>5. 

comfortable-rebid(Hand) ~ 
rebiddable(__,Hand). 

comfortable-rebid(Hand) , -  
biddable(Suitl,Hand), 
biddable(Suit2,Hand), 
Suitl ~ Suit2. 

rebiddable(Suit,Hand) ~ 
suit(Suit), 
length(Suit,Hand,N), 
N_>5. 

Finally, the rules for deciding when a suit is biddable are as follows. The second rule 
simplifies the corresponding rule in Sheinwold (1964): while he states that a four-card suit 
must be "QJxx or better," the rule simply checks that there are three or more high card 
points. 

biddable(Suit,Hand) '-- 
suit(Suit), 
length(Suit,Hand,N), 
greater-than-or-equal(N,5). 
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biddable(Suit,Hand) *-- 
suit(Suit), 
length(Suit,Hand,4), 
high-card-points(Suit,Hand,HCP), 
HCP _> 3. 

greater-than-or-equal(N,N). 
greater-than-or-equal(N,M) ~ 

N1 is N - l ,  
greater-than-or-equal(N1,M). 

The decision to use the logical predicate greater-than-or-equal-to to make the comparison 
in the first clause of the biddable predicate, rather than the extralogical predicate "> , "  
represents a fairly subtle choice of the operationality predicte. In general, we classify the 
predicate _> as operational; however, this is inappropriate in this case because we would 
like the proofs of biddability for suits of different lengths to be distinct. (For example, in 
most certain circumstances a six-card suit will be treated differently from a five-card suit.) 
Hence the non-operational comparison predicate greater-than-or-equal-to is used. 

Making such subtle choices in operationality is undesirable, since it gives a hint to the 
learning system. In fact, if one's goal is to generate a learning problem which contains 
exactly the information present in the textbook and no additional information, introduction 
of any operationality predicate is somewhat problematic, since this information is not given 
explicitly in the textbook. However, in this use of EBL, an operationality predicate represents 
knowledge about what features are relevant to the concept to be learned; it can be plausibly 
argued that this knowledge could be inferred by a reader. For instance, in this case, mark- 
ing greater-than-or-equal-to operational here would require the learning algorithm (either 
EBL/TS or A-EBL) to treat all suits of length greater than four identically; this would essen- 
tially suppress the feature of suit-length. However, in Sheinwold's informal discussions, 
the length of the biddable suits is sometimes mentioned; this suggests that this feature is 
relevant to learning. Another hint to the reader that suit length is relevant in bidding is 
that Sheinwold tends to group his examples by the length of their suits. 

The number of high card points needed to decide if a suit is biddable as a short minor 
in the final rule was also a subjective evaluation, based on knowledge not found in Shein- 
wold (1964). 

short-minor(Suit,Hand) ,-- 
minor-suit(Suit), 
hcp(Suit,Hand,HCP), 
HCP_> 3, 
length (Suit, Hand, N), 
N_>3. 

The remaining predicates are marked as operational. 
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E.2. Theory for opening strength 

The theory for opening strength is as presented in Section 4.4 with one minor change. 
Recall the rules defining the predicate somewhat-larger 

somewhat-larger(N,M) = somewhat-larger(N+l,M) 
N > M  = somewhat-larger(N,M) 

Given any two numbers N and M, there are only a finite number of proofs that somewhat- 
larger(N,M) holds: however, the simple Prolog meta-interpreter that we use as a theorem- 
prover loops when it is given this theory. To prevent looping, it was necessary to add the 
additional conjunct "N > M" to the recursive clause of somewhat-larger. The actual definition .~ 
of somewhat-larger used in the experiments was the following. 

somewhat-larger(N,M) ~- N >  M. 
somewhat-larger(N,M) ~- N > M ,  N1 is N - l ,  somewhat-larger(N1,M). 
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