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1. How is discovery different from learning? 

This special issue of  Machine Learning on discovery raises the question: How is discovery 
different from learning? In machine learning we typically distinguish between (1) learning 
as acquiring new knowledge in the form of concepts, taxonomies, regularities, and the like, 
and (2) learning as performance improvement and skill acquisition. "Discovery" applies 
to things that exist, such as the moons of Jupiter or the laws of nature, so in this section 
we confront discovery with learning in the first sense, of acquisition of objective knowledge. 
In the second section we discuss the distinction between discovery and invention. The third 
section reviews the ways in which the articles in this issue contribute to the growing autonomy 
and integration of machine discoverers, and it mentions recent research in machine discovery 
not represented in this issue. 

1.L A discover must be autonomous 

There is no difference between discovery and learning based on the type of knowledge to be 
acquired. Each piece of knowledge available to a learner must have been discovered earlier, 
and everything that has been discovered can become a subject of learning. The distinction 
becomes clear when we focus on the source of knowledge. A learner depends upon a teacher 
or a knowledge source, while a discovery can be granted only if it has been made without 
help of anybody who already knows. 

Learning is easier than discovery, because a human teacher or any agent who knows a 
given piece of knowledge can guide the learner's cognitive process in many ways. Consider 
concept learning from examples. The teacher selects a useful concept and prepares a col- 
lection of examples and counterexamples. The teacher can focus the attention of the learner 
on a particular task, for instance, on learning a conjunctive concept, a general boolean 
concept, or a recursive concept. The teacher can provide the evaluation criteria or even 
select the best alternative among solutions produced by the learner. Computer systems in 
all areas of machine learning receive help in the input preparation, in the learning process, 
and in the evaluation of results. Much of that help is typically called a learning bias. 

Human discoverers throughout history did not rely on external authority because there 
was none at the time of discovery, or even worse, because the discovery contradicted what 
the existing authorities believed. Whether an individual person, mankind as a collective 
discoverer, or a Computer system, a discoverer must be equipped with its own autonomously 
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applicable repertoire of techniques and values. Take concept learning as an example. An 
unbounded number of predicates can be defined by the primitives of any language, but 
only some make useful concepts. While a dependable teacher guarantees that the concept 
to be learned is useful, a discoverer must select concepts using its own judgment. A teacher 
who understands a concept can prepare a collection of examples and counterexamples and 
describe them by suitable attributes, while a discoverer must use its own strategies for data 
collection, and its own judgment about relevant attributes. The notion of autonomy requires 
few comments. Kepler, for instance, discovered his laws from data collected by Tycho de 
Brahe, so neither the data collection strategies nor the attributes were his. However, his 
discovery was autonomous in many ways. First, Brahe's data came without a guarantee 
that their exploration will lead to any discovery. Kepler picked them without assurance 
that he would be successful. Second, Kepler used his ideas of patterns in data, generating 
and evaluating many patterns before he made his discoveries. Third, autonomy best applies 
to the whole historical process of discovery, less to a small episode. Great discoveries were 
usually made possible by the contributions of many people over a long time. Uncountable 
observations, many attributes, and many hypotheses on planetary motions were considered 
before Kepler, but when the history of science puts a spotlight on the most spectacular 
events, we tend to disregard a huge number of previous efforts. When we consider the scien- 
tific community as a collective discoverer rather than the culminating moments of individual 
discoveries, we can better understand the process and see the price paid for knowledge 
of relevant attributes and relevant data, which allowed Kepler to make his discoveries. 

1.2. Towards greater autonomy 

Two complementary notions of autonomy are useful for us. First, the more an agent can 
do in the external world, the more autonomous it is. To increase this type of autonomy, 
we can give the agent more means, for instance, more sensors or better manipulators. Sec- 
ond, within the same means, an agent is more autonomous if it can make more choices, 
uphold more values, and explore a richer space of goals. An agent can have meager means 
to influence the external world, yet be able to set its cognitive goals in response to external 
situations, to internal values, and possessed knowledge, so that it can make its own deci- 
sions and understand as much of the world as its limited means permit. Philosophers call 
this an existential concept of autonomy. 

I f  we blame machine learners for their lack of autonomy, we must acknowledge that 
machine discoverers are not far ahead. No existing machine discoverer would reach much 
success in exploration of the real world if we did not provide help. The difference between 
machine discovery and learning is not so much in the current state of the art, but in the 
direction towards autonomy. The research in machine discovery should focus on increasing 
cognitive autonomy, reducing all types of need for external help. One way is to implement 
new components of the discovery process. Some components, such as instrument construc- 
tion, may not directly produce discoveries, but by virtue of enabling them, they belong 
to discovery research. Further, we need to strengthen the integration and autonomous evalua- 
tion of results by machine discoverers. Greater autonomy means more discovery steps in 
succession performed without external intervention. When external intervention is replaced 
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by automated search and the overall search must stay within reasonable size, the accumulation 
of discovery steps is a big challenge. But it is also a big chance for asking the right research 
questions, and it gives the cognitive perspective necessary for the answers. A single step 
rarely permits a sound judgment about the results. A combination of steps provides a broader 
perspective on knowledge and more informed feedback on the reasons for acceptance. 

When we eliminate, step after step, the need for external help, while maintaining or ex- 
panding the scope of knowledge that can be acquired by the discoverer, we get closer to 
the understanding of scientific values and the ways in which they support each other. Sys- 
tems that perform a single activity, for instance, concept learning from examples, do not 
get that chance. 

1.3. Concept learning and concept discovery 

In technical terms of logic, concepts are predicates that include free variables. Concepts by 
themselves have no truth value; they are neither true nor false. They name objects, proper- 
ties, or patterns, but they do not make statement. Truth values can be assigned to statements, 
which use concepts and which have all variables bound by quantifiers. Statements are claims 
about the world. With the exception of tautologies, true and universally quantified statements 
are typically called laws and regularities. 

A good, proven model of concept discovery comes from science. Initially, empirical con- 
cepts represented human sensors and human manipulations, for instance, the notions of 
warmth, acid taste, or labor needed to displace an object. Each of these concepts has helped 
to find regularities in nature, but as those regularities have been generalized, the initial 
concepts have been modified into concepts better suited to express knowledge. For instance, 
the acid taste helped to propose regularities in reactions of acids, but then patterns of reac- 
tions, initially discovered for acids recognized by their taste, were used to define acidity. 
Eventually the presence of hydrogen ions defined the theoretical notion of acidity, to be 
replaced by even more general concepts as chemical knowledge expanded to cover new 
substances and reactions. Many notions of acidity have been proposed in the historical proc- 
ess, and very few survived. 

Concepts can be viewed as investments that produce payoff when they allow us to ex- 
press regularities and laws. Better investments, that is, better concepts are recognized by 
more general knowledge that they help to express. Among an unlimited number of con- 
cepts that can be proposed, science uses a very limited number, choosing them based on 
the generality, utility, and accuracy of laws in which they occur. Concept discovery in science 
is not an isolated activity, because concepts are justified by feedback from knowledge. In 
machine discovery we can also use the same feedback. 

In machine learning, concept learning from examples can be viewed as a very limited 
search for regularities~ Membership in the target class is described by the target attribute, 
which indicates for each record whether it belongs to that class or not, that is, whether 
it is an example or a counterexample. The learner seeks the best definition of the target 
class in terms of other attributes. Such a definition has a truth value. If true, it shares many 
features of regularities, for instance, it can be used to predict class membership. The selec- 
tion of the target class, however, is not autonomous. The target class is externally defined 
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and a learner searches only for a class definition. In contrast, a discoverer should be able 
to propose various target attributes and to search for regularities for each. A discoverer 
will see more value in the target concept when it occurs in many regularities or in more 
general regularities. While a learner may not understand the reasons why a concept has 
value, a discoverer should, because a broader scope of cognitive activities and additional 
evaluation criteria give it a better perspective for autonomous judgment of concepts. 

1.4. Conceptual clustering as limited discovery 

Conceptual clustering is a step towards autonomy in concept learning. Here the task is 
more open, aimed at autonomous creation of classes. Given a database of records, concep- 
tual clustering seeks to divide all records into classes and to find a general description 
of each class. The concern for regularities in data was notably absent in early clustering 
systems, and resultant taxonomies have had little scientific value. A new generation of cluster- 
ing systems guides the clustering process by predictivity of clusters (Fisher, 1987). The 
resultant cluster hierarchies demonstrate predictive power if regularities are present in the 
data. However, regularities are poorly represented by clusters, because the search for regu- 
larities is not the main task. For instance, a simple proportionality between attributes x 
and y must be approximated by many clusters, rather than by a simple pattern y = ax. 
This criticism applies equally to discrete numerical data, which can also be fit with equa- 
tions, and to non-numerical data, where a functional dependency can be represented as 
a mapping between the sets of values of the attributes. In contradistinction to conceptual 
clustering, the main goal of many discovery systems is to find regularities in the data, while 
new concept construction has an instrumental role in the search for regularities. 

In contrast to clustering, a regularity does not separate existing objects into classes, but 
it specifies a pattern obeyed by all objects, so that it distinguishes records that are possible 
from those that are impossible (statistical regularities distinguish statistically probable com- 
binations of records from those that are improbable). Pattern extrapolation is poorly done 
by clustering. At least two classes must be produced, while to improve predictivity, the 
number of classes may be very large, even when all data follow one pattern. So even if 
clustering can be a limited form of discovery, the global regularities as such are overlooked, 
while their combinations are captured locally by clusters. 

1.5. Selection among regularities 

Consider fitting data with empirical equations. Candidate equations can be evaluated by 
their fit to data, but even when we limit the results to the simplest equations, several equa- 
tions of comparable simplicity can typically fit the same data with a similar accuracy and 
without overfit. Each equation is an equally close approximation to the truth, at least accord- 
ing to the input data. A discoverer may not be able to make a choice in this situation, or 
it may not wish to make it, because its choice could be wrong. 

Greater autonomy of a discoverer, however, gives a broader perspective on regularities, 
improving their evaluation. Various cognitive steps can help to choose among competing 
regularities. For instance, additional data can be collected in an area in which different 
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equations offer distinguishable predictions. Some equations are more susceptible to general- 
ization, and some can be reduced to a known theory, while some others cam~ot. Also, when 
interpreted with respect to situations they describe, some equations permit a more plausible 
interpretation. For each of these reasons, the broader perspective contributed by further 
activities of the discoverer can disambiguate the choice. 

L6. Central role of discovery in learning 

Like everything in AI, machine learning turned out to be far more complex than believed 
10 or 20 years ago, and applications are turning up slowly. Our concept learners have reached 
very high accuracy on individual tasks, but individual simple tasks have little practical appeal. 
Many learning tasks must be combined before a learning robot will be a reality. As long 
as we human teachers and experts on learning do not understand the interactions among 
different steps in the cognitive process, the chances are small that we can produce effective 
machine learners. We know how difficult and unrewarding it is to teach sombody who must 
be guided at each small step and who is not able to extend old methods to new situations 
so that we must explicitly teach all the links. At those times we realize how many steps 
may be required for effective learning. Once we realize how many steps are needed for 
even a simple learning task and how little guidance a good learner requires, we see that 
good learners are discoverers. A discoverer can take a piece of knowledge from a teacher 
and treat it as an element of the autonomous discovery process, that is, confront it with 
existing knowledge, and keep it if it can be merged. It is so much easier to teach a discoverer, 
because the discoverer will understand the links and autonomously fill in most of the task. 
Each of us is a discoverer, and we have been discoverers before we became learners, because 
as newborns we must have discovered, for instance, the meaning of the pointing gesture, 
the ideas of naming, truth, verfication, and so forth. 

Teachers are not perfect, so learners need their own independent judgment. As parents 
and teachers, we have bad moments. Fortunately our children and our students apply their 
own judgment. Our robots should have their autonomous system of values, too. We do not 
want them to learn everything somebody may try to teach them. 

A discoverer does not have to do everything on its own for fear of losing autonomy. Search 
for knowledge is a collective process. Human discoverers inherit much, but they create 
their own synthesis that guides them in making their own discoveries. We cart doubt whether 
any individual human discoverer has been completely autonomous, but collectively mankind 
has been. By a joint research effort in machine discovery, we are building such a collective 
discoverer. We are far from understanding what it will take to complete the task, but the 
pursuit of autonomy helps us to ask the right questions and to identify new research goals. 
Each component of the discovery method that we fail to anticipate will reveal itself in one 
or another shortcoming of our discoverers in comparison to human scientists. 

Machine discovery can be equally helpful to understand knowledge acquisition. Knowledge 
acquisition systems should have enough autonomy so that they cannot be fooled or misled, 
so that they do not misinterpret advice, and so that they are able to seek additional knowledge. 
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2. How is discovery different from invention? 

Machine discovery, like any other process in AI, has many features of a construction. A 
theory is gradually constructed as a combination of data structures. For many it does not 
sound quite right when we say that "a theory has been discovered." Theories are often 
considered inventions, first because we construct them, and second because they are evalu- 
ated in pragmatic terms of simplicity, functionality, solvability of equations, and so forth. 
So while autonomy distinguishes discovery from learning, what is the difference between 
discovery and invention? The distinction seems obvious when we consider an example: 
hydrogen was discovered rather than invented by Cavendish, but Morse invented rather 
than discovered the telegraph. Hydrogen existed before Cavendish, while the telegraph is 
a complex spatio-temporal structure that did not exist before its invention. Natural laws 
exist eternally and independently of human actions, so they are also subject of discovery. 
All phenomena that occur naturally, even in very specific circumstances created by humans, 
can be discovered, not invented. It seems that truth in contrast to pragmatic values, "natural" 
in contrast to "conventional," and "existence" in contrast to "construction" distinguish 
discovery from invention. 

There is an element of invention in each discovery, because discovery must be expressed 
in one form or another. A distinction between "laws of nature" and "laws of science" can 
be used to express this intuition: the former exist in nature and await discovery, like the 
moons of Jupiter, while the latter are constructed to represent the former. To the degree 
that the laws of science capture the laws of nature and make true claims about the world, 
they are discoveries. The formalism into which laws are put can be viewed as invention. 
Theories include a component of invention, because they are artifacts generated by humans 
and are subject to many pragmatic requirements. For instance, different formalizations of 
classical mechanics by Newton, Hamilton, and Lagrange are inventions that express the 
same laws of motion. Because theories include both invention and discovery we often prefer 
to say that theories are introduced or developed. 

Discoveries are not limited to "natural" phenomena. Anything that exists can be a sub- 
ject of discovery. We can discover knowledge about artifacts. Such artifacts as computer 
programs are a legitimate object of scientific inquiry and discovery. For instance, we can 
use a discovery system to discover the computational complexity of an algorithm. As another 
example, consider heuristics. They are inventions, neither true nor false, but useful when 
they improve the behavior of a program. But we can say true and false things about heuristics, 
and we can discover those things. For instance, regularities in how heuristics affect search 
belong to the category of discoveries. 

When we invent a particular class of heuristic search spaces, we actually create a domain 
of study. After a domain has been defined, it makes sense to distinguish between true and 
false claims and to discover things about that domain. If  cost is one of the dimensions 
in a domain, the least-cost heuristic might be discovered, while various other heuristics 
could be invented. 

Acquiring new knowledge and improving performance are two basic directions in learn- 
ing. Machine discovery concentrates on autonomous knowledge acquistion, but to be prac- 
tical it must use inventions such as more efficient search mechanisms. 
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3. Putting together a machine discoverer 

The number of discovery systems has been growing considerably in the last decade. The 
articles in this issue form a small but significant part of this trend. The majority of work 
on machine discovery focused on the reconstruction of the scientific method. A picture 
of scientific craftsmanship is emerging from our joint research, confirming the old thesis 
of Newell, Shaw, and Simon (1962) that discovery is problem solving and that it can be 
carried out by computer programs. Although discoveries are abundant in everyday life, 
the focus on scientific discovery has proved successful. Everyday concepts notoriously elude 
formalization, while scientific formalism has historically proved to lead to spectacular results 
of scientific reasoning and knowledge representation. A typical scientific phenomenon can 
be studied in a compact domain that is limited to a few concepts yet rich in knowledge 
representable in a formal way. The continued concentration on the scientific method should 
lead to a practical success in the future, and the widespread use of computers and data- 
acquisition equipment by scientists permits rapid installation of a successful discovery sys- 
tem. Robot-discoverers are another application target, since scientific domains are similar 
to robotic applications. 

3.1. Empirical context of discovery 

Recent discovery systems have expanded in numerous directions their treatment of the em- 
pirical context of knowledge, that is, the representation of objects, states, and processes, 
which were very primitive in early systems. In this issue, the articles by Shen, Scott and 
Markovitch, Rajamoney, and Nordhausen and Langley contribute to that subject. Other 
recent contributions include BLAGDEN (Sleeman, Stacey, Edwards, & Gray, 1989), 
GALILEO (~ytkow, 1990), and the work on analogy (Falkenhainer, 1987; Falkenhainer 
& Rajamoney, 1988), which used a mapping between elements of theories and elements 
of empirical situations that was developed in qualitative physics (Forbus, 1984). 

Interaction with the environment is very important for autonomy of a machine discov- 
erer. Environmental feedback can reduce drastically the number of observations needed 
to develop a theory, by making them where they seem to produce the greatest effect on 
the nascent theory. In this issue, discovery systems DIDO (Scott & Markovitch) and LIVE 
(Shen) exploit feedback from the environment. Selection of new experiments in response 
to discoveries has also been central in KEKADA (Kulkarni & Simon, 1987) and FAHREN- 
HEIT (~ytkow & Zhu, 1991). 

DIDO monitors the uncertainty of its own knowledge to select new experiments in the 
least known area in the space of possible experiments, and it keeps experimenting in that 
area long enough to enable significant improvement of knowledge. DIDO's mechanism of 
dynamic goal selection can be used by other systems whenever their knowledge can be 
interpreted probabilistically. While DIDO delays theory revision until many experiments 
have accumulated, LIVE employs deterministic rules and revises them after it finds an 
inconsistency with even a single experiment. 

Scientists deal with competing theories by designing crucial experiments. Science in- 
evitably reaches such conflicts, which are the focus of Rajamoney's DEED (this issue). 
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DEED takes a number of competing theories that make the same predictions in a given 
empirical situation. Knowing the correspondence between components of a theory and com- 
ponents of experimental situation, DEED uses this correspondence to plan to change the 
situation so that competing theories make conflicting predictions. 

Hypotheses about a physical situation generated by Karps' HYPGENE (this issue) ex- 
ploit similar links. HYPGENE responds to an incorrect prediction of a relatively complex 
theory applied to a hypothetical situation by searching for a better hypothesis. To do that, 
HYPGENE uses the links between reasoning steps and hypothetical elements of the input 
situation. Understanding how changes in the situation influence a theory's predictions, to- 
gether with a goal-driven mechanism, reduces a large search space to a small number of 
alternatives that can explain the mismatch. 

3.2. Feedback between concepts and regularities 

Scientific knowledge is shaped by an interplay between various discoveries, predominantly 
regularities and the concepts used to express them. In the current issue, Nordhausen and 
Langley's IDS and Shen's LIVE confront this problem. 

Shen's LIVE couples its concept-generation mechanism with feedback about regularities 
to guide concept selection. For instance, faced with seemingly non-deterministic behavior, 
LIVE can find concepts instrumental in discovery of deterministic regularities in that 
behavior. 

IDS creates clusters of states linked by similarities, finds qualitiative regularities among 
those states, and finally finds quantitative laws that describe change of qualitative states. 
The system is a significant accomplishment in integration, but the missing feedback be- 
tween regularity discovery and concept formation reduces its autonomy. Integration within 
IDS is such that clusters of states cannot be changed in view of discovered regularities. 
Another one-way link in IDS leads from qualitative to quantitative laws, whereas in science 
the opposite direction is no less important: quantitative regularities often lead to discovery 
of qualitative change. Without the feedback, the system may require a tutor/teacber who 
knows how to substitute for the missing feedback and feeds data in the right order. 

3.3. Interaction among theory evaluation criteria 

At the heart of discovery is the detection of patterns in data. Pattern detection involves 
tradeoffs among the complexity of a pattern, accuracy of fit, and breadth of scope. It is 
difficult to find a justified tradeoff among these three values. Milosavljevic and Jurka (this 
issue), worldng on evolution of patterns in a particular class of DNA substrings, found 
a natural and convincing linkage between all three values through the minimum length en- 
coding principle. In their domain, divergence from patterns occurs by mutations that are 
rare, so that every bit literally counts. The number of bits to reconstruct data from the 
patterns equals the number of bits to express each pattern or its divergence from another 
pattern, to link data to patterns, and to express divergence beween data and patterns. The 
same basic unit of a bit makes all three evaluation criteria directly compatible. 
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Every equation-finding system employs a particular combination of evaluation criteria. 
Schaffer (this issue) introduces a method for external evaluation of scientific equation finders, 
which can throw light on their internal evaluation mechanisms. His results, showing low 
correlation between the equations preferred by scientists and the findings of BACON-1 
(Langley et al., 1987) on the same data, offer an interesting challenge to BACON-1 but 
also raise the following question: What are the valid conditions to compare the results of 
automated equation finding with those of a scientist? A scientist has a far broader perspec- 
tive than an equation finder when both consider the same data. For instance, the scientist 
may know measurement error, may believe that data must match a specific theory, may 
see a plausible empirical interpretation of terms in a particular equation, and so forth. To 
put a scientist and a discovery system on equal terms, we should give the scientist's broader 
perspective to the discovery system or we should confront human subjects with data free 
of context. Experiments by Qin and Simon (1990) demonstrated that several students who 
were shown Kepler's data, but were not informed of the data's origin, reached conclusions 
similar to those of BACON-1 and of Kepler. 

3.4. Invention of new heuristics 

Speeding up A* search with more efficient but admissible heuristics is an interesting challenge 
in invention. Prieditis's Absolver 2 responds to this challenge by autonomous application 
of two searches. Search in the space of abstractions of the initial problem is combined 
with search for a speedup of the solution to the abstracted problem. A new heuristic is returned 
when both searches are jointly succes sful. Since each new heuristic leads to a new A * search, 
the speedup process can recur. Whether Absolver 2 discovers or whether it invents heuristics 
may depend on the preferred notion of existence, that is, on the ontology of mathematics. 

3.5. Other directions in research on discovery 

Several research directions active in the last few years are not represented in this issue: 
Knowledge discovery in databases has attracted considerable interest in recent years, 

leading to many automated methods of mining databases for useful knowledge. Three col- 
lections of papers, edited by Piatetsky-Shapiro and Frawley (1991), Piatetsky-Shapiro (1991), 
and ~.ytkow (1992) overview the state of the art. 

Discovery of structure has stimulated steady and significant interest. Several systems 
discover hid.den components and their properties (Revolver: Rose 1989; GELL-MANN: 
Fischer & Zytkow, 1990); others discover hidden properties of observable objects (BR-3: 
Kocabas, 1991) or postulate hidden steps in chemical processes (MECHEM: Vald~s-P~rez, 
1993). Sleeman et al. (1989) suggested an interesting search in the space of qualitiative 
models of a chemical system. 

4. Summary 

We argued that a discoverer must be autonomous because discovery of X can be granted 
only if it has been made without help of anybody who already knows X. Autonomy is 
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a mat ter  of  degree,  and it grows by acquir ing more  means ,  goals,  and values.  We have 
shown that combinat ion of discovery steps leads to more  autonomy and to informed feedback 
between acceptance of  different elements of knowledge.  We also reviewed the ways in which 
ar t ic les  in this i ssue  contr ibute  to au tonomy of  the d iscoverer  and to cogni t ive  feedback  
be tween  elements  of  the discovery process .  We argued that  d iscovery  plays a centra l  ro le  in 
learning and that  to bui ld  a prac t ica l ly  useful learner  we should a im at a capable  discoverer.  
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