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Abstract. In this article we present a framework that integrates three aspects of empirical discovery--the forma- 
tion of taxonomies, the generation of qualitative laws, and the detection of numeric relations. We specify a control 
structure that integrates these component processes, embedding qualitative discovery within taxonomy formation, 
and embedding numeric discovery within both of these activities. We also describe the framework's basic represen- 
tation and organization of knowledge, which combines elements from recent work in machine discovery and 
qualitative physics. In addition, we describe IDS, a running system that instantiates this framework, and report 
its behavior on problems from the history of science. Finally, we discuss some limitations of the system as revealed 
by experimental studies, and propose some directions for future research. 
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1. Introduction 

Research on machine discovery aims for computational understanding of the processes that 
underlie scientific behavior. Naturally enough, previous work in this area has partitioned 
the complex process of discovery into manageable components. For instance, some research- 
ers have focused on empirical discovery, which produces laws that summarize data, whereas 
others have studied theory formation, which generates deeper explanations of those data 
(Falkenhainer & Rajamoney, 1988; Kulkarni & Simon, 1990; Rose & Langley, 1986). Re- 
searchers have further divided empirical discovery into three broad activities: 

• taxonomy formation, which involves the discovery of conceptual hierarchies (Fisher, 1987; 
Lebowitz, 1987; Michalski & Stepp, 1983; Nordhausen, 1986); 

• qualitiative discovery, which concerns finding general qualitative regularities (Emde, 
Habel, & Rollinger, 1983; Jones, 1986; Langely, Simon, Bradshaw, & Zytkow, 1987); and 

• quantitative discovery, which involves the induction of numeric laws (Falkenhainer & 
Michalski, 1986; Langley, Bradshaw, & Simon, 1983; ~ytkow, Zhu, & Hussam, 1990). 

Typically, research efforts have examined each of these activities in isolation from the rest, 
and this divide-and-conquer strategy has led to significant improvements in our understand- 
ing of scientific activities. As a result, machine discovery has developed into an active and 
successful subfield of machine learning (Shrager & Langley, 1990; Thagard, 1989). 

However, an understanding of science's components is not sufficient; a full theory of sci- 
entific discovery should explain the interaction and feedback among these components. An 
integrated framework should account for aspects of discovery that models of isolated compo- 
nents cannot handle. Our research in this area has been driven by three major questions: 
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• What representation and organization of knowledge will suppport an integrated approach 
to scientific discovery? 

• What control structure will support the interactions among the components of an inte- 
grated discovery system? 

• What novel capabilities emerge from an integrated approach to scientific discovery? 

Our response to these questions has involved the construction of IDS, an AI system that 
integrates the three aspects of empirical discovery described above. We cast our tentative 
answers throughout the article as a series of claims, each supported by tests of IDS on 
examples from the history of science. Our goal is not to account for the details of historical 
discoveries, but to show evidence of generality .across a broad range of tasks similar to 
those encountered by scientists in the past. 

We have divided the remaining pages into four broad sections. In the first we consider 
the system's representation of its observations, its background knowledge, and the regularities 
that it finds. After this we present IDS' overall control structure, including its mechanisms 
for forming taxonomies, qualitative laws, and numeric relations. We then examine the sys- 
tem's ability to rediscover a number of known scientific laws, comparing its behavior to 
those of earlier systems on the same tasks. Finally, we consider some limitations of IDS, 
some directions for future research, and the overall contributions of the work. 

2. Representation and organization in IDS 

IDS' representation draws upon recent work in qualitative physics. The system describes 
observations as sequences of descriptions, each expressed as a 'qualitative state' augmented 
by numeric information, and it uses a similar notation to specifiy its taxonomy and laws. To 
organize its acquired knowledge, IDS borrows from recent work on incremental approaches 
to conceptual clustering. In this section, we give the details of the system's representation 
and organization, first dealing with its inputs and then with its outputs. 

2.1. Inputs to IDS 

Most discovery systems start with some background knowledge about their domain of opera- 
tion, whether this is made explicit or not. In IDS, this knowledge takes the form of a simple 
is-a hierarchy that describes classes of objects or substances the system may encounter. 
For instance, the system might be given knowledge that a specific object o 1 is a member 
of the class H¢I, and also that it is I i qu i d. Thus, nodes in the is-a hierarchy may have 
multiple parents. Furthermore, 1DS might be told that HC I is a member of the more general 
class ac i O. Other objects and other classes would be connected in a similar fashion; we 
will refer to the set of such connections as the background hierarchy. 

However, an empirical discovery system also requires data or observations. IDS is given 
this information as sequences of qualitatives states, with each state augmented by informa- 
tion about the value of each numeric variable. We will refer to these sequences as histories, 
even though our meaning diverges slightly from that used by Hayes (1979). Each state in 
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Figure 1. A typical history for a fluid flow experiment. 

a history covers an interval of time during which the basic qualitative structure is constant; 
we will describe what we mean by 'constant' shortly. This representation borrows heavily 
from work in qualitative physics (Forbus, 1985, Kuipers, 1985; Williams, 1985). 

Figure 1 shows the history for a simple fluid flow scenario with three distinct qualitative 
states. The initial state of this history involves two containers, c 1 (a) and c2 (b), which 
are not connected. Each container holds a different level of fluid. When these containers 
are connected by a pipe, the fluid level in cl  begins to rise while the level in c2 begins 
to drop, producing a second state. 1 During this period, the level of fluid in one container 
is decreasing, while that of the other is increasing; this is a form of constant behavior, 
in that the signs of the derivatives remain unchanged. In the final state of the history, the 
fluid flow has stopped and the fluid levels in both containers remain constant. 

IDS represents each qualitative state as a frame with four slots, each of which describes 
a different aspect of a situation. These include: 

• the object description, which specifies the objects present in the state using the language 
of the background (object) hierarchy; 

• the structural description, which expresses relations that hold among objects during the 
state; 

• the changes slot, which contains a list of the changes occurring in the state; as in much 
qualitative physics work, changes are expressed in terms of derivatives; and 

• the quantity slot, which describes numerical attributes that remain constant during a state. 

For example, the object description for c in Figure 1 is c 1 (c),  and the structural description 
for the second state is connected (c, d). The changes for this state include a decrease 
in I eve~ of c, which is expressed as A I eve l (c) < 0. Finally, the variable I eve l (e) 
takes on a constant value during the following state. As we will see later, each slot plays 
a different role in the evaluation function IDS uses to organize states in memory. The system 
does not store values for numeric terms that vary within a state or information about in- 
equalities. For instance, the description for the second state does not mention the fact that 
one level is greater than another, although one could infer this from the derivatives and 
the equality of levels when the state ends. 
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A transition from one qualitiative state to another occurs whenever any of a state's slots 
change their content. This includes situations in which an observed variable that was con- 
stant suddenly starts to increase or decrease, as well as the reverse situation. A transition 
between states also results when an object description or the structural description changes, 
including the creation or destruction of objects. In Figure 1, the first state in the history 
ends when an external agent connects the containers and the levels of the substances in the 
containers start to change. Another transition occurs when the levels stop changing, pro- 
ducing the final state. Although IDS is given these boundaries, DeCoste (1991) has recently 
explored an approach to determining them automatically from a sequence of snapshots. 

Histories are inherently temporal in nature, and IDS represents temporal connections 
between pairs of observed states using successor links. These links can be labeled by tran- 
sition conditions, which describe the situation under which the current state ends and its 
successor begins. A transition condition may involve quantitative descriptions, such as 
I eve l (c) = Ievel  (ct) or Ieve l  (c) = 60, the actions of an external agent,, such as con- 
nec t  (a ,  b), or both. For instance, a substance having temperature at its melting or boil- 
ing point could serve as a transition condition. Such conditions may include features that 
are irrelevant to the transition, but this will not be apparent from a single history. IDS 
processes a set of histories incrementally, handling each one it observes in turn. The system 
also processes the qualitative states in each history one at a time, in chronological order. 

Before considering the system's outputs, we should present a partial answer to the first 
question asked in the introduction. 

Claim 1. Qualitative histories augmented with numeric information provide a useful repre- 
sentation of observations for an integrated discovery system. 

The evidence for this claim will have to wait undl later in the article, after xve have exam- 
ined IDS' behavior on some example cases. But it seems worth stating explicitly, so that 
readers can keep it in mind along the way. 

2.2. Outputs of lDS 

Because IDS is incremental, the system continues processing states as long as they are 
available. As a result, it has no explicit outputs in the traditional sense. However, the system 
does augment its memory after each experience, and in this section we examine the nature 
of the resulting structures. We will focus on three aspects of this 'output--the taxonomy, 
qualitative laws, and numeric laws. 

2.2.1. Taxonomy of states 

The IDS taxonomy organizes observed qualitative states into a conceptual hierarchy, with 
input states as terminal nodes and with abstract or generalized states as internal nodes. 
Thus, this knowledge structure is similar in spirit to those created by CLt~STER/2 (Michalski 
& Stepp, 1983), Ur~I~tEM (Lebowitz, 1987), and COBWEB (Fisher, 1987). Unlike the 
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background hierarchy, which allows multiple parents, the state taxonomy takes the form of a 
tree, with no state belonging to more than one abstract category. This state taxonomy makes 
reference to the background hierarchy of objects, but the two are distinct. Nodes in the 
state hierarchy include the same slots as specific states (i.e., a description of the structure, 
the objects involved, the changes occurring during the state, and the constant quantities). 

Figure 2 shows the complete state taxonomy after IDS has processed two histories from 
the fluid flow domain. (The figure also shows the laws found by the system, which we will 
consider shortly.) These histories contain one class of states (labeled state 1) in which the 
fluid level of c 1 in both children (states 3 and 4) is 50, whereas the initial level of con- 
tainer c2 is 70 in one and 80 in the other. In another class (state 5), c l  and c2 are con- 
nected and the fluid level of c l  increases while the level of c2 decreases. In a third abstract 
state (node 6), the fluid levels of cl  and c2 remain equal. Also, states 5 and 6 have a 
common abstraction or generalization, which indicates simply that there are two connected 
objects, c l  and c2. 

After observing additional histories in which the initial fluid level of c 1 is less than the 
level of c 1, and in which the initial level of c 1 is varied, IDS produces a revised taxonomy 
in which the top-level nodes are more abstract. For instance, the specific containers c 1 
and c 2 are replaced by the general descriptor co n t a in e r, which is the common parent 
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Figure 2. T h e  s ta te  t a x o n o m y  a n d  l a w s  for  f l u i d  f l o w  a f t er  s i x  s ta tes  h a v e  b e e n  o b s e r v e d .  
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of c 1 and c 2 in the background object hierarchy. However, some aspects are unmodified, 
such as the fact that in one abstract state, the level of one container increases while the 
other decreases. Taken together, these abstract nodes summarize all qualitative states that 
have occurred in the observed histories. 

2.2.2. Qualitative laws 

In addition to taxonomic knowledge, IDS also represents qualitative laws in terms of rela- 
tions between pairs of abstract states. Recall that states in observed histories are connected 
by successor links, and these can also be used to express temporal relations between abstract 
nodes in the state taxonomy. Briefly, such a connection specifies that states in one class 
are followed by states in another class. Figure 2 uses dashed arrows to indicate such abstract 
successor links. For example, the link between nodes 1 and 5 specifies that instances of 
node 5 occur directly after instances of node 1. 

The current version of IDS only allows one successor for each node under a given tran- 
sition condition. Thus, given a pair of two-state histories in which the first states are similar, 
the transitions are identical, and the last states are dissimilar, the system would form a 
relatively specific node from the two initial states, with a successor link to a much more 
abstract node (possibly the root) that summarizes the two following states. This is equivalent 
to stating that, given an instance of the initial class of states, one can only predict the most 
general characteristics of the following state. However, given either of the original states, 
IDS could still predict the states that follow, since it retains the original histories in memory. 

Successor links may also specify the conditions under which a transition occurs. For 
instance, the label on the link between nodes 1 and 5 in Figure 2 - - connec t  (n, o) --indi- 
cates that this transition occurs when the two objects in node 1 are physically connected 
by an external agent. Taken together, internal nodes and successor links represent qualitative 
laws similar in content to those found by GLAt~BER (Langley et al., 1987). Unlike the earlier 
system, IDS does not use explicit universal and existential quantifiers; rather, it treats each 
law as though objects in the preceding state are universally quantified and those in the 
succeeding state are existentially quantified. Thus, node 1, node 5, and the link between 
them asserts that when one encounters any situation in which there are two containers and 
one has a level of 50, if one connects the containers, the initial state will be followed by 
one in which the levels of the containers move toward each other, z The figure also reveals 
a second qualitative law, stating that any instance of node 5 will be followed by some in- 
stance of node 6. After the system has seen additional histories, it formulates analogous 
laws at a higher level of abstraction. 

The embedding of qualitative laws within a taxonomy is one feature that distinguishes 
IDS from its predecessors, and this leads to a second answer to our question about repre- 
sentations that support integrated discovery. 

Claim 2. Transitions between abstract qualitative states in a taxonomic hierarchy, along 
with conditions on these transitions, constitute an important class of  qualitative laws. 

Again, evaluation of this statement is best delayed until after we have seen examples of 
the system in operation. 
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2.2.3. Numeric relations 

The fluid flow domain also introduces the third aspect of IDS' knowledge structures--the 
augmentation of nodes and successor links with numeric laws. The system stores numeric 
relations in three different places, each of which serves a different purpose: 

• a law associated with a single state relates quantities that occur within that state; 
• a numeric relation associated with a transition link specifies the numeric conditions for 

moving from a state to its immediate successor; 
• a numeric law associated with a quantity relation link between two states relates a quan- 

tity in the later state to quantities in the earlier state (sometimes many steps back). 

Figure 2 provides examples of all three types of numeric relations. For instance, the equality 
of levels in node 6 constitutes a simple state equation. In contrast, the successor link be- 
tween nodes 5 and 6 specifies a transition law or boundary equation, which indicates that 
the levels of connected containers change until they become equal, after which they are 
stable. Transition laws may also specify constant values, such as mass reaching zero or 
temperature reaching the boiling point for a substance. Finally, the quantity relation link 
between nodes 1 and 6 specifies a dynamic equation that linearly relates the fluid level 
of container c2 in state 6 and its level in state 1 (i.e., the f'mal and initial levels of c2). 
IDS stores a more general version of this law after seeing additional histories. This rela- 
tion, which states that the final level of the containers is half the sum of their initial levels, 
can be used to predict the final levels. 

One aspect of numeric relations that does not appear in the figure is the notion of intrin- 
sic properties. Briefly, these are inferred numeric attributes, such as mass or specific heat, 
which IDS includes in its quantitative laws. Numeric values of an intrinsic property are 
stored with specific objects or classes of objects in the background hierarchy. This approach 
lets IDS decompose numeric laws into a general equation, which it stores on a qualitative 
state, transition link, or quantity relation link, and specific parameters, which it stores with 
the objects or classes to which the law applies. For instance, IDS represents one version 
of momentum conservation as the general law ml V1 + m2 V2 = ml U1 + m2 U2, where 
V and U are the velocities before and after a collision. This law is stored on a quantity 
relation link connecting two states at the top of the taxonomy, whereas values for the in- 
trinsic property m (mass) are stored on the property lists of specific objects that it has 
observed colliding. 

The numeric laws generated by IDS are similar to those found by BAcon (Langley, Brad- 
shaw, & Simon,. 1983), ABACUS (Falkenhainer & Michalski, 1986), and FAHR~NHEIa" 
(~ytkow, 1986; Zytkow et al., 1990), but there is an important difference, which suggests 
a third response to our question about representation. 

Claim 3. Numeric relations can usefully augment a taxonomy of  qualitative states and its 
associated qualitative laws, which in turn provide a physical context for the numeric relations. 

Earlier numeric discovery systems found quantitative laws and conditions on them, but 
their statement of the laws contained tittle information about the structure or physical situation 
in which they occurred. The IDS taxonomy of slates and successor links specify such a 
physical context. 
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3. The control structure of  IDS 

The IDS system can be characterized as using an incremental hill-climbing approach (Gen- 
nari, Langley, & Fisher, 1989). Such systems process one experience at a time, selecting 
one among alternative ways to incorporate each experience into memory and moving on 
from there. Furthermore, they hold only one structure in memory, do not reprocess substan- 
tial numbers of previous experiences, and retain no information about their learning steps, 
so explicit backtracking cannot occur. This makes them efficient in terms of both process- 
ing and memory. Below we present the top-level IDS control structure, and then examine 
each component algorithm in detail. 

3.1. The top-level algorithm 

Table i presents pseudocode for the overall IDS algorithm. The system processes one qual- 
itative state at a time, invoking the subroutine mod i fy - t axonomy to sort the state through 
its current taxonomy, incorporate it as a terminal node in the hierarchy, and create new 
generalized nodes as needed. This routine returns the resulting parent node of the new 
state, which may be either an existing node in the taxonomy or a newly created one. Be- 
cause the initial state has no predecessors, the system treats it as a special case; we will 
focus on its treatment of the remaining states. 

Table 1. The top-level control structure for the IDS algorithm. 

Input:  The root node N of the  s t a t e  h i e r a r c h y .  

An observed h i s t o r y  H of s t a t e s .  

R e s u l t s :  A h i e r a r c h y  of s t a t e s ,  augmented wi th  

q u a l i t a t i v e  and q u a n t i t a t i v e  laws. 

V a r i a b l e s :  I is an observed s t a t e .  

P, Q, and R are  nodes in the h i e r a r c h y .  

S is a successor  l i nk  between nodes. 

IDS(N, H) 

Let  I be the  f i r s t  s t a t e  in h i s t o r y  H. 

Let  H be the  remaining s t a t e s  in H. 

Let  P be ( t h e  node genera ted  by) Modify-taxonomy (N, I ) .  

F i n d - n u m e r i c - w i t h i n ( P )  

Whi le  H is not empty, 

Let  I be the next  s t a t e  in H. 

Let  H be the remaining s t a t e s  in H. 

Let  Q be ( t he  node genera ted  by) M o d i f y - t a x o n o m y ( N ,  I ) .  

Let  R be the  c l o s e s t  common a n c e s t o r  of the 

successors  of node P 's  c h i l d r e n .  

F i n d - q u a l i t a t i v e - l a w ( P ,  R). 

Le t  S be the successor  l ink  between P and R. 

F i n d - n u m e r i c - w i t h i n ( Q ) .  

F i n d - n u m e r i c - t r a n s i t i o n ( S ) .  

F i n d - n u m e r i c - a c r o s s ( Q ) .  

Let  P be the  node Q. 



INTEGRATED EMPIRICAL DISCOVERY 25 

After classifying a new state I and determining its parent Q, IDS returns its attention 
to Q's predecessor p. The system then invokes its second major subroutine, f i n d -  
qua I i t a t  i r e -  Iaw, which first determines whether p already has a successor. I f  so, it 
checks to see if the new child conforms to the qualitative law stored on the successor link. 
In contrast, if the parent P is a new abstract node, it does not yet have a successor; thus, 
the system must determine one, along with an associated qualitative law. As described more 
fully in Section 3.3, this involves f'mding the closest common ancestor R of  p's children 
(which may or may not be Q), establishing a new successor link, and storing on it the tran- 
sition conditions common to the links connecting R and p's children. 

Once the system has determined the qualitative law involving the abstract node Q, it in- 
vokes three related routines that uncover numeric relations. First IDS calls f i nd-nurner i c- 
w i t h i n, which searches for quantitative relations that hold with the node Q's children. 
Next it uses f i nd-numer i c - t  r ans  i t i on to find laws that summarize numeric aspects 
of  the transitions between the children of  P and Q. Finally, it calls on the subroutine f i nd- 
nurne t i c - a c  r o s s  to discover numeric laws that relate attributes in Q's children to ones 
in the children of its predecessors. 

As we describe in Section 3.4, the function f i n d - n u m e r i c - l a w  is used by all three 
of  these algorithms, but with different arguments and once for each numeric term occurring 
in the state or link. As in the qualitative case, if Q already existed before observing I, IDS 
checks to see if I obeys the laws stored with Q. If  the observed values diverge sufficiently 
from an existing taw, the system attempts to formulate an improved law. If  Q has been newly 
created, IDS tries to induce an initial numeric law that summarizes its children. In both 
cases, it also attempts to assign values to intrinsic properties of objects involved in nodes 
and successor links, as we discuss in Section 3.5. 

Now that we have summarized the overall IDS algorithm, we can propose our answer 
to the second question asked in the introduction. 

Claim 4. A useful control structure for integrating empirical discovery embeds the search 
for numeric relations within the search for qualitative laws, and embeds both of these within 
the process of taxonomy formation. 

We believe this framework reflects a common path in the history of science. For instance, 
the early chemists first grouped substances into classes such as acids, alkalis, and salts, 
which involves the formation of a taxonomy. After this, they began to note qualitative regu- 
larities, such as the claim that acids react with alkalis to form salts. Finally, after chemists 
had identified the basic classes and laws of qualitative structure, they started to detect numeric 
relations, such as the law of  definite proportions. This suggests an overall control structure 
like that given in Table 1, although it reflects the behavior of  an entire community rather 
than that of an individual scientist. We will not argue that this organization is the only 
one that supports an integrated approach to discovery, and the history of science includes 
cases in which feedback runs along other paths. However, we believe the current structure 
provides a solid foundation on which to build more sophisticated schemes. 
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3.2. Forming a taxonomic hierarchy 

Now let us turn to the components of IDS, starting with the algorithm for clustering or 
taxonomy formation. Table 2 summarizes the mod i fy - t axonomy algorithm, which has 
been heavily influenced by Lebowitz's (1987) work on UNIr~mM and Fisher's (1987) work 
on COBWEB. Briefly, upon receiving a new qualitative state, IDS sorts this state through 
its hierarchy. Starting at the root node, the system computes the similarity between the 
new state and each child of the current node, measuring similarity with a lexicographic 
evaluation function (Forgy, 1979; Michalski & Stepp, 1983). Because each state may involve 
multiple objects, the matcher generates all possible bindings between the variables in the 
two states being compared. As we discuss below, the matcher then calculates an overall 
similarity score between the two states for each set of bindings and returns the one with 
the best score. 

The system finds the child p that matches the state most closely. If  their similarity score 
exceeds a user-specified threshold, then IDS checks whether P is strictly more general 
than the observed state. If  so, moO i fy - ± axonomy is called recursively with P and the state 
as arguments, so as to pass the state further down the existing hierarchy. If  the node P 
is no more general than the observed state, the system calls on the subroutine Me rge, which 
attempts to generalize the state and P. 

If  the similarity score fails to exceed the threshold, IDS determines the child Q with the 
second highest similarity to the observed state. I f  P is more similar to O than either is to 
the state, then it would be inappropriate to combine the state with either node. Instead, 

Table 2. The IDS algorithm for taxonomy formation. 

V a r i a b l e s :  N, P, and Q are nodes in the h i e r a r c h y .  

I is an observed s t a t e  (a ve ry  s p e c i f i c  node).  

X and Y are s i m i l a r i t y  scores between p a i r s  o f  nodes. 

Mod i f y - taxonomy(N ,  I )  

For each c h i l d  C o f  N, 

Compute the  s i m i l a r i t y  score  between C and I .  

Let  P be the node w i t h  the h i g h e s t  s i m i l a r i t y  score .  

Let  X be the s i m i l a r i t y  score  between I and P. 

i f  X is g r e a t e r  than a u s e r - s p e c i f i e d  parameter ,  

Then i f  P is more genera l  than I ,  

Then r e t u r n  Mod i f y - t axonomy(P ,  I ) .  

E lse  s t o r e  I as a c h i l d  o f  N. 

Return Merge(P, I ) .  

E lse  l e t  Q be the  node w i t h  the second h ighes t  score .  

Let Y be the  s i m i l a r i t y  between P and Q. 

S to re  I as a c h i l d  o f  N. 

I f  X is g r e a t e r  than Y, 

Then r e t u r n  Merge(P, I ) .  

E lse  r e t u r n  Merge (P, Q). 

Note:  The o b j e c t  h i e r a r c h y  is used to  g e n e r a l i z e  and merge s t a t e s .  



INTEGRATED EMPIRICAL DISCOVERY 27 

the system attempts to generalize Q and P using the Merge routine, with the state being 
stored as a new child of the current parent node? If  the best-matching node P is more similar 
to the state than to Q, IDS falls back on the scheme of merging P with the state. 

The first step in merging two nodes, A and B, involves computing a generalization G 
based on their common structure. In constructing this generalization, IDS uses its matcher 
to find a correspondence between the variables in A and B, which it then uses to fill the 
slots of the generalized node. In general, each slot in the new node G is the intersection 
of that slot's values in the original nodes. However, in determining the generalized object 
description, IDS collects the predicates that modify each mapped pair of  objects and then 
determines all closest common ancestors--along all paths in the object hierarchy--of  each 
pair. These common ancestors become the predicates in the object description in the new 
node. I f  G is more  specific than the node P, the system removes A and B as children of 
P, stores them as children of G, and stores G as a new child of P; otherwise the taxonomy 
remains unchanged. 

The evaluation function incorporates four measures, each corresponding to one of the 
four slots in state descriptions. For each competitor, it computes a weighted sum based 
on separate similarity scores, giving a weight of  1000 to the structural description, 100 
to the description of changes, ten to the object descriptions, and one to the description 
of numeric attributes. I f  the competitors tie on all measures, one is selected at random. 
The emphasis on structural descriptions and qualitative changes in taxonomy formation 
has implications for IDS'  other discovery mechanisms. In order to formulate predictive 
qualitative and numeric laws, the system must first define classes of states that have a com- 
mon physical context. 

In general, the similarity score between the slot values for two states is simply the number 
of  literals they share after substitution. For example, the similarity score for the changes 
slots between States 7 and 8 in Figure 2 is 2, because the states have two changes in com- 
mon, I eve  I (x) < 0 and I eve  I (~,) > O. However, IDS uses the object hierarchy to deter- 
mine the similarity score for object descriptions. The system collects the predicates used 
to describe objects in the two states, and then computes the traversal distances between all 
corresponding pairs of predicates in the object hierarchy. This similarity score is defined 
to be the inverse of the sum of all traversal distances. 

For example, consider one state in which the sole object is described as l i q u i d ( x )  
and HCI (x ) ,  and a second state in which the sole object is described as I i qu i d (y)  and 
H N O 3 ( y ) .  Since HN03 and HCI have the same parent, their traversal distance is one, 
whereas that between I i qu i d and I i qu i d is zero. The predicates I i qu i d and HN03, like 
I i qu  i d and HCI, have no common ancestor; thus, they describe different facts of the ob- 

ject and do not affect the sum. As a result, the similarity score for this description slot 
is 1/1 = 1, whereas that for two states described as I i qu i d HC I and I i qtJ i d KOI-t is  the 
inverse of the sum of 0 and 4, and hence 1/4. 

As we noted above, IDS '  clustering component has been influenced by Lebowitz'  (1987) 
U~MEM and Fisher's (1987) CoBweB, but there are some important differences. For instance, 
IDS and Col}wE]} form only disjoint taxonomies, in which each node has a single parent. 
In contrast, UN~M]~M can sort an instance down multiple paths, producing a nondisjoint 
hierarchy. IDS differs from both earlier systems in that it includes no counts or probabilities 
on its features; each description in the taxonomy is categorical. Our system is probably 
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most akin to COBWEB, though it uses a different evaluation function and lacks the latter's 
splitting operator (the inverse of the merge operator). Lenat's 0978) AM also incrementally 
organizes its concepts into a taxonomic hierarchy. However, this system generates new con- 
cepts by 'mutating' the definitions of existing ones and then testing them. This 'exploratory' 
approach to discovery contrasts with the 'data-driven' approach taken in IDS, COBWEB, 
and UN~EM, which generate new concepts in direct response to observations. 

3.3. Discovering qualitative laws 

Having described the IDS clustering algorithm, we can turn to the method for qualitative 
discovery embedded within it. We have seen that IDS represents qualitative laws in terms 
of abstract qualitative states and the successor links connecting them. With the exception 
of the final state in each history, every node in the taxonomy must have some successor 
node. This temporal information is given as part of the input and specifies the links for 
leaves in the state hierarchy. From these data, the system must induce the links between 
abstract nodes. 

Whenever IDS forms a new abstract qualitative state (i.e., a nonterminal node in the 
hierarchy), it returns attention to the previous node P returned by the taxonomy formation 
module and determines the successor node for P. This is a simple process that involves 
finding the closest common ancestor of the successors to P ' s  children. ~ As an example, 
consider the taxonomy shown in Figure 2. Node 1 has two children, which are labeled 
nodes 3 and 4. These nodes have as their successors nodes 7 and 8, respectively. In this 
case, IDS determines that the closest common ancestor of node 7 and 8 is node 5, and 
asserts this node as the successor of node 1. 

In addition, IDS attempts to attach transition conditions to the new successor link, which 
may take the form of a quantity relation or an external action, such as heating an object. 
The system determines these conditions in the same way that it forms merged nodes: by 
finding the structure common to the two successor links. For example, the transition formed 
between nodes 1 and 5 is labeled connec t  (n, o) ,  because this action is stored on the 
successor link connecting nodes 3 and 7, as well as that connecting nodes 4 and 8. The 
act of adding this condition is equivalent to inducing a law that states ' if  containers c 1 
and c2 are connected, their levels will approach one another.' 

I f  IDS finds that the children's links have only some actions in common, it includes only 
the shared structure in the abstract link. If  it can find no common structure, the system 
creates the successor link but specifies transition conditions that are completely uncon- 
strained. In other cases, the conditions on the specific links involve numeric relations, such 
as reaching zero mass or achieving boiling point (Zytkow et al., 1990). In this situation, 
IDS attempts to find a numeric relation that covers the specific cases, using the algorithm 
described in the next section. 

We are now ready for our first claim about the advantages of the integrated approach 
taken in the IDS framework. 

Claim 5. The embedding of qualitative discovery within the process of taxonomy formation 
significantly .constrains the search for qualitative laws. 
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Note that in detecting qualitative relations, IDS considers only ancestors of the successor 
link between two observed qualitative states. These ancestors are completely determined 
by the placement of abstract states in the taxonomy, so the system must only find common 
parents to determine the placement of abstract transition links. Thus, IDS's discovery of 
qualitative laws is driven almost entirely by the state hierarchy produced during taxonomy 
formation. 

This approach contrasts sharply with that taken by Langley et al.'s (1987) GI~htrBER, even 
though the qualitative laws found by the two systems have similar content. The earlier system 
considered many different qualitative laws in turn, rejecting some and accepting others 
based on their ability to summarize observed qualitative relations. GLAUBrg included a 
simple component for clustering substances based on common features, but this was coupled 
to the law formation process in a much looser fashion than in the current system. Our qual- 
itative laws are more similar in spirit to the p r o t o h i s t o r i e s  posited by Forbus and Gentner 
(1986), though their approach embeds qualitative discovery within a process of analogy 
rather than within taxonomy formation. 

3.4. Discovering quantitative laws 

The third major component of IDS focuses on finding numeric laws. They can specify 
the conditions for moving from one state to another, a relation between numeric attributes 
within a given qualitative state, or a quantitative relation between variables in different 
states. Each of these cases involves storing a law at a node or link in the taxonomy that 
summarizes information in the children of that node or link. Like ~ytkow et al.'s (1990) 
FArIm~rqI-XEIT system, IDS uses a single procedure to find all forms of numeric laws. 

For a given data set, the system attempts to find a law that covers these data by conduct- 
ing a beam search through the space of numeric terms. More precisely, the search task 
can be stated as: 

• G i v e n :  a set of base terms a, b, c . . . .  , along with one designated term (a) from that set; 
• F i n d :  a term x = a n° • b n' • c n2 . . .  such that a linear relation of the form a = mx + n 

holds. 

IDS searches from simple terms to more complex ones, using c o r r e l a t i o n  a n a l y s i s  (Freund 
& Walpole, 1980) to direct the search process. As in Langley et al.'s (1983) BAco~q, the 
basic operators involve defining new terms as products and ratios of existing terms. The 
system initially assumes that a designated term has a constant value. If  this does not sum- 
marize the data, it examines correlations between the designated term and observable attri- 
butes, in hopes of finding a simple linear relation. I f  this does not produce an acceptable 
law, it uses the correlations to select promising products and ratios, and then recursively 
searches for more complex regularities. 

Table 3 gives the basic algorithm for finding numeric relations. The top-level function, 
f i nd- nume t i c -  Iaw, is given three arguments: the designated term O (which IDS hopes 
to predict), the set of base terms $ (the attributes to be used in prediction), and a set of 
current terms C (arithmetic combinations of the base terms). I f  IDS is attempting to revise 
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Table 3. The IDS algorithm for finding numeric laws. 

V a r i a b l e s :  S is the  set  of base terms; D is the  des ignated  term; 

A is a d e f i n e d  term; C is the set  of c u r r e n t  terms; 

P and Q are  se ts  of terms.  

F i n d - n u m e r i c - l a w ( D ,  S, C) 

Let  A be the term in the  c u r r e n t  set  C t h a t  has the  

h ighest  c o r r e l a t i o n  w i th  the des ignated  term D. 

I f  the  c o r r e l a t i o n  between D and A is above t h r e s h o l d  T, 

Then re turn  A, along w i th  the  s lope and 

i n t e r c e p t  of the l i ne  t h a t  best  f i t s  D and A. 

Else  i f  the  maximum search depth is reached,  

Then re tu rn  the  empty s e t .  

Else  le t  C' be F i n d - b e s t - t e r m s ( D ,  S, C). 

F i n d - n u m e r i c - l a w ( D ,  S, C ' ) .  

F i n d - b e s t - t e r m s ( D ,  S, C) 

Let  P be the products  of the  terms of S and C. 

Let  Q be the  q u o t i e n t s  of the terms of S and C. 

For each term A in the  union of P and Q whose 

exponents do not exceed the maximum a l lowed ,  

Compute the c o r r e l a t i o n  between D and A. 

Return the  terms wi th  the  N h ighest  c o r r e l a t i o n s .  

Parameters  set  by the  user:  

Width of the beam N (memory s i z e ) ;  Threshold  T of the  c o r r e l a t i o n  ( a c c u r a c y ) ;  

Maximum exponents in terms ( law c o m p l e x i t y ) ;  Maximum search depth (when to  h a l t ) .  

an existing law, the current set ¢ contains only the single term that occurs in the right- 
hand side of that law. If the system is searching for an entirely new law, ¢ becomes the 
set of observable terms $. The system iterates through the set of observable terms, treating 
each as the designated term D in turn and invoking the algorithm to search for a law that 
predicts D. 

At each point in the search, IDS defines all of the products and ratios between the terms 
in the set $ and those in C, but it retains only those terms having the (typically five) highest 
correlations with the designated term D. These new terms become the current set C, and 
the function f i nd-numer i c -  law is called recursively, with the designated term D and the 
base terms $ remaining the same. If any term in ¢ has a sufficiently high (typically 0.99) 
correlation with D, IDS ends the search and calculates the slope and intercept of the line 
that best fits them. The system continues in this fashion until it finds such a linear relation 
or until it exceeds the user-specified maximum search depth (usually twelve). Also, it aban- 
dons any terms that include an exponent larger than a user-given amount (typically five). 
If the search fails, IDS assumes that no law covers all the observed data. The use of cor- 
relation to handle noise contrasts with that taken in ~ytkow et al.'s (1990) FArIRENHEIT, 
which uses an error propagation technique. 

The algorithm f i nd-numer i c-  law is invoked whenever the system adds a new quali- 
tative state (or transition link) to memory. In this case, IDS attempts to fmd an initial law 
that covers the children of the new abstraction. The routine is also called whenever the 
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system stores a node $ (or link -r) as a new child of  an existing node (or link) in the hier- 
archy. In this case, it checks to see if $ (or q') obeys the laws currently stored at the node. 
I f  not, IDS searches for new laws that cover the new child and its siblings, using the old 
law as a starting point. This method does require that one store and reprocess all the data 
that led to the rejected law. Thus, the routine does not quite fit with our definition of an 
incremental learning system, but it typically requires few observations to induce a law and 
so remains efficient. 

Experiments with the numeric discovery algorithm produced encouraging results on the 
use of correlation analysis as a heuristic to guide the search for complex numeric relations. 
In particular, we found that a single setting of  the correlation threshold works well for 
a wide range of  noise levels, that the method tolerates noise that results from both constant 
and relative error in measurement instruments, and that the numbers of irrelevant variables 
and complexity of the function reduce learning rate only slightly. Nordhausen and Langley 
(1990) describe these experimental studies in detail. However, one should treat these results 
with caution, because they involved tests of the numeric component in isolation, rather 
than in the context of the complete system. 

We noted earlier that IDS employs the same basic algorithm for finding three types of 
numeric relations. Recall that f i nd - nume r i c - Iaw takes as arguments the designated term 
D, the set of base terms $, and the set of  current terms ¢. The initial settings of these argu- 
ments differ for the three forms of laws because they emphasize different quantitiesP Thus, 
when IDS attempts to discover a relation involving quantities within a state, the routine 
f i nd-nurner i c-wi t h i n  calls f i nd-numer  i c-  law with one of these quantities as the 
designated term D, and the union of all within-state quantities and transition quantities as 
the set of  base terms S. F i nd-numer i c-wi th  i n repeats this process for each quantity 
in the state, possibly finding multiple versions of  a law. 

Similary, when f i nd-numer  i c - t  t ans  i t ion attempts to find relations on a successor 
link between two states, each quantity mentioned in the transition condition becomes in 
turn the designated term D, whereas the set of base terms is the union of all within-state 
quantities for the first state and its transition quantities. This lets the system discover the 
conditions for moving between qualitative states. Figure 2 showed such a linear relation 
that the system finds in the fluid flow domain, which states that one moves from the state 
5 (in which levels are changing) to state 6 (when levels are equal). Transition laws can 
also involve simple constants (which the system prefers to linear relations), as in the case 
of melting and boiling points. Such relations let IDS implicitly specify inequalities, since 
they state that certain changes continue until the transition conditions are met. 

In order to find numeric laws between qualitative states, the routine f i n d - n u m e r i c -  
ac r o s s  uses a forward propagation method that first attempts to relate a quantity in the 
current state to the quantities in the immediately preceding state. I f  the subroutine f i ntt- 
n urne r i c -  Iaw cannot infer a law between an attribute in a state and one in its immediate 
predecessor, it looks for a numeric relation involving the state and the predecessor's prede- 
cessor, continuing this chain until it finds a relation or it reaches a state with no predecessor. 6 
For instance, in the fluid flow domain described earlier, the system finds a numeric relation 
between the initial and final states, as shown in Figure 2. After additional histories, IDS 
finds a more abstract law that lets it predict the final levels from the initial ones. 
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At this point, we make a second statement about the advantages of integration within 
the IDS framework. 

Claim 6. The embedding of numeric discovery within the processes of qualitative discovery 
and taxonomy formation directs the search for quantitative laws. 

The numeric component of IDS finds laws similar in form to those produced by BAcor~ 
(Langley et al., 1983) and ABACt~S (Falkenhainer & Michalski, 1986). Moreover, they employ 
similar methods to control their search for useful numeric terms, using simple correlations 
to focus attention. These systems differ in the details of their search control, but a much 
more important difference resides in the manner of their use. IDS passes only certain sets 
of variables to its numeric routine, and these are constrained by the taxonomy and qualita- 
tive laws it has formed. 

Specifically, IDS attempts to formulate within-state laws only for variables that occur 
within qualitative states with the same taxonomic parent, and that have constant values 
within those states. Similarly, it searches for transition laws only for pairs of states that 
obey a common qualitative law, considering only variables that change in a constant direc- 
tion within the first state. Finally, the system aims for between-state laws only for states 
that occur in the same chain of transitions, focusing on variables with constant values that 
have not been included in a within-state law. Although the different representations used 
by these systems make it difficult to quantify the effect on search, it seems clear that IDS' 
embedding of numeric discovery within its other processes focuses its attention in ways 
that its predecessors relied on users to provide. 

3.5. Inferring intrinsic properties 

As we mentioned in Section 2, IDS postulates intrinsic properties such as mass and specific 
heat to let it formulate more general numeric laws than would otherwise be possible. These 
properties are stored with objects or classes in the background is-a hierarchy. For example, 
what we call density would be stored with classes of objects, such as silver or gold, whereas 
what we call mass would be stored with specific objects. Now let us consider how IDS 
uses and infers these properties. 

Whenever the system searches for a numeric law, it retrieves the values of the intrinsic 
properties for the objects involved, which lets it use these properties in formulating quantita- 
tive laws. Recall that, in IDS' representation, objects are intentionally defined. For example, 
the system represents the fact that variable a in a state describes object ol as ol  (a ) ,  where 
ol  is a terminal node in the object hierarchy (and thus treated like a very specific class). 
If  ol  has a mass of 9.6 grams, then the quantity slot of the state includes rn~ss (a) = 9 .6 .  

Hence, quantities are only indirectly related to nodes in the object hierarchy through 
shared arguments, as in ol (~) and mass (~) = 9.6.  IDS uses this indirect relation to re- 
trieve the values of the intrinsic properties for an object/class. Because variable a describes 
object o 1, the system retrieves the intrinsic properties for o 1 in the object hierarchy. The 
object taxonomy supports property inheritance, so that children inherit the properties of 
their ancestors. For example, if o 1 is composed of s i Ive r and if a value of the intrinsic 
property density is associated with the s i Ive r class, IDS would retrieve the density value 
for s il ve t  and associate it with any instance of ol  whenever attempting to find a law 
that covers that obiect. 
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The system uses four rules to infer intrinsic properties and to determine their values. 
Initially, IDS assumes that the value of a quantity is constant for a given object or class 
of objects. That is, whenever the system encounters a numeric attribute (either observed 
or defined), it assumes that this quantity is an intrinsic property and stores the value with 
the object/class in the object hierarchy. If  IDS observes disconfirming evidence (i.e., a 
different value for the same quantity of the object/class), the system retracts the intrinsic 
property for this object/class. 

The first rule for inferring intrinsic properties states that when IDS encounters a quantity 
for the fn:st time, it infers a new intrinsic property associated with that quantity. 7 The sec- 
ond rule handles cases in which the system encounters a previously observed quantity, and 
in which the value of the associated intrinsic property for the observed object is not known. 
In this case, IDS stores (in the object hierarchy) the value of the observed quantity with 
the object as its value for the intrinsic property. 

The third rule states that, if the system encounters a previously observed quantity, and 
if the value for the associated intrinsic property can be retrieved for the object/class, then 
the system should check whether the retrieved value is consistent with the observed value. 
If  the values correspond, then no action is taken. However, if the retrieved value is not 
consistent with the observed value (i.e., the quantity is not constant for the object), then 
IDS retracts the quantity as an intrinsic property for the object/class. The system applies 
this in turn to all of the object's parents in the object hierarchy, thus finding the highest 
level at which it should retain each intrinsic property. 

The last rule states that, if the value of an associated intrinsic property cannot be deter- 
mined because the relation to the established measurement scale is not known, then IDS 
should infer no intrinsic values for the observed objects at that time. Taken together, these 
heuristics let IDS incrementally update the stored values of intrinsic properties, moving 
them up the object hierarchy when appropriate and removing properties when it finds evi- 
dence of overgeneralization. The overall strategy is similar to that in BACON, but more 
robust due to use of the object hierarchy. We will see the results of this process in the 
following section. 

4. Illustrative examples of integrated discovery 

We have already made some specific claims about the advantages of an integrated approach 
to empirical discovery over methods that address only the components of this process. In 
this section we examine IDS' behavior on more examples from the history of physics and 
chemistry, as further evidence of these claims and as motivation for some additional ones. 
We focus on three idealized historical cases: the reactive behavior of acids and alkalis; 
the law of displacement; and laws of heating and melting. In each case, we close with an 
argument for the advantages of an integrated approach. 

For the runs described in this section, IDS was presented data in a systematic order, 
as if generated by an experimenter. This contrasts with 'observational' data, in which the 
data and their order are beyond the control of the scientist. That is, the system was presented 
with a succession of histories, with each history representing one experimental condition. 
The conditions for the initial state in an experiment were varied one at a time while others 
were held constant, producing a complete factorial design. For each of the runs, we specify 
the initial conditions and the order in which they were changed. 
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4.L The reactive behavior of acids and alkalis 

One early chemical discovery involved the reactive behavior of acids and alkalis. Figure 3 
shows the history for a simple chemical reaction with three distinct qualitative states. The 
initial state contains two separate objects, liquid HC1 and liquid HaOH. When these sub- 
stances are combined by an external agent, a new state begins that contains three objects--the 
two original reactants and a new product, NaC1. During this state, the masses of the reac- 
tants are decreasing while the mass of product is increasing. This continues until all the 
HC1 combines, at which point the reaction halts, s 

Given histories of this form, IDS can rediscover regularities similar to those found by 
the early chemists. The experiment starts with the history from Figure 3, after which the 
system is given histories with different masses for the acid and then for the alkali. In this 
run, the acid is always the limiting reagent; that is, the acid is always used up before the 
alkali. After several experimental conditions using different masses, the substances of the 
objects are varied, producing some in which no reaction occurs. For example, if a sample 
of liquid HC1 is combined with liquid H2SO4, no reaction occurs because both are acids. 
Background knowledge includes information about the classes of substances (e.g., HC1 
is an acid, NaOH is an alkali, and NaC1 is a salt). 

Figure 4 shows the top levels of the state hierarchy after IDS has processed all the histories. 
States 6, 2, and 7, together with the temporal links among them, represent an empirical 
law that liquid acids react with liquid alkalis to form liquid salt, similar to that proposed 
centuries ago. In discovering this law, IDS first notes that liquid HC1 reacts with liquid 
NaOH to form NaC1. After encountering reactions of liquid HC1 and liquid KOH, the system 
forms a more general version of this law, which states that all instances of liquid HCI react 
with all instances of liquid alkalis to form some instance of salt. Eventually, IDS observes 
instances of HNO2 reacting with alkalis and induces the more abstract qualitative relation 
shown in the figure. The system also formulates the law that alkalis do not react with other 
alkalis, and arrives at an analogous law for acids in a similar manner. 

In addition to these qualitative laws, IDS discovers the law of combining weights for 
each reaction. This law specifies that, for a particular reaction, the mass of the reaction's 
product is always proportional to the mass of the reactants. Let us review how the system 

~ '~ ~ ,~ ~, , , :  ~ , ~ 
~ ' ~  .: ~ ,~ : ~ 

liquid(a), HCI(a) 
liquid(b), NaOH(b) 

mass(a) = 10 
mass(b) = 12 

omblne(a b)~i 1 :~ mma~SsS((dC))==80'~02 ~ ~  
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liquid(c), HCI(c) liquid(f), NaOH(f) 
liquid(d), NaOH(d) liquid(g), NaCl(g) 
liquid(e), Nael(e) mass(f) = 8.72 

~ mass(c) < 0 mass(g) = 16.50 
~ mass(d) < 0 
~ mass(e) > 0 

Figure 3. A typical history from the domain of acid-aikaii reactions. 
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,, ~,ii, ~ liquid(t) liquid(r) {11~ "~ 
substance(r) substance(u) 

liquid(s) liquid(t) 
substance(s) substance(u) 

6 I 2 7 

liquid(a), acid(a) liquid(c), acid(c) liquid(f), alkali(f) 
liquid(b), alkali(b) liquid(d), alkali(d) liquid(g), salt(g) 

liquid(e), salt(e) 
5 & mass(c) < 0 

~ #, mass(d) < 0 
A mass(e) > 0 .:~: : 

combine(l, m) 

4 /  \ 9  
liquid(l), alkali(l) liquid(n), alkali(n) 

liquid(m), alkali(m) liquid(o), ~lkali(o) 

combine(h, i) 

liquid(h),acid(h) liquid0),acid0) 
liquid(i),acid(i) liquid(k),acid(k) 

Figure 4. The top levels of the state hierarchy for the reactive behavior of acids and alkalis. 

discovers the law of combining weights for the reaction HC1 + NaOH ~ NaC1 (+ H20). 
At first, IDS observes histories of reactions involving 4.0 grams of liquid ttC1 and various 
amounts of liquid NaOH, where HC1 is the limiting agent. The system discovers that the 
reaction produces 6.60 grams of NaC1 regardless of the initial amount of the NaOH. Fur- 
thermore, the numeric discovery component finds a linear relationship between the final 
and initial mass of the NaOH. The slope of this relation is 1.0 and the intercept is 4.51. 
This is equivalent to stating that if 6.60 grams of NaC1 are produced, 4.51 grams of NaOH 
are consumed regardless of the initial mass of NaOH. The system stores both numeric 
laws on a quantity relation link between the two states. 

Next, IDS processes histories of this experiment in which the initial amount of HC1 is 
held constant at 5.00 grams. When the system incorporates these states into the taxonomy, 
it finds that these reactions produce 8.25 grams of NaC1 regardless of the initial amount 
of NaOH. Furthermore, IDS observes a linear relationship between the initial and final 
mass of the NaOH, as before. Although the slope of this relation is again 1.0, the intercept 
this time is 5.64, stating that 5.64 grams of NaOH are consumed in the reaction. When 
the system encounters reactions in which the initial amount of HC1 is 6.00 grams, it finds 
that 9.90 grams of NaC1 are produced and that 6.77 grams of NaOH are consumed. Thus, 
the slope of the linear relation between the final and initial amounts of NaOH is always 
1.0, whereas the intercept varies. The numeric discovery component infers that this inter- 
cept is 1.77 times the mass of NaC1. Because the intercept is equivalent to the amount of 



36 B. NORDHAUSEN AND R LANGLEY .,,~. 

mass(g) = 1.65 mass(a) 
mass(g) = 1.77 [mass(b) - mass(f)] 

j° 
/ 

comb~nes(a,b)~ ~ 

liquid(a), HCI(a) liquid(c), HCI(c) 
liquid(b), NaOH(b) liquid(d), NaOH(d) 

liquid(e), NaCl(e) 
A mass(c) < 0 
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Figure 5. Laws summarizing the reactive behavior of HC1 and NaOH. 

NaOH consumed, we see this relation corresponds to the law that the mass of NaC1 in 
the HC1 + NaOH ~ NaCI reaction is 1.77 times the consumed mass of NaOH. In addi- 
tion, IDS finds that the mass of the produced NaC1 is always 1.65 times the mass of the HC1. 

Figure 5 shows the abstract states from the state hierarchy that summarize the class of 
HC1 and NaOH reactions, including the two associated laws of combining weights. Since 
they refer to a specific pair of substances, these laws occur at the middle levels of the hier- 
archy, below the more abstract qualitative relation about acids and alkalis. This points out 
another advantage of the integrated approach we have taken. 

Claim 7. The IDS framework can augment qualitative laws with numeric ones when they 
are present, but it can f ind useful qualitative relations even in domains or at levels where 
it can f ind  no numeric laws. 

In this case, the system can only find quantitative regularities with respect to specific pairs 
of substances; the intrinsic properties it postulates do not support numeric relations of higher 
generality. However, this does not keep it from formulating more general qualitative laws 
that hold for the entire classes of acids and alkalis. Upon encountering a reaction between 
a new pair of substances from these classes, IDS would still be able to predict the qualitative 
result. The system takes a similar fallback position with respect to taxonomies, which it 
can form (and use for prediction) even in domains where qualitative laws are absent. 

This capability contrasts sharply with earlier work on empirical discovery. For instance, 
Langley et al?s (1987) GLAtrBER was able to formulate qualitative laws about reactions be- 
tween acids and alkalis, but it was unable to induce numeric relations to augment these 
laws. Similarly, Langley et al?s (1983) BACON could find numeric laws of combining weights, 
but it could not even represent failed reactions, much less form qualitative laws describing 
them. Falkenhainer and Michalski's (1986) ABACUS fares somewhat better on this dimension, 
in that it established qualitative conditions on its numeric laws, but it could not summarize 
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the qualitative changes that occur over time in many physical situations. ~ytkow et al.'s 
(1990) FAI-IRENI~Ir comes closer to IDS with its ability to identify quantitative 'boundary 
laws' on numeric relations, but the flavor of these laws differs from those produced by 
the current system. 

4.2. Archimedes' principle of displacement 

After the famous bathtub incident, Archimedes formulated his principle of displacement: 
the volume of  a body immersed in fluid equals the volume of the liquid it displaces. Using 
this principle, the scientist was able to measure the volume of irregularly shaped objects, 
and thus determine their density and composition. This volumetric attribute can be viewed 
as an intrinsic property for which different irregular objects have different values. Once 
these values have been determined, they can be used to distinguish objects from one another. 

Figure 6 shows a representative history of the experiment that IDS observes in rediscover- 
ing this principle. An irregularly shaped object is placed into a container filled with water, 
and the weight of the object and the level of water in the container are measured. The 
figure represents this event as a three-state history. Different experimental conditions vary 
the water levels and the type of substance. The object hierarchy used in this domain includes 
knowledge about each object 's composition (e.g., o l  is $ i l  v e t ,  02 is go ld) .  

When the system processes the first state of  the history in Figure 6, it infers two intrinsic 
properties, i p l0  and i 011, based on the weight and the fluid level, respectively. As we 
discussed in Section 3.5, IDS establishes a relation between the variables in the state and 
the nodes of the object hierarchy. Because variable a is described as o 1, the system assigns 
55.0 as the value of i 0 lO for o 1, and it asserts 10.0 as the value of i p 11 for the container 
c 1 in the same way. When the IDS processes the third state of  this history, it encounters 
a new value for the water level. The system checks to determine whether the stored values 
of the intrinsic properties i ~ 10 and i ~ 11 are consistent with the observed values. The 
weight of o 1 remains constant, so IDS does not retract i010 as an intrinsic property for 
o 1 or c 1. However, the new value for the water level is not consistent with the retrieved 
value of i 01 1 for c 1, so the system retracts that intrinsic property for c 1. 

Under the next experimental conditions the initial water level is varied, and the numeric 
discovery component finds that the final and initial water levels are linearly related. The 
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Figure 6. A history of submerging an object in a container containing water. 
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slope, s, of this relation is 1.0, and the intercept, i, is 5.24. That is, whenever object ol  is 
immersed in the container, the water level increases by 5.24. The intercept becomes a new 
numeric attribute,9 and IDS infers a new intrinsic property, called i 026, associated with 
i. The system stores values of 5.24 for this intrinsic property both with ol  and with c 1. 

Next, IDS observes histories in which a different silver object (02) is submerged in water. 
The system finds that the water level again increases by a constant amount, but that the 
value of the intercept i is now 0.95. IDS has already associated the intrinsic property i 026 
with i, so it infers 0.95 as the value of i 026 for o2. However, the value of 0.95 is not 
consistent with the stored value of i026 for the container c l ,  so the system concludes 
that i p26 is not an intrinsic property of c l .  When IDS observes experiments in which 
silver object o3 is submerged, it determines a value of i026 for 03. 

Up to this point, all objects encountered have been composed of silver, so the top-level 
nodes in the state hierarchy describe the object immersed in the water as a silver object. 
The numeric discovery component determines that the weight of the object is directly pro- 
portional to the value of i026 for the object (i.e., its volume) with a coefficient of 10.5. 
The system infers a new intrinsic property ( i p39) associated with this coefficient, and stores 
10.5 as a value of i 039 for both s i Ive r and the container c 1. When the system encounters 
histories in which the immersed objects are made out of gold and lead, it observes new 
values for this intrinsic property. As a result, it retracts i 039 as an intrinsic property of 
e l ,  but infers values of 19.3 and 11.3 for gold and lead, respectively. 

This example suggests another conclusion that we can draw about the advantages of inte- 
gration in machine discovery. 

Claim 8. Augmenting numeric discovery with an object hierarchy simplifies the generalization 
of intrinsic properties. 

In this case, IDS finds that the values of one intrinsic property (volume) are associated 
with specific objects, whereas those of another (density) are associated with entire classes 
of objects. The storage of intrinsic values on nodes in the object hierarchy provides a suc- 
cinct representation of numeric laws. Moreover, it links the propagation of intrinsic values 
to the creation of abstract states, which also takes advantage of background knowledge in 
the object hierarchy. 

The importance of this insight is best seen through a comparison with the notion of in- 
trinsic properties used in BACON. This earlier system associated intrinsic properties with 
specific variables or attributes, and associated intrinsic values with specific values of those 
attributes. BACON had no representation of object classes, and although it was able to discover 
Archimedes' principle of displacement, it could only do so when given carefully crafted 
data that included two nominal attributes, one for the name of an object (o 1, 02, o3), and 
another for its composition (silver, gold, lead). BACON (and to some extent ABACUS) was 
able to represent conditionality on intrinsic properties, but only in this awkward fashion. 

4.3. Laws of heating and melting 

Now let us consider the role of integration in rediscovering the law of specific heat. It 
was known by the 16th century that when one heats an object, say by placing it over a 
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flame, its temperature will increase. However, it was not until the 1760s that Joseph Black 
accurately described the amount of change by introducing the notion of s p e c i f i c  h e a t ,  another 
example of an intrinsic property. 

Specifically, Black found that the amount of energy required to increase a substance's 
temperature depends on the amount of the increase, the mass of the substance, and the 
type of the substance. In general, equal masses of different substances require different 
amounts of heat to achieve an equal temperature increase. Specific heat is the property 
associated with a substance that determines the amount of energy required to produce a 
unit increase in temperature for a unit of mass. One can infer the value of specific heat 
for different substances by using a burner at a constant setting to heat different liquids that 
start at the same temperature. One then measures how long it takes for the liquids to reach 
various temperatures. Because the energy output of the burner is constant, equal amounts 
of different substances need different lengths of time to reach the same temperature. 

The IDS system can rediscover this form of Black's law, provided we augment its represen- 
tation of histories in a simple manner. Recall that the basic representation divides events 
into states, each of which lasts for an interval of time. The augmentation involves adding 
the duration of each state as a transition condition on the link between two states. That 
is, the time spent in a state becomes one of the quantities in the transition condition be- 
tween that state and its successor, because one can use this variable to predict when the 
state will end. 

Figure 7 shows a typical history representing this experiment as given to IDS. A burner 
at a setting of one Kilojoule per second heats a sample of a liquid substance until it reaches 
a predetermined temperature. The agent turns the burner off at this point~ measuring the 
time it took for the liquid to reach this temperature. Thus, the transition condition between 
the second and the third state in each history consists of the action by the external agent 
(turning off the burner), the final temperature of the object, and the duration of the second 
state. This experiment varies the type of the sample, along with its mass and final tempera- 
ture. The initial temperature is held constant at 20 ° Celsius. 

In the first few histories given to the IDS, the substance of the sample is water. The 
mass of the liquid is held constant at 600 grams, but the final temperature is varied. From 
the resulting data, the system finds a linear relationship between the temperature and the 
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Figure 7. A history for heating a sample of water. 
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time required to heat the liquid to this temperature. For 600 grams of water, the slope, 
s, is 0.4 and the intercept, i, is 20. 

When the mass of the sample is varied, IDS finds that the intercept, i, of the linear 
relation between the final temperature and time remains constant at 20. However, the slope, 
s, of this linear relation changes as the mass of the sample varies. When the mass is 900 
grams, s has a value of 0.27, and when the mass is 500 grams, s is 0.48. Based on these 
values, IDS decides that s = 239.24 x 1~mass(b); Figure 8 shows the part of the state 
hierarchy relevant to this discovery, including the quantitative law. Restating these relations, 
one can deduce that 

1 
t i m e  - 239 .2~  x m a s s ( b )  X ( t e m p ( b )  -- 20) .  

In this experiment, the burner has an output of one Kilojoule per second, so one second 
is equivalent to one Kilojoule of energy. Thus, the value of 239.24 is the reciprocal of the 
specific heat of water expressed in Kilojoules per gram degree Celsius. When IDS observes 
experimental conditions in which the sample is HC1 and HNO3, the system finds values 
of 143.47 and 65.75, respectively. As a result, it infers this coefficient as an intrinsic prop- 
erty and stores values for H20, HC1, and HNO 3 in the object hierarchy. 

The system can also discover regularities from a more elaborate experiment that starts 
by heating a solid object until the solid begins to melt and a liquid appears. Heating con- 
tinues until the solid disappears and the temperature of the liquid starts to increase. When 

water(b) 
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Figure 8. Partial state taxonomy for the discovery of specific heat for water. 
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the liquid reaches a certain temperature, a gas appears and the evaporation process begins. 
In the f'mal state, the temperature of the gas increases. When IDS processes histories repre- 
senting this experiment, it finds that six intrinsic properties are required to summarize the 
differences among classes of substances: 

• the melting point, or the temperature at which a substance begins changing from solid 
to liquid; 

• the boiling point, or the temperature at which a substance begins changing from liquid 
to gas; 

• the specific heat of the liquid, which controls the rate of temperature rise for the liquid 
form; 

• the specific heat of the gas, which controls the rate of temperature increase for the gaseous 
form; 

• the heat of fusion, which determines the length of time taken for a substance to start 
melting; and 

• the heat of vaporization, which determines the length of time taken for a substance to 
start boiling. 

The first two properties revolve around the constant temperatures that IDS observes at par- 
ticular state transitions. The last four properties emerge from the direct representation of 
state duration. 

This example highlights another point about the integration of qualitative and quantitative 
discovery mechanisms. 

Claim 9. The explicit representation of temporal structure supports the discovery of an 
important class of intrinsic properties. 

To be specific, IDS' assumption that observations are represented as a sequence of quali- 
tative states lets it represent and discover a class of intrinsic properties that would otherwise 
be difficult to handle. Again, this is best seen in comparison with one of the system's prede- 
cessors. Langley et al.'s BACON was able to discover a simple form of Black's law, including 
the property of specific heat. However, this required a carefully crafted representation of 
the input variables. 

4.4. Generality of the approach 

One important measure of success for any discovery system is generality, and the examples 
we have presented give some indication of the breadth of IDS's capabilities. These included 
the laws of fluid flow, the reaction of acids and alkalis, the principle of displacement, and 
the laws of heating and melting. In addition, the system has rediscovered a 'variety of addi- 
tional empirical regularities: 

• chemical equilibrium, in which N204 dissociates into NO2, which then transforms back 
into the original substance at a rate that leads to equilibrium. The final concentration 
of N204 is proportional to the square of the NO 2 concentration. 
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• conservation of  momentum, in which two moving objects collide and thus change their 
velocities. The unobserved mass of each object controls the exact constants of the relation. 

• Black's heat law, in which the temperatures of two touching objects approach each other 
until they reach the same temperature. (This version involves more objects than the one 
in Section 4.3.) The unobserved specific heat determines the constant of this relation. 

• rates of  chemical reactions, including zero-order and second-order reactions, in which 
the rates of reaction are functions of the chemical concentration. 

The diversity of these empirical laws, in terms of their taxonomic structure, their qualitative 
form, their numeric relations, and their intrinsic properties, demonstrates the generality 
of the IDS control structure and the representation on which it is based. ~° 

Although earlier systems could discover many aspects of these regularities, none ap- 
proaches the full range of empirical relations that IDS can induce from observations. For 
instance, BACON can generally find equivalent numeric relations and intrinsic properties, 
but lacks the taxonomic and qualitative knowledge found by the newer algorithm. 
FAHRENHEIT, and to a lesser extent ABACUS, discover numeric laws and place certain types 
of conditions on them, but lack the ability to handle temporal and taxonomic structures. 
GLAUBER formulates qualitative laws and forms simple taxonomies, but lacks explicit 
knowledge of time and ignores numeric relations entirely. The IDS representation and control 
structure, combined with its specific component algorithms, gives the system a breadth 
of coverage that is lacking in earlier work on empirical discovery. 

5. Limitations of the approach 

In previous sections we described IDS and presented examples of its successful operation. 
However, it is also important to consider limits as well as successes. In this section, we 
report some drawbacks of our approach to integrating the discovery process and propose 
some ways to improve it. The first issue involves problems with the component algorithms 
used in the current implementation; the remainder concern the general framework and its 
associated control structure. 

5.L The effects o f  instance order 

Historical examples lend evidence for the relevance and generality of discovery methods, 
but in the runs described earlier we assumed that data resulted from systematic experimen- 
tation and that the system had appropriate background knowledge. To study IDS' dependence 
on these assumptions, we ran a number of experiments using artificial domains in which 
we measured the predictive ability of the taxonomies and laws induced by IDS on an indepen- 
dent test set. As Nordhausen (1989) describes in detail, we found that, when given data 
in which the irrelevant attributes were varied systematically, the system rapidly converged 
on perfect predictive accuracy. However, when given randomly ordered data, IDS' learning 
rate was slower and its asymptotic accuracy was lower. Predictive accuracy increased when 
the data were presented more than once, but it was still far from perfect. Moreover, the 
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system fared even worse when observations were presented in 'experimental' mode but the 
relevant attributes were varied first. 

Additional experiments with multi-state histories showed similar mixed results. In brief, 
when IDS received the data in a 'good' experimental order, it induced qualitative laws that 
let it perfectly predict test states from their immediate predecessors, and learning rate de- 
creased only slighlty as the number of qualitative changes in observed states increased. 
However, given the same training histories in random order, IDS' predictive accuracy was 
again considerably lower than in the systematic case, and behavior was strongly affected 
by complexity. Similar results occurred when we varied the number of states in observed 
histories and the performance task involved predicting the final state from the initial one. 
These effects result from IDS' complete reliance on a well-formed taxonomy in generating 
qualitative laws. 

Clearly, such behavior is undesirable in a machine discovery system, but we believe it 
constitutes a limitation of the implementation rather than the framework itself. In future 
work, we plan to replace the current clustering algorithm with one that includes an operator 
for splitting abstract states, which Gennari et al. (1989) have shown reduces order effects 
and which should let IDS recover from overgeneralizations. We also plan to incorporate 
a more principled evaluation function, such as Gluck and Corter's (1985) category utility, 
which has a theoretical grounding in information theory and which has been successfully 
used in Fisher's (1987) COBWEa. 

5.2. From laws to taxonomies 

One characteristic of the current framework is that law discovery is embedded within the 
process of taxonomy formation. However, the history of science suggests that laws can alter 
the classification of new observations. For instance, once chemists had determined that 
acids reacted with alkalis to form salts, they began to classify new substances as acids based 
on their reactive behavior rather than their taste. 

An extended IDS would be able to mimic such behavior if the laws obeyed by a substance 
or state S were added as descriptions of S, and if it were allowed to relocate S in its tax- 
onomy after it had already been classified. Thus, a state would originally be sorted through 
the taxonomy based on its isolated description, but it might be moved after obtaining infor- 
mation about its successor state. To retain the incremental flavor of the framework, it is 
important that such reorganizations remain local and inexpensive. 

5.3. Designing experiments 

Another important limitation of the IDS framework is that it does not include a component 
for experimentation, which plays a central role in many sciences. Fortunately, the current 
knowledge structures provide support for experimental design in a natural way, and we 
plan to incorporate ideas from recent work in this area. Our thoughts on qualitative experi- 
mentation have been influenced by Rajamoney (1990) and Karp (1990), but even more by 
Kulkarni and Simon's (1990) KEKADA, which includes a heuristic for focusing attention 
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on surprising phenomena. In the IDS framework, one can instantiate this notion as an un- 
predicted qualitative state or a mispredicted numeric attribute. K~:AOA attempts to identify 
the scope of the phenomenon, generating different initial conditions using a domain theory 
of substances much like the one in IDS. Moreover, some of Kulkarni and Simon's heuristics, 
such as dropping factors that have no influence, emerge from IDS' methods for taxonomy 
and law formation. 

Of course, experimentation with numeric attributes is also important. Langley et al.'s 
BAco~r incorporated a simple scheme for varying one attribute at a time, but it required 
the user to specify the values it should consider. ~ytkow et al.'s (1990) FAHRENHEIT employs 
a more sophisticated strategy, which requires less user guidance and which it uses to iden- 
tify the conditions on numeric laws it has discovered. This approach should interface well 
with IDS' notion of numeric laws on transition conditions. 

5.4. Composability and explanations 

Yet another extension would attempt to move beyond empirical discovery to the formation 
of theories and explanations, by drawing on the successor links in IDS' qualitative laws. 
For instance, suppose one observes two contiguous qualitative states that are successfully 
classified, but that have never been observed in immediate succession. Further suppose 
that one has seen cases in which these states are linked through other states. In such a 
situation, one might infer that these intermediate states actually occurred in the current 
situation, but for some reason were not observed. Such an inference consitutes an impor- 
tant type of explanation, which would keep the system from adding an inappropriate suc- 
cessor link, as well as let it infer unobserved processes (the intermediate states) and unob- 
served objects (components of those states). 

However, note that even the most general of IDS' laws refer to a specific number of ob- 
jects. Once it has induced the laws of fluid flow for two containers, the system cannot adapt 
its knowledge to explain the behavior of three or four containers. In contrast, most actual 
scientific laws (like most processes in qualitative physics) are composable, in that they can be 
applied repeatedly to handle arbitrarily complex situations. One response would be to pass 
the induced between-state laws to an algorithm like ~ytkow's (1990) GALIL~.O, which decom- 
poses such regularities into modular components that can be recomposed in many ways. 

6. Contributions of the research 

At the outset of the article we identified three important components of empirical discovery-- 
the formation of taxonomies, the generation of qualitative laws, and the detection of numeric 
relations. We argued that, although a divide-and-conquer research strategy had led to pro- 
gress in machine discovery, it was essential to develop broader theories that integrated these 
different facets of science. We also posed three questions about the representation, control 
structure, and advantages of such an integrated framework. 

In response to this challenge, we developed such a framework and implemented it in 
a system called IDS. In describing the framework and the system, we proposed some tenta- 
tive answers to our questions. In summary, these were: 
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• Qualitative histories augmented with numeric information provide a useful representa- 
tion of observations that occur over time. 

• Abstract qualitative states, organized in a taxonomic hierarchy and connected by abstract 
transitions, constitute an important class of qualitative laws and provide a physical con- 
text for numeric relations. 

• An appropriate control structure embeds qualitative discovery within taxonomy forma- 
tion, and numeric discovery within both of these processes. 

• This embedded control structure provides significant constraints on the search for quali- 
tative and numeric laws, and supports discovery of some regularities even when others 
are absent. 

• The framework supports the discovery of important classes of intrinsic properties and 
laws, including some that directly involve time. 

We gave evidence for these claims in terms of example problems from the history of science, 
including the reactive behavior of acids and alkalis, Archimedes' displacement principle, 
and Black's law of specific heat. Although the content of the resulting laws was similar 
to that found by earlier discovery systems, we argued that IDS showed broader coverage 
and less need for hand-crafted representations than its predecessors. The current framework 
explicitly represents and discovers the qualitative structure and conditions on empirical 
laws, and it represents these regularities at different levels of abstraction. 

Our systematic experiments with IDS showed that the system can use the taxonomies 
and laws it induces to make predictions about unseen attributes and states, and that its predic- 
tive ability improves with experience in a domain. However, we also found that the par- 
ticular algorithm used for taxonomy formation was brittle and, since the results of this 
process constrain the behavior of IDS' other components, its improvement should receive 
high priority. We should also test the system on more complex physical domains (such as 
ones involving oscillation), and determine its ability to organize experiences .of many differ- 
ent situations in memory. Nevertheless, we believe the framework itself has many advan- 
tages over ones that treat the components of discovery separately, and we think IDS has 
taken us one step closer to a unified theory. We hope our attempt will encourage other 
researchers to design and implement integrated theories of discovery, and that together we 
can progress toward a fuller understanding of the complex process known as science. 

Acknowledgements 

The research reported in this article was supported by a contract from the Computer Science 
Division, Office of Naval Research, while the authors were at the University. of California, 
Irvine. We would like to thank members and alumni of the UCI machine learning group-- 
especially Randy Jones, Don Rose, Doug Fisher, and John Gennari--for useful discussions 
that led to many of the ideas in this paper. We also thank Brian Falkenhainer, Jan ~ytkow, 
Tom Dietterich, and Jeff Shrager for comments on an earlier draft. A preliminary version 
of this article appeared as a chapter in J. Shrager & P. Langley (Eds.), Computational Models 
of Scientific Discovery and Theory Formation. 



46 B. NORDHAUSEN AND E LANGLEY 

Notes 

1. Note that the objects are labeled by pattern-match variables that differ from state to state. IDS does not store 
variable bindings across states, and thus has no explicit notion of object constancy. As Nordhausen (1989) 
describes more fully, this would limit the system's ability to represent useful abstractions. 

2. We will not argue that this approach can represent all forms of qualitative laws, but we do feel that relations 
among abstract, temporally ordered qualitative states constitute an important subset of such laws. Note that 
our use of 'qualitative' here is broader than in qualitative physics. 

3. For an optimal solution, the system would have to consider merging all pairs of children. However, informal 
experiments suggest that considering all possible pairs seldom improves the resulting taxonomy. 

4. This scheme requires that IDS know the successors of P 's  children; this is the reason the system returns 
to P after it has incorporated a later state into ~ e  taxonomy. 

5. Within-state and between-state laws incorporate only those attributes having constant values within particular 
states, whereas transition laws focus on attributes that change in a constant direction with particular states. 
The histories input to IDS include information about which quantities are constant within each state and 
which are changing in a constant direction, but one could attempt to identify these automatically. 

6. This search process would be expensive in complex domains, but the worst-case cost should increase only 
as the square of the length of the histories. 

7. In some cases, the measurement scale is determined by the particular instrument being used, as when one 
measures temperature with a thermometer. In other cases, one can only determine relative values of an in- 
trinsic property, as when measuring mass with a balance scale. In this case, IDS assigns an arbitrary value 
to one object, thus inventing a measurement scale. 

8. We have omitted the second product (liquid H20) for the sake of simplicity. A more realistic model would 
include an initial state in which one adds reactants to the water and final states in which the water evaporates 
before one measures the product. 

9. The slope, s, also becomes a new numeric attribute. However, its value is always one, so it does not contain 
any helpful information. Hence, we will ignore it in our discussion. 

10. We should note that all runs described in this section used idealized data; this contrasts with some recent 
work in machine discovery (e.g., ~ytkow et al., 1990), which operates on data from actual experiments. 
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