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Abstract. We apply the Minimal Length Encoding Principle to formalize inference about the evolution of 
macromolecular sequences. The Principle is shown to imply a combination of Weighted Parsimony and Com- 
patibility methods that have long been used by biologists because of their good practical performance. The background 
assumptions are expressed as an encoding scheme for the observed data and as heuristic ru][es for selection of 
diagnostic positions in the sequences. The Principle was applied to discover new subfamilies of Alu sequences, 
the most numerous family of repetitive DNA sequences in the human genome. 
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1. Introduction 

In medieval times scholastic philosophers argued that Nature always follows the simplest 
rnles, and that scientists should consequently try to discover them. William of Occam, 
a fourteenth-century philosopher, opposed this metaphysical thesis about the simplicity of 
Nature as unnecessary. Instead of assuming that Nature is governed by simple laws, he 
proposed that preference for simpler hypotheses should be part of the scientific method, 
regardless of whether or not Nature indeed follows simple rules (Losee, 1980). This 
methodological principle is often referred to as "Occam's Razor Principle," the "Principle 
of Parsimony," or, most recently, the "Minimal Length Encoding Principle." 

The modern algorithmic formulation of the Minimal Length Encoding Principle has almost 
concurrently been proposed by Solomonoff (1964), Kolmogorov (1968), and Chaitin (1966). 
Since the review of these most general formulations is beyond the scope of the present 
article, we refer the interested reader to the recent reviews by Vitanyi and Li (1989) and 
by Cover and Thomas (1991). Sober (1988) gives an extensive discussion of the Parsimony 
Principle in the context of evolutionary reconstructions. In the following we only illustrate 
the Principle by a historical example. 

Consider the geocentric model of the solar system of Ptolemy versus Kepler's improved 
version of the Copernican heliocentric model (Kuhn, 1957). One way to explain why the 
heliocentric model is preferred is to apply the Minimal Length Encoding Principle. Toward 
that goal, assume that the model that reproduces the motions of the planets and the sun 
most exactly and that uses fewest numbers of parameters is preferred. For each planet, 
the geocentric model requires the description of a deferent (the main orbit) around the 
earth, plus the descriptions of a set of epicycles (minor orbits) to account for the nonunifor- 
mities in the apparent motion of planets around the earth. In contrast, the heliocentric model 
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of planetary motions based on the heliocentric model better fits the observed astronomical 
measurements. Thus, the heliocentric model reproduces the planetary motions more ex- 
actly and in fewer parameters, and thus it is preferred by the Minimal Length Encoding 
Principle to the geocentric model. 

The current accumulation of information about the genetic DNA sequences of different 
organisms exceeds the volume of astronomical measurements that preceded modern 
astronomy and physics. Also, the living world appears to be much more "information rich" 
in the sense that it may not be possible to capture the phenomena of life in a few laws 
as simple as, say, the laws of mechanics. In order to discover patterns in the overwhelming 
amounts of genetic data, biologists are turning more and more toward formal methods of 
inference. 

The long-term motivation behind this work is to show that the process of discovery in 
biology that is based on macromolecular genetic sequences can be viewed as Minimal Length 
Encoding of observations. In this sense, our work falls into the same category with other 
attempts at the application of Minimal Length Encoding in molecular evolution (Cheeseman 
& Kanefsky, 1990; Allison & Yee, 1990) and molecular biology (Babcock, Olson, & 
Pedrault, 1990; Jiang & Li, 1991; Konagaya & Yamanishi, 1991; Reichert, Cohen, & Wong, 
1973; Jimenez-Montano, 1984). 

In the present article we study the discovery of new subfamilies of so-called Alu sequences, 
the most numerous family of short interspersed repetitive DNA fragments that account 
for about 5%-10% of the human genome (Hwu, Roberts, Davidson, & Britten, 1986). 
The very presence of distinct subfamilies of Alu sequences, even though currently accepted 
(Willard, Nguyen, & Schmid, 1987; Britten, Baron, Stout, & Davidson, 1988; Quentin, 
1988; Jurka & Smith, 1988; Jurka & Misolavljevit, 1991), has until recently been disputed 
(Bains, 1986). Alu sequences are about 300 letters long (a typical Alu sequence is given 
in figure 2) and are present in several hundred thousand copies in the genome. Several 
hundred Alu sequences can be found in the current editions of DNA sequence databases. 
The function of Alu sequences is still unknown, and the understanding of their evolution 
may be the first step towards discovering it. 

The current hypothesis is that most Alu sequences arepseudo-genes that have originated 
from one or more master genes (Jurka & Smith, 1988). An Alu pseudogene is a replica 
of an Alu master gene that is created through transcription of the DNA sequence of the 
master gene into an RNA sequence, subsequent reverse transcripton of the RNA sequence 
into a DNA sequence, and final insertion of the DNA sequence back into the genome. 
This three-stage process of transcription, reverse transcription, and insertion is also refer- 
red to as retroposition. According to the current hypothesis, the Alu pseudogen~s that have 
originated from the same master gene during a short period of evolutionary time or from 
a subset of very similar master genes should be distinguishable from the rest of Alu 
pseudogenes by a set of common features. 

A detailed discussion of the evolution of Alu sequences can be found in the companion 
paper by Jurka and Milosavljevi6 (1991). In the present article, the emphasis is on the method 
of inference that was used to reconstruct the evolution of Alu sequences, a point not em- 
phasized in the companion paper because of its biological audience. The biological discus- 
sions will be limited to what is necessary to understand the process of inference. 
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The key to the process of evolutionary reconstruction is the notion of derived homology 
(Ridley, 1986). For the purpose of a simplified example, consider the following eight 
hypothetical sequences of length 5 in the four-letter alphabet of DNA and ask the question 
about their possible common ancestor: 

1GAGCC 
2 AAGCT 
3 GGACC 
4 TGGCT 
5 ACCCT 
6 GCGCG 
7 GTGCC 
8 ATGGT 

The sequences are most farnlliar in the third and fourth positions (letters G and C, respec- 
tively). We may hypothesize that this similarity is due to their common ancestry. The 
similarity that is due to the inheritance of features from a hypothetical common ancestor 
is called homology. 

By taking the majority letter in each positon (in case of a tie, the alphabetically first 
letter is taken), we may compute the consensus sequence GAGCT representing the 
hypothesized common ancestor. A total of 17 mutations can explain the differencs from 
the ancestor. 

For the purpose of a simplified example, let us assume for a moment that the encoding 
length of the sample equals the number of letters to specify the ancestor plus the number 
of letters to specify the mutations. (This is an introductory oversimplification because we 
ignore for a moment the encoding of the positions that contain mutations and some other 
parts of an exact encoding). Under this assumption, the total encoding length would be 
5 + 17 = 22. 

But upon closer inspection, one may observe that the sequences 1, 3, 6, and 7 almost 
always have letters G and C in the first and the last positions, respectively, while the se- 
quences 2, 4, 5, and 8 almost always have letters A and T. To take advantage of this obser- 
vation, we may postulate that the sequences from the first subfamily had an ancestor GAGCC, 
while the sequences from the second subfamily had an ancestor AAGCT. 

The total number of differences of the sequences from their respective ~mcestors is now 
only 11. By adding the five letters to describe one of the ancestors and two letters to describe 
the differences of one ancestor from the other, we obtain a total of 18 letters to encode the 
whole sample. Note that this is four letters less than the 22 letters that were required initially. 

A subset of sequences forms a monophyletic group relative to the complete set of se- 
quences if all the members of the subset share a common ancestor that is not an ancestor 
of any other sequence from the complete set. For example, let us assume an evolutionary 
tree where the first ancestor (GAGCC) is at the root, and where its direct offsprings are 
the sequences from the first subfamily plus the second ancestor (AAGCT), and where the 
sequences from the second subfamily are direct offsprings of the second ancestor. In this 
case, the first subfamily would not be a monophyletic group while the second subfamily 
would. 
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The assumed tree implies that the first and last positions in the sequences from the 
monophyletic group contain letters that are changed in the lineage from the first to the 
second ancestor. Such positions are called diagnostic because they can be used to identify 
members of the monophyletic group. In general, the features that are changed in the lineage 
leading to an ancestor of a monophyletic group are called derived homologies, and they 
are the key to the process of evolutionary reconstruction. 

An important problem is to decide whether a given family of sequences contains within 
it a monophyletic subfamily. To decide this, according to the Minimal Length Encoding 
Principle, we should compare the encoding length of the observed sequences with and 
without postulating a monophyletic subfamily. Toward that goal, in the next section we 
first propose a realistic encoding scheme. 

2. The encoding scheme 

In order to present the encoding scheme, we first introduce some notation. Let a sample 
S consist of m sequences ($1 . . . . .  Si . . . . .  Sm). Each sequence S,. consists of n letters. 
The letters come from a finite alphabet F of size II~l - g. In the case of DNA sequences, 
the alphabet is {A, G, C, T}, representing the four nucleotides that form DNA. By 
$(m, n, I ' )  we denote the set of all samples consisting of m sequences of length n over 
alphabet P. 

Due to evolutionary insertions and deletions of letters in some of the real DNA sequences, 
if we simply write the sequences underneath each other, the corresponding parts of dif- 
ferent sequences will not appear in the same columns. To correct this, the corresponding 
parts are aligned by inserting the special gap-character " - ". While the process of align- 
ment is part of an evolutionary reconstruction and should be incorporated into the inference 
program (Hein, 1990; Cheeseman & Kanefsky, 1990), in the present article we assume 
that the sequences were aligned in advance. We should also note that gap-characters were 
not treated as yet another letter in the alphabet. The gap-characters were treated as 
"unknown" letters, and they are implicitly replaced by any of the other four letters so that 
the overall encoding length is minimized. 

To understand the discussion that follows, the knowledge of basic information theory 
is required (say, Cover & Thomas, 1991; Hamming, 1986). 

An evolutionary model M for sample S has three parts, defined as follows: 
Part (1): The encoding of the number ml, which tells how many sequences are outside 

the monophyletic subfamily. If  a single ancestor is postulated, then m~ = m. This number 
is encoded in lg m bits. (Here and in what follows, we assume that information can be 
encoded in fractions of bits, so we write lg m instead of Fig m 7 . In some cases, arithmetic 
coding (Bell, Cleary, & Witten, 1990)justifies this assumption in the limit, while in other 
cases we assume that the overall roundoff error is small.) 

Part (2): The encoding of the number d, which tells how many diagnostic positions there 
are and the encoding of the location of individual diagnostic positions. This requires 
(1 + d) * lg n bits in case of two ancestors and 0 bits in case of a single ancestor. 

Part (3): The encoding of the distribution of frequencies of  letters in each position. A 
single frequency can be encoded in lg m bits. All but one frequency need to be encoded 
(the last frequency can be inferred based on all the other frequencies), and thus (g - 1) 
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lg m bits are required per distribution. Since the d diagnostic positions re,quire separate 
encodings for each subfamily, a total of (n + d)(g - 1) lg m bits is required. 

The encoding length of the model can now be obtained by summing up the lengths of 
the three parts above. 

S l g  m+ n(g - 1) lg m (single ancestor) 
I(M) 

l g m  + (1 + d) l g n +  (n + d)(g - 1) l g m  (two ancestors) 

In the example from the previous section, m = 8 and n = 5, so for a single-ancestor 
model, I(M) = lg 8 + 5(4 - 1) lg 8 = 46 bits, while for a two-ancestor model with d 
= 2 diagnostic positions, I(M) = lg 8 + (1 + 2) lg 5 + (5 + 2)(4 - 1) lg 8 ~ 73 bits. 

By 9E we denote a class of evolutionary models that either may postulate a single ancestor 
for all the sequences from the sample or may postulate two ancestors, one of them being 
the ancestor of a monophyletic subfamily. The model does not specify which of the two 
subfamilies is monophyletic. 

Note that each diagnostic position contributes to I(M) because its location and two distinct 
distributions (instead of one for a nondiagnostic position) need to be encoded. Thus, it 
pays off to postulate diagnostic positions only if the increase in encoding length due to 
the more complex model M is less than the simultaneous decrease in the encoding length 
of the sample S relative to that model, which we discuss next. 

The second part of the complete encoding is the encoding of the sequences from the 
sample S given a model M. To describe this encoding, we first introduce some additional 
notation. By m2 = m - ml we denote the number of sequences in the putative 
monophyletic subfamily, and by f (  = ml/m and f~ = m2/m we denote the corresponding 
frequencies. Let f['(x) denote the frequency of occurrence of the letter x ~. I" in the l - 
th position among all the sequences in the sample. Also, let f~'t(x) denote the frequency 
of occurrence of the letter x ~ I? in the 1 - th position among the members of the j - 
th subfamily ( j  = 1, 2). The encoding of the sample then consists of the following two parts. 

I. The encoding of the subfamily membership of the individual sequences. This requires 
m H '  bits, where H '  is the entropy function of the subfamily membership; in other words, 

H '  = - f ~  lg f~  - f~  lgf~.  
2. The encoding of the letters in all the positions. This requires mr. l not diagnostic H; t q- 

Zj=l,2mj Zldiagnostic Hj f  I bits, where Hi' = Exs r - f ;(x) lg f ['(x) and  Hjtfl =: Zx~ !, - f ~'t(x) 
lg f jfl(x). 

The encoding length of a sample relative to a model can now be obtained by summing 
up the lengths of the two parts above. 

I(S[M) = m H' + m ~ ]  Hi" + Z mj ~]  Hj','~ 
l not diagnostic j =  1,2 1 diagnostic 

(2) 
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Continuing our example, H '  = 0 for a single-ancestor model and H '  = 1 for the two- 
ancestor model. Also, H; '  .~ 1.4, H[I 1 = 0, H~',I .~ 0.81, H i' = 2, H~' -- 1.06, H~' = 0.54, 
H i' ~ 1.4, H~'I5 -~ 0.81, and H~',5 = 0. After some addition and multiplication we obtain 
that, for a single-ancestor model, I(S Ilv~ ~- 51 bits, while for a two-ancestor model I(S ]M) 
= 43 bits. 

The total encoding length of a sample S, as encoded by model M, is the sum 

I(S, M) = I(M) + I(SIM), (3) 

where I(M) and I(SIM) are given by (1) and (2), respectively. 
Given sample S from $(m, n, F) we consider the problem of discovering a model M 

from BE that minimizes I(S, M) given by (3). Continuing our example, the approximate 
encoding length for the single-ancestor model is 46 + 51 = 97 bits, while for the two- 
ancestor model, it is 73 + 43 = 116 bits. Thus, the single-ancestor model is preferred. 

Recall that in the introductory examle the two-ancestor model was preferred. This was 
due to an oversimplification in the measurement of the encoding length (e.g., the bits needed 
to encode the locations of  diagnostic differences were ignored). 

3. Computing the optimal model 

The discussion above leads to the following problem: for a given sample S, find the model 
Mop t that minimizes the encoding length I(S, M) given by (3). Even under certain simpli- 
fying assumptions, this problem remains NP-hard (Milosavljevi6, 1990). 

Since the globally optimal model may be hard to find, we propose a local search algorithm 
(figure 1). Local search trials are repeated t times. An individual trial starts from a random 
partition of rn sequences into two subfamilies. The putative diagnostic positions are then 
selected (as described below), and the encoding length is computed. The algorithm then 
cycles through the sequences searching for a sequence such that, i f  it is moved from one 

procedure MASC (sample S, number of trials t) 
Iopt ~- o~; 
repeat t times 

pick a random initial split of S into two subfamilies; 
choose the diagnostic positions; 
compute I(S, M) by (3); 
while there is a move that decreases I(S, M) 

perform the move; 
choose the diagnostic positions; 
compute I(S, M) by (3); 
if ( I(S, M) < lop, ) 

Mopt +- M; 
Io~t ~ I(S, Mop,); 

r e t u r n  mopt; 

Figure/. A high-level description of the procedure MASC (Multiple Aligned Sequence Classification). The number 
of local search trials is denoted by t, the current optimal model by Mopt, and the current minimal encoding length 
by Iop,. 
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subfamily into the other, the encoding length decreases. If  no such sequence exists, the 
model corresponds to a local minimum. The algorithm returns the model that corresponds 
to the best found local minimum. 

In order to present the heuristic rule for the selection of diagnostic positions for Alu 
sequences, we first introduce some additional notation. Let majority(j ,  l) denote the ma- 
jority letter in the l - th position among the sequences from the j - th subfamily (ties 
resolved by taking the alphabetically lowest letter). In the example from the introduction, 
for the two-ancestor model, majority(l, 1) = G, majority(2, 1) = A, majority(l, 2) = A, 
majority(2, 2) = A, and so on. 

A position l is selected to be diagnostic under the following conditions: 

diagnostic(R) if 
(majority(1,R)) 
((majority(1,R) 
(not CpG(R)) 

~ majority(2,R) and 
;~ ' - ') and (majority(2,R) ;~ ' - ')) and 

The first condition eliminates the positions that are poor candidates to be diagnostic: 
if the majority base is the same across the subfamilies, the introduction of the separate 
encoding schemes for individual subfamilies is not likely to pay off. The second condition 
eliminates the positions that do not contain sufficient information. The third condition is 
aimed at eliminating the positions called "CpG" (Watson, 1987) that are known to mutate 
rapidly: a "C", if followed by "G", will tend to be replaced by "T", while the "G"  will 
tend to be replaced by "A". The "CpG" positions may give rise to dependencies across 
positions that are not due to the evolution of Alu sequences, and they must be eliminated. 
The following definition of a "CpG" position was applied. 

CpG(R) if for both j =1 and j =2 the following is true 
((majority(j,R) = T) and (majorityfj,R+l) = G)) or 
((majorityfj,R) = C ) and (majority(j,R+l) = G or A)) or 
((majority(j,R) = A) and (majorityfj,R-1) = C)) or 
((majority(i,R) = G ) and (majority(j,R-1) = C or T)) 

4. The prediction test 

The predictive power of biological theories has been formulated by Ernst Mayr (1961): "I f  
I have identified a fruit fly as an individual of Drosophila melanogaster on the basis of 
bristle pattern and the proportions of face and eye, I can "predict" numerous structural 
and behavioral characteristics which I will find if I study other aspects of this individual. 
If  I find new species with the diagnostic key characters of the genus Drosophila, I can 
at once "predict" a whole set of biological properties." 

In the following, we directly apply this idea to test the predictive power of the newly 
discovered subfamilies of macromolecular sequences. We assume that two subfamilies, one 
monophyletic and the other consisting of the rest of the sequences, have been proposed 
based on an initial set of sequences and that their predictive power is tested on a new set. 
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Assume that the sequences from the test set are presented to us with one of their diagnostic 
positions blanked out. Let our goal be to guess the hidden letters. Our strategy would be 
to predict based on the knowledge of the subfamilies and the frequencies of letters in the 
diagnostic position across the subfamilies. A strategy that ignores subfamilies would pre- 
dict based only on the frequencies of letters in that position. In both strategies the frequen- 
cies of letters are obtained based on the initial set. 

Our strategy is to first identify the subfamily membership of the sequences from the 
test set based on all the letters except the hidden one and then to guess that the hidden 
letter is the majority letter for the guessed subfamily. If  the subfamilies were ignored, the 
best one could do is to always guess based on the majority for the whole family. To com- 
pare the two guessing strategies, assume the following letter counts in the hidden position 
of the new sequences: 

T C A G 
subfamily 1 14 0 1 0 
subfamily 2 4 2 36 0 
total 18 2 37 0 57 

Based on two subfamilies and assuming that the majority letters in the initial set and 
the test set are the same, we would have correctly guessed c = 14 + 36 = 50 out of 
rn = 57 letters. If the subfamilies were ignored the probability of success would be s = 
37/57. In that case, each of  our m = 57 guesses would be a Bernoulli trial with proba- 
bility of success s = 37/57. But, by binomial distribution, the probability of having suc- 
ceeded 50 or more times would be only p = 0.0001. Such a low probability strongly sup- 
ports the presence of the postulated subfamilies. 

Since the value o f p  is typically very small, we instead use w = - log p, where the 
logarithm is base 10; for example w = - log  0.0001 = 4. This quantity we use not only 
in the prediction test, but also in a post-hoc way to measure how diagnostic a position 
is for a particular split of a family into subfamilies. 

5. Discovering Alu subfamilies 

The Alu sequences were extracted from the GenBank DNA sequence database by applying 
the same programs that were recently used to extract L1 sequences (Jurka, 1989). Three 
sets of Alu sequences were extracted. The first set consisted of 125 Alu sequences from 
the Release 46.0 of the GenBank database (this is the same set that was used to infer the 
two major Alu subfamilies (Jurka & Smith, 1988). The second set consisted of 259 Alu 
sequences from the Release 55.0 of GenBank. The third set consisted of 369 sequences 
that were present in the Release 63.0 but absent from the Release 55.0. 

Following their extraction, the sequences within each set were aligned against the Alu 
consensus sequence (Jurka & Smith, 1988) (figure 2) by the alignment algorithm of Smith 
and Waterman (1981). Finally, the sequences within each set were mutually aligned by an 
algorithm that combines their pairwise alignments against the consensus into a multiple 
alignment. In the process of multiple alignment, the sites of homologous insertions 
(fragments that are inserted in only a small set of possibly related sequences) were not 
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GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACCTGAGG 

"I -10 "20 "30 "40 "50 ^60 -70 

TCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCCG 

"80 ^90 "I00 "II0 -120 "130 -140 

GGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGG 

-150 "160 "170 -180 -190 ^200 "210 

AGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTC 

-220 ^230 "240 "250 -260 ^270 -280 

TCAAAAAAAA 

-290 

Figure 2. The Alu consensus sequence. 

aligned well because of their absence in the consensus, so they were skipped. (It should 
be noted that an alignment represents an implicit reconstruction of insertion and deletion 
events during evolution and that no alignment is absolutely certain.) 

There were three stages of experimentation, each using the respective set of Alu sequences. 
In the first stage, based on the first set of Alu sequences, the inference method presented 
here and a more standard method were tested on the problem of reproducing the discovery 
of known Alu subfamilies (Jurka & Smith, 1988). In the second stage, the second set of 
Alu sequences was used to rediscover the old subfamilies and to discover some new ones. 
In the third stage, the third set of Alu sequences was used to test the predictive power of 
the Alu subfamilies that were discovered in the second stage. 

In the first stage, a number of experiments were tried where the encoding length was 
computed as in (4) (see next section). As explained in the next section, this measure is 
obtained by introducing the assumptions that are implicit in Weighted Parsimony and Com- 
patibility methods. But this measure was not as good for rediscovering the Alu subfamilies 
(Jurka & Smith, 1988) as the more general formulation given by (3), so we omit the details 
of these experiments. In addition to the implicit and unjustified assumptions, the presence 
of "CpG" positions may also have contributed to the failure to rediscover kilown Alu sub- 
families by this more standard method. Thus, in the rest of the experiments the encoding 
length was computed by (3). 

In the second stage, the initial sample was partitioned into a set of most specific sub- 
families by performing a series of binary splits, as illustrated in figure 3. To perform a 
single split, local search (figure 1) was repeated t = 100 times, each time starting from 
a new random split of a set of Alu sequences into two subsets. The splitting procedure 
was then repeated on the newly obtained subsets. 

The problem with the approach outlined above was to decide when to stop the splitting 
procedure. If the Minimal Length Encoding criterion was strictly applied, the splitting pro- 
cedure would stop whenever the single-ancestor encoding length is less than the lowest 
found two-ancestor encoding length. If this strict criterion was applied, only three 
subfamilies--Alu-J, the union of Alu-Sb and Alu-Sc, and the union of Alu-Sp, Alu-Sq, 
Alu-Sr, and Alu-Sx--would be found. Thus, the criterion was relaxed, and the splitting 
procedure was continued even in cases where the best found two-ancestor model gave longer 
encoding length than the single-ancestor model, provided multiple diagnostic positions could 
be identified. The diagnostic positions were then used in the third stage to justify the splits 
by a prediction test. The computations of the particular splits are summarized in table 1. 
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Alu 
/ \ 

J S 
/ 

Sbc 
/ 

Sb 

Spqrx 
\ / 

Sc Sr Spqx 
/ \ 

Sx Spq 
/ \ 

Sp Sq 

Figure 3. The process of discovery of subfamilies of Alu sequences. Each branching point in this binary tree 
denotes a discovery of a split of a set of sequences into two subsets of sequences, each consisting of one or more 
subfamilies. 

Table 1. The search for splits of Alu sequences into subfamilies. 

Bit-length for best 
Frequency of Number of local minima 

Split into Number of CPU seconds finding best diag. 
subfamilies seq. per search minima pos. Two-anc. Single-anc. 

J/S 259 168 100% 13 48958 49420 
Sbc/Spqrx 208 230 82% 4 36552 36600 
Sb/Sc 54 37 65% 3-4 11323-11325 11273 
Sr/Spqx 154 119 11% 2 28651-28666 28624 
Sx/Spq 63 39 29% 2 14030-14064 13971 
Sp/Sq 38 22 33% 2 9594 9544 

The program was implemented in C + + and was run on a Sun SPARCStation 330. The leftmost column indicates 
the splits into subfamilies; e.g., Sx/Spq denotes the split of the set containing subfamilies Sx, Sp, and Sq into 
two subsets, one containing subfamily Sx, and the other containing subfamilies Sp and Sq. For the split Sb/Sc 
there were two very close local minima, one of them having an additional diagnostic position, this is why the 
number of diagnostic positions is denoted by the range 3-4. Some of the single-ancestor models have a shorter 
encoding length than the best local minimum for two subfamilies--the presence of subfamilies in such cases was 
proven by prediction. 

In the third stage, for each  split of  the sequences  f rom the second set, the posit ions were  

assigned weights w as described in the previous section. The posit ion with the highest weight 

was then ident i f ied and blanked out in the sequences  f rom the third set. The  subfamily 

membersh ip  o f  the sequences  f rom the third set was the ident i f ied by running M A S C  on 

the mixture  of  sequences  f rom the second and third sets, wi th  the subfamily membersh ip  

o f  sequences f rom the second set f ixed and with the single posi t ion blanked out. For  each 

sequence f rom the third set, the let ter  in the h idden posi t ion was then guessed  based on 

its subfamily membership .  The  probabi l i ty  of  success in guessing the h idden letters was 

then computed  (table 2), as descr ibed  in the previous  section. Based on the results of  the 
prediction test, we conclude that all the splits are strongly supported, except the split Sp/Sq. 



DISCOVERY BY MINIMAL LENGTH ENCODING 79 

Table 2. The splits of Alu sequences into subfamilies and the letter counts in the hidden positions for the third 
(test) set. 

Split and position T C A G - T C A G - w 

J/S 94 1 12 5 *49 14 12 *242 5 14 15 6.1 
Sbc/Spqrx 78 4 2 *45 0 3 "198 5 8 3 21 10.4 
Sb/Sc 219 1 "31 0 3 0 0 4 3 "19 0 4.4 
Sr/Spqx 154 1 0 9 "109 0 2 2 *74 28 3 10.5 
Sx/Spq 272 0 1 1 *38 12 1 0 "21 9 2 2.9 
Sp/Sq 244 "16 3 0 0 1 8 *0 0 0 0 0.2 

The letter counts for both subfamilies are given for each split. For example, the first row indicates the letter 
counts in the position 94 for the set of sequences consisting of subfamilies J and S. The sequences were first 
classified as J or S based on all the positions except position 94. If a sequence was classified as J, it was guessed 
that the letter in position 94 is G, while if it was classified as S it was guessed that the letter is C. The guessed 
letters are indicated by asterisks. The total number of correct guesses for subfamily J was 49, while for subfamily 
S it was 242. The last column indicates that the probability of making 49 + 242 or more correct guesses if 
the subfamilies were ignored is at most 10 -6'1 . 

But  the independent  ev idence  based on a diagnost ic  inser t ion after  posi ton 264 in the se- 

quences  f rom the subfamily Sp suggests that this subfamily indeed exists lithe diagnost ic  

insertions and deletions cannot be  discovered by the current  approach because the sequences 

are  a l igned in advance).  

Table 3 gives a b r ie f  summary  of  the A lu  subfamilies that have been  proposed  so far. 

Note  that the " M a j o r "  subfamily o f  Wil lard  et al. (1987) corresponds  to two subfamilies,  

II  and III,  of  Brit ten et al. (1988), to three subfamilies,  Alu-Sc ,  -Sd, and -Se, o f  Jurka  and 

Smith  (1988), and to three subfamilies,  C, E,  F, o f  Quent in  (1988); all the smal le r  sub- 

famil ies  that occur  in ident ical  co lumns  are  approximate ly  equivalent .  

The  main  d iscovery  pe r fo rmed  by M A S C  is that subfamily Alu -Sd  is not  homogeneous  

and that it contains at least  three subfamilies,  Alu-Sp,  Alu-Sq ,  and Alu-Sr.  In  table 3, note 

that the subfamily Alu-Sq ,  discovered by M A S C  Version 0.6 (Jurka & Milosavljevi6,  1991), 

corresponds to two subfamilies, Alu-Sr  and Alu-Sq,  that were  discovered by M A S C  Version 

Table 3. The discoveries of Alu subfamilies. 

Reference l[ Alu subfamilies 

Willard et al. (1987) Diverged Major 

Britten et al. (1988) I II 

Jurka & Smith (1988) J 

Quentin (1988) D 

MASC 0.6 (Jurka & Milosavljevifi 1991) J 

MASC 0.7 (this article) 

Sa 

Se Sd 

F E 

Sx Sq 

J Sx Sr I Sq 

DII 

Sc 

C 

Sp Sc 

Sp Sc 

Conserved 

IV 

Sb 

A 

Sb 

Sb 
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0.7. Since both MASC 0.6 and MASC 0.7 were run on the same set of Alu sequences, the 
discovery of the new subfamily Sr was only due to the improvements in the encoding scheme 
for two-ancestor models that were suggested by Peter Cheeseman in his review of the present 
article. 

The discovery of the subfamily Sp has an interesting evolutionary consequence. A number 
of sequences from this subfamily turned out to be younger (measured by the degree of 
decay due to random mutations) than the members of the subfamily Sc. Since the lineage 
consisting of subfamilies Sb and Sc is generally younger than the lineage consisting of sub- 
families Sp, Sq,  and Sr, this indicates that there were at least two Alu genes that were being 
retroposed during overlapping periods of time. This important point is discussed in more 
detail in the companion biological paper (Jurka & Smith, 1988). 

6. Relation to other methods 

In this section we discuss the relation of the proposed method for the discovery of evolu- 
tionary relationships to other methods of evolutionary reconstruction and to the methods 
of categorization in general. 

6.1. Weighted Parsimony and Compatibility methods 

We next present a short overview of Weighted Parsimony and Compatibility position- 
weighting methods and show how a combination of these methods can be derived from 
the Minimal Length Encoding Principle. While Weighted Parsimony and Compatibility 
methods are typically used to infer a complete evolutionary branching pattern, for simplicity 
we here present the methods only as they pertain to the inference of a single monophyletic 
subfamily. 

We will first have to introduce some additional notation. Let Aj,l = mj -- major i ty  
(j,  /) denote the number of differences from majori ty  ( j ,  l) within the j - th subfamily 
in the l - th position. In addition, let/xl = Al,t + A2,t, denote the number of differences 
in the l - th position across the subfamilies. The simplest Parsimony criterion minimizes 
the number of differences across the positions 

A---- ~ A / .  
/=1 

The Compatibility criterion (Felsenstein, 1981) is based on the assumption that if the 
probability of change varies across positions, then the positions that have low probability 
of change and are most compatible with the putative monophyletic subfamily should have 
the highest weight. If the probability of change in t h e / - t h  position is estimated by the 
frequency j~ = Al/mt, then we can define the indicator of compatibility of the l - th  posi- 
tion by 
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S 1  i f f  _< threshold 
compatiblel 

0 if3~ > threshold 

where the value of the threshold is chosen a priori. The Parsimony criterion, where the 
positions are weighted by their compatibility, is then given by 

Z compatiblet A t. 
l~1 

Continuing our example from the introduction, if we choose threshold = 0.25, all the 
positions except position 2 are compatible with the proposed two-ancestor model. Thus, 
the value of the criterion is 5, and is obtained by summing the numbers of mutations in 
all the positions except the position 2. 

In place of the threshold function for the compatibility indicator compatiblel, Farris 
(1969) experimented with continuous weighting functions w that are monotoifically decreas- 
ing on the interval (0, 1]. The weighted parsimony criterion 

• w(~)at 
/=1 

was used with linear, convex, concave bounded and concave unbounded weighting func- 
tions w. The best agreement with the evolutionary trees that were independently proposed 
by biologists was obtained for concave unbounded weighting functions of the form w(x) 
= ((x) -C - 1), where c is positive. 

In contrast to Weighted Parsimony, which minimizes the number of changes of values 
of reliable positions, Compatibility methods (LeQuesne, 1969) minimize the total number 
of incompatible positions as given by the following: 

A = ~ (1 - compatiblel). 
/=1 

Continuing our example, we may verify that in the proposed two-ancestor model, only 
the position 2 is incompatible. Thus, the value of the compatibility criterion is A = 1. 
Also, one can easily verify that no other two-ancestor model can do better. 
For the purpose of comparison, let us now turn to the Minimal Length Encoding method. 
Let us apply the Minimal Length Encoding principle under the following two simplifying 
assumptions: 1) all the positions are diagnostic; 2) all the letters that are not majority within 
a subfamily are encoded using the same number of bits. Under these two assumptions, 
the formula (2) can be rewritten as follows (for a detailed derivation, see Milosavljevi~, 1990): 
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I(SIM) = m H' + Z Aj,t log c~j, l + Z mj log [~j,l (4) 
j = l  /=1 j = l  1=1 

where c9, t = (1/3~,t - 1)(g - 1) and/~j,t = 1/(1 - J~,3 and where jj,t = Aj,/mj denotes 
the frequency of differences from the majority letter in the 1 - th position among the se- 
quences from the j - th subfamily. 

The Weighted Parsimony method minimizes only the second term in (4); the "weights" 
log otj,~ are concave and unbounded infm,t as suggested to be the best by the experimental 
results of Farris that were discussed above. Similarly, the third term corresponds to a 
weighted version of the Compatibility method. I t  is interesting to mention at this point 
that the minimization of the sum of the last two terms of (4) has also been independently 
proposed in phytosociology (Orloci, 1968). 

• 2 Bayesian and maximum likelihood methods 

Another way to define I(M) and I(S IM) would be to postulate two probabilistic processes; 
the first process generates a probabilistic model M, which in turn probabilistically generates 
a sample S. Let P(M) denote the a priori probability of a model M, and let P(SIM) denote 
the probability of S given M. The details of this approach are explained elsewhere (Milosavl- 
jevid, Haussler, & Jurka, 1989, Milosavljevid, 1990); in the following we only sketch the 
main relationships between encoding lengths and probabilities. Ignoring additive constants, 
the relationship between encoding lengths and probabilities for an optimal encoding scheme 
are as follows (e.g., Cover & Thomas, 1991): 

I(M) = - log  P(M) (5) 
and 

I(S IM) = - log  P(S IM). (6) 

From (5) it follows that the lower the complexity I(M) of a model M, the higher its a 
prior probability P(M); in other words, simpler models are more likely a priori. From 
(6) it follows that the smaller the complexity I(S]M) the larger the likelihood P(SIM) of 
the model M; in other words, the model that fits the data better is more likely. 

By using (5) and (6), we obtain 

I(S, M) = I(M) + I(SI M) = -log(P(M)P(S[M)) = - log  P(S, M), (7) 

where P(S, M) is the joint probability of S and M. Hence, the model that minimizes the 
total complexity I(S, M) is the same one that maximizes the joint probability P(S, M). 
Since P(S, M) = P(MI S)P(S), where P(S) is fixed, the same model also maximizes P(MI S), 
the a posteriori probability of M given S. Hence, this method of defining I(M) and I(S IM) 
reduces the Minimum Length Encoding method to the standard Bayesian method 
(Cheeseman et al., 1988). If we define I(M) = 0, then we obtain the Maximum Likelihood 
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method (Duda & Hart, 1973). A detailed probabilistic interpretation of Minimal Length 
Encoding in the context of evolutionary reconstructions can be found elsewhere (Milosavl- 
jevi6, 1990). 

AutoClass (Cheeseman et al., 1988), a program that implements Bayesian technique for 
unsupervised classification, has been applied to the first set of 125 Alu sequences that 
were discussed above. This generic program proposed nine classes of Alu sequences that 
did not overlap very well with the subfamilies accepted by biologists. An obvious problem 
was that the correlated occurrences of letters in the CpG positions have misled AutoClass 
to suggest subfamilies where there were .none and to overlook the existing ones. The prob- 
lem is that AutoClass assumes that mutations are independent across positions, which is 
not true of CpG positions in Alu sequences. 

6.3. Other minimal length encoding methods 

The Minimum Message Length approach to classification, pioneered by Wallace and Boulton 
(1968), provides a principled way of choosing the complexity of the inferred model by 
minimizing the combined encoding length of the model and the data given the model. While 
the most recent extensions of this work (Wallace, 1990) are very similar to the approach 
presented here, there are a few important differences. One important difference is that, 
in addition to a theoretically sound optimization criterion (Wallace, 1990) we also present 
the algorithm for the minimization of encoding length with a verified performance. The 
combinatorial problem of finding an optimal split of a family of sequences into two sub- 
families at a time, as performed by MASC, not only has a valid biological justification 
but is also likely to be easier (Milosavljevi6, 1990) than the problem of finding an optimal 
set of arbitrary many subfamilies at once, as suggested by Wallace and Boulton (1968). 
Another difference is that MASC dynamically selects diagnostic positions during the search 
for an optimal model. Our experiments (the first kind of experiments from the previous 
section) indicate that the selection of diagnostic positions performed by MASC is necessary 
for reproducing the discovery of Alu subfamilies, particularly because of the elimination 
of mutations that are due to CpG noise. 

6.4. Conceptual clustering 

Although the present article deals with the methods for inference of evolutionary relation- 
ships, there are some striking similarities to conceptual clustering (Michalski & Stepp, 
1983; Gennari, Langley, & Fisher, 1989). 

As pointed out by Michalski and Stepp (1983), not all attributes are considered equally 
relevant in the process of categorization. Indeed, when comparing it to Weighted Parsimony, 
we have shown that the Minimal Length Encoding approach implicitly weighs certain posi- 
tions more and the others less. An important difference between MASC and CLUSTER/2, 
the program implemented by Michalski and Stepp (1983), is that the latter defines clusters 
by logical formulae, an approach certainly not applicable in case of macromolecular se- 
quences, where the boundaries between different subfamilies of sequences are not sharply 
defined. 
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Fisher's COBWEB (1987) constructs clusters that maximize category utility, a combined 
criterion that measures both the predictiveness of category membership based on attribute 
values and the predictability of attribute values based on category membership. We may 
recall that the prediction test that we have employed to prove the existence of the subfamilies 
of Alu sequences uses a combination of the predictiveness property (when subfamily 
membership of a sequence is guessed) and the predictability property (when the hidden 
letter is guessed). The subfamilies of Alu sequences turned out to have predictive value 
even though the category utility criterion was not explicitly applied in the process of in- 
ference. Indeed, it is widely recognized in the domain of data compression that the data 
that can be well compressed can also be well predicted, and vice versa (Bell, Cleary, & 
Witter, 1990). Thus, the minimization of encoding length may be viewed as an implicit 
maximization of predictive power of the inferred models. 

The approach to concept formation implemented in COBWEB (Fisher, 1987) is incremental 
in the sense that the extensive reprocessing of the already presented data is not allowed. 
In the case of Alu sequences, this would certainly create a problem because subfamilies 
of Alu sequences can be inferred only after a total of more than 20-30 Alu sequences are 
observed. Thus, the subfamilies that are inferred based on a small sample may have to 
be completely revised at the point when the sample becomes sufficiently large. An addi- 
tional problem is that COBWEB does not provide for elimination of correlated attributes, 
a necessary feature in case of the presence of CpG positions. 

7. Conclusion 

The rules embodied in biological Weighted Parsimony (Farris, 1969; Felsenstein, 1981) 
and Compatibility (LeQuesne, 1969) methods for evolutionary reconstructions that have 
long been used by biologists were shown to follow from the more general Minimal Length 
Encoding Principle. The Principle was applied to discover new subfamifies of Alu sequences 
(table 3, Jurka & Milosavljevi6, 1991) that for the first time provide evidence for coex- 
istence of multiple retropositionally active Alu genes. 

The process of discovery consists of two main phases. In the first phase, the subfamilies 
of Alu sequences are computed by performing binary splits of the sample (figure 3). In 
the second phase, the proposed subfamilies are tested for their predictive power on new data. 

An important feature of the proposed heuristic algorithm is the dynamic selection of 
diagnostic positions. The positions that are known to contain correlated mutations due to 
the "CpG" noise are eliminated by a heuristic rule. The dynamic selection of positions 
is easily accommodated within the Minimal Length Encoding framework. The importance 
of the elimination of correlations has been emphasized by Felsenstein (1982): 

A major assumption of all parsimony methods is that the characters evolve independently. 
There has been no attempt to provide methods of detecting character correlation and 
removing its effects from the analysis . . . .  How to develop methods to remove the ef- 
fects of character correlation is perhaps the most important unsolved problem facing 
phylogenetic inference. The absence of a solution is the greatest weakness of existing 
methods. 

~ I I ~ L  
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A drawback of the method is that it tends to underestimate the number of  subfamilies 
if  the Minimal Length Encoding Principle is applied strictly. The predictive test does 
eliminate this problem, but it also requires new data for testing. It would be desirable to 
improve the method and eliminate the need for new data. Two improvements may be tried. 
The first possible improvement is to introduce the uncertainty in sequence assignment to 
subfamilies, as suggested by Wallace (1990) and Cheeseman et al. (1988). This may help 
because the exact assignment of a sequence to a particular subfamily is an excess of  infor- 
mation if the sequence is not clearly a member  of  either of the subfamilies. The second 
possible improvement is to use fewer bits to encode the frequency distributions of letters 
in the particular positions. This may help because the exact specification of a distribution 
may not pay off in terms of a reduction in the overall encoding length. 

An important extension would be to remove the assumption that the sequences are aligned 
in advance. While the insertions and deletions may provide invaluable evolutionary evidence 
(e.g., in the case of diagnostic insertions that prove the split into Alu subfamilies Sp and 
Sq), some previous attempts (Cheeseman & Kanefsky, 1990) indicate that the resulting search 
problem may be very hard. One possible approach would be to alternate the alignment 
and splitting steps in an iterative algorithm, thus replacing a hard combinatorial problem 
by two easier ones. 
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