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Abstract. In his article "Learning Decision Lists," Rivest proves that (k-DNF LI k-CNF) is a proper subset 
of k-DL. The proof is based on the following incorrect claim: 

•. .  if a function f has a prime implicant of size t, then f has no k-DNF representation if k < t. 

In this note, we show a counterexample to the claim and then prove a stronger theorem, from which Rivest's 
theorem follows as a corollary. 

1. A counterexample  

I n  the article " L e a n ~ g  Decision Lists" (Rivest, 1987) Rivest proves that (k-DNF L) k-CNF) 
is a proper  subset of  k-DL. The proof  is based on the following incorrect claim: 

• . .  if  a function f has a pr ime implicant of size t, t h e n f h a s  no k-DNF representation 
if  k <  t. 

The following counterexample shows that it is possible for a funct ionfwi th  a prime impli- 
cant of  size four to have a 3 -DNF representation. The func t ionfshown below is in 3-DNF, 
yet the term wJ?y~ is a pr ime implicant of the function. 

f ( v ,  w, x,  y, z) = vw2 V fryi 

Figure 1 shows the function using a Karnaugh map of  five variables with the pr ime impli- 
cant containing four literals shaded• (For a description of  Karnaugh maps, see, for exam- 
ple, Kohavi (1978) or Fr iedman (1986), although readers not familiar with them may easily 
check that the given term is indeed a pr ime implicant.)  

2. The expressive power of  decis ion lists 

Let n be the number of  variables in our language. 

Definit ion 1 (Pr ime impl ican t ) .  A prime implicant for  a function f is a product term 
that implies f ,  but that does not imply f i f  any literal in c~ is deleted. 
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Y ~  000 001 011 010 ii0 iii i01 i00 

O0 0 0 0 I 0 0 0 

Ol 0 0 0 1 0 0 0 

i0 0 0 0 0 0 0 0 

Figure 1. A Karnaugh map that refutes the claim. 

Definition 2 (Essential prime implicant). An essential prime implicant e~ o f f  is a prime 
implicant such that there exists an x E {0, 1} n with or(x) = 1, yet for no prime implicant 
/3 ;~ c~ does/3(x) = 1. 

Lemma 1. I f  a function f has an essential prime implicant of  size t, then f has no k-DNF(n) 
representation i f  k < t. 

Proof'. The essential prime implicant must appear in any DNF(n) representation that uses 
only prime implicants. Any k-DNF(n) representation has an equivalent k-DNF(n) represen- 
tation using only prime implicants; therefore, there cannot exist a k-DNF(n) representation 
o f f  with k < t. [] 

Note that this lemma only defines a sufficient condition for not having a k-DNF(n) repre- 
sentation. There are functions that have no essential prime implicants at all. 

Lemma 2. A prime implicant ~ of  size n is an essential prime implicant. 

Proof'. Let x E {0, 1}" be the unique vector such that a(x) = 1. If there exists a prime 
implicant 13 ~ ot for which/3(x) = 1, then ot and/3 cannot disagree on any literal (or else 
/3(x) # 1). Since all variables appear in a, the prime implicant/3 must contain only a subset 
of the literals in o~, contradicting the fact that ot is a prime implicant. [] 

Theorem 3. For 1 < k < n and n > 2, there are functions representable in k-DL(n) but 
not in (j-CNF(n) U j-DNF(n)) for any j < n. 

Proof." We prove a stronger result, namely, that 2-DL(n) contains functions not represen- 
table in (j-CNF(n) U j-DNF(n)) for any j < n, and n > 2. 

Let f be the function represented by the following 2-DL(n): 

( ~  ~ ,  0), ( ~  ~ ,  O) . . . . .  ( ~  ~n, 0), (~ ,  1), (x 1 ~2, 1), (Xl ~ ,  1), . . . ,  (x 1 ~n, 1), (true, O) 
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~IX2X3 
000 001 011 010 

X4X5 

O0 0 0 0 0 

01 0 0 0 0 

11 0 0 1 0 

10 0 0 0 0 

110 111 101 100 

1 1 1 1 

1 1 1 1 

1 0 1 1 

1 1 1 1 

Figure 2. A Karnaugh map showing the funciton in 2-DL(n) for n = 5. 

Note that the last term could be replaced by (x 1, 0), but the definition of a decision list 
requires the last term to contain the constant function true. Figure 2 shows a Karnaugh 
map of the function for n = 5. 

Let ot be the term x11_x2x3 • • • ~xn and let or' be a term derived from ~ with one literal 1 i 

deleted, or' implies ot'li, but for any ~'~ {0, 1}" such that 0~7/is true, f(x-') is 0, and thus 
ot is a prime implicant off. By lemma 2, a is an essential prime implicant, and by lemma 1, 
f has no j-DNF(n) representation for j < n. 

Similarly, the term x l x2x3  • • • x ,  is an essential prime implicant of)~ and thus the func- 
tion ] cannot be represented in j-DNF(n) for j < n. Since the complement of every 
j-CNF(n) formula is a j-DNF(n) formula, there is no j-DNF(n) representation for f, and 
hence f cannot be represented in j-DNF(n) (.J j-CNF(n) for j < n. 

Corollary 4 (Rivest). For  0 < k < n a n d  n > 2, ( k - C N F ( n )  tO k - D N F ( n ) )  is a p r o p e r  

s u b s e t  o f  k - D L ( n ) .  

Proof'.  The original article (Rivest, 1987) correctly proved that any k-CNF(n) formula and 
any k-DNF(n) formula can be written in k-DL(n). By theorem 3, there are functions in 
k-DL(n) not in (k-CNF(n) tO k-DNF(n)) for k > 1, so only the case k = 1 remains to 
be proved. 

If k = 1, then the following decision list from 1-DL(n) represents a funct ionf  that is 
not in 1-CNF(n) U 1-DNF(n): 

(Xl, 0), (x2, 1), (x3, 1), (true, 0) 

The only prime implicants of the function f are ~lX2 and ~ x  3. Both are essential, so f 
does not have a 1-DNF(n) representation. Similarly, the functionfhas Xl and ~ ~ as the 
only prime implicants and again both are essential, so f does not have a 1-DNF(n) (3 
1-CNF(n) representation. 
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