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Abstract. If we lack relevant problem-specific knowledge, cross-validation methods may be used to select a classifica- 
tion method empirically. We examine this idea here to show in what senses cross-validation does and does not 
solve the selection problem. As illustrated empirically, cross-validation may lead to higher average performance 
than application of any single classification strategy, and it also cuts the risk of poor performance. On the other 
hand, cross-validation is no more or less a form of bias than simpler strategies, and applying it appropriately 
ultimately depends in the same way on prior knowledge. In fact, cross-validation may be seen as a way of apply- 
ing partial information about the applicability of alternative classification strategies. 
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1. Introduction 

Machine learning researchers and statisticians have produced a host of approaches to the 
problem of classification, including methods for inducing rule sets, linear discriminants, 
decision trees, Bayesian classifiers, and neural networks. Which of  all these should we 
choose when faced with a practical problem? 

Quinlan (1993), reviewing a number of comparative studies, drew two main conclusions. 
First, no single method or paradigm is uniformly superior. Empirical results amply 
demonstrate that connecfionist methods produce models with greater predictive accuracy 
for some problems, while statistical and symbolic learning methods prevail in others. 

Second, problem-specific knowledge can sometimes help us to guess which method will 
perform best. As an example, Quinlan draws a distinction between parallel learning tasks, 
in which classification is normally determined by the joint effect of  all or most attribute 
values, and sequential tasks, in which few attributes are relevant to the classification of 
any single case and the relevance of a given attribute depends on the values of  others. In 
general, he suggests, we should prefer connecfionist methods for parallel classification prob- 
lems and symbolic methods for sequential ones. 

This is just one example of  how prior knowledge can help in selecting an approach to 
classification. When the underlying relationship is known to be complex relative to the 
amount of  data available for training, Fisher and Schiimmer (1988) and Schaffer (1993) 
suggest that unpruned decision trees may be more accurate than pruned ones. And if we 
know that attribute values are heavily affected by noise, two studies cited by Qninlan (Fisher 
& McKusick, 1989; Shavlik et al., 1991) suggest that neural networks may outperform 
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decision trees. As Quinlan concludes, our understanding of the applicability of each method 
is increasing and, as it does, we increase our ability to make use of problem-specific 
knowledge, when we have it. 

Often, however, prior knowledge is unavailable or inconclusive. We may not know, for 
example, whether the true underlying relationship is more nearly parallel or sequential. 
In this case, a natural idea is to allow the data itself to indicate which method will work 
best. We may divide the data into two parts, use one part as input to a number of classifica- 
tion algorithms, and then choose whichever algorithm produces the model most accurate 
on the second part. Or, taking a more sophisticated approach to the same idea, we may 
conduct a cross-validation study (Geisser, 1975; Stone, 1974), partitioning the data into 
a number of groups, using each in turn as a test set for models produced on the basis of 
the remaining data, and choosing the method that achieves the highest average accuracy. 

Here we investigate this latter idea and reach a number of basic conclusions. On the 
positive side, using cross-validation to select a classification method may yield average 
predictive performance substantially higher than what could be achieved with any individual 
method, if the mix of problems includes a reasonable proportion of examples favorable 
to each. Also, using cross-validation can drastically cut the risk of producing a poor model, 
since it rarely performs much worse than the best of the constituent strategies. 

On the other hand, any strategy for inducing models from data amounts to a form of 
bias, and this is as true for the cross-validation strategy as for the constituent strategies 
it compares. As a consequence, like any other strategy, the average predictive performance 
of cross-validation will be better than simple alternatives in some environments and worse 
in others; and, for a given problem, only domain knowledge can help us decide which 
approach will be preferable. 

In short, cross-validation may lead to better average performance at the same time that 
it guards against the chance of catastrophic performance, but it does not obviate the 
knowledge-intensive tack suggested by Quinlan. 

2. A cross-validation experiment 

This section reports the results of an experiment comparing four classification strategies 
on five problems. The first three strategies include one for decision trees, one for rule 
sets, and one for neural networks. The fourth strategy performs a cross-validation study 
to select one of the first three. The empirical evidence reported here demonstrates the positive 
aspects of cross-validation noted above. The following section returns to a consideration 
of some of its limitations. 

2.L Methodology 

2.1.1. Classification methods 

The experiment of this section compares the performance of three constituent classifica- 
tion strategies with a cross-validation strategy for selecting between them. The three con- 
stituent strategies are 



CLASSIFICATION METHOD BY CROSS-VALIDATION 137 

• C4.5 (Quinlan, 1986; Quinlan, 1987b), a recent version of the ID3 decision tree induc- 
tion system, with default parameter settings and pruning; 

• C4.5rules (Quinlan, 1987a), a closely related system that produces a rule set from the 
decision tree induced by C4.5, also with default parameter settings; and 

• BP (McClelland & Rumelhart, 1988), a back propagation algorithm for training neural 
networks. BP was used with one hidden layer of five units and trained for 1000 epochs. 
The learning rate was set at 1.1 and the momentum at .5.' 

These three strategies are representative of various classification paradigms, but no attempt 
was made to represent all major classification paradigms or to choose the best algorithm 
in each. 

A fourth strategy, CV, conducts a 10-fold cross-validation study using training data to 
compare the three constituent strategies. That is, 

• The training data is divided at random into ten equal parts; 
• Each of these serves in turn as a test set T. C4.5, C4.5rules, and BP are trained on the 

remaining data and tested on T; 
• The results of the ten tests are averaged and the constituent strategy achieving the highest 

accuracy is selected; and 
• This strategy is run on the full training set to produce a prediction model. 

The model produced by CV is thus the one of the three produced by the constituent strategies 
that cross-validation suggests will be most predictive. 

2.1.2. Test suite 

Five test problems were chosen from the UCI machine learning repository (Murphy & 
Aha, 1992). Basic information about these is given in table 1; detailed information about 
how data was transformed or collated in some cases is given in an appendix. 

Problems for the test suite were selected on the basis of two criteria, both important 
in intepreting the results that follow. First, data sets completely unfamiliar to the author 
were chosen, so that he would have no problem-specific knowledge suggesting which of 
the four tested strategies was likely to perform best. Second, however, a deliberate attempt 

Table L The test suite. 

Attributes 

Problem Size Discrete Continuous Classes 

Annealing 898 32 6 5 
Glass 214 9 0 7 
Image 2320 0 19 7 
Sonar 208 0 60 2 
Vowels 990 0 10 11 
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was made to represent in the test suite both problems especially amenable to symbolic 
methods and problems especially amenable to connectionist methods. On the assumption 
that data from researchers in symbolic methods dominates the UCI repository, three prob- 
lems chosen from the main repository directory (Annealing, Glass, and Image) were pre- 
sumed favorable to symbolic methods. Two remaining problems (Sonar and Vowels), located 
in a subdirectory and carrying the label "taken from connectionist bench" were presumed 
likely to favor connectionist methods. Readers familiar with one or more of the test prob- 
lems might like to guess, on the basis of problem-specific knowledge, which were, in fact, 
particularly suited to each of the tested classification strategies before proceeding. 

2.1.3. Experimental design 

Results for the four classification strategies were averaged over ten trials, each conducted 
using 90% of the data for training and the remainder for testing. Note that this standard 
cross-validation procedure for measuring the effectiveness of the strategies on fresh data 
exactly mirrors the preliminary study conduced by CV. 

2.2. Hypotheses 

Two hypotheses to be tested were formulated as follows before any data were collected: 

1. The predictive performance of CV will be nearly as good as the best of the other three 
strategies for each of the five problems. 

2. CV's average performance over the test suite will be the best of the four strategies 
compared. 

The second hypothesis is precise as stated; the first lacks a careful specification of what 
will be considered "nearly as good." In the absence of a natural criterion, it seemed 
preferable to leave the hypothesis as stated and allow the results to speak for themselves. 

2.3. Results 

The results of the cross-validation experiment are summarized in table 2. The columns 
headed Accuracies give the average percentage accuracy achieved by the four classifica- 
tion strategies on each of the test problems and averaged over the suite. The last three col- 
umns show how many times in 10 trials CV chose the decision tree, rule set, or neural 
network model for prediction; in the Glass trials, for example, it chose the tree six times 
and the rules four. 

The last row confirms the prediction that CV would turn in the best average performance. 
In fact, it outperforms C4.5--the best of the constituent strategies--by an average of 3.5 %. 
CV's superiority to each of the constituent strategies is significant at above the .999 level, 
using a one-sided paired t test. 2 
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Table 2. Cross-validation outperforms constituent strategies. 

Accuracies CV's Choices 

Problem Tree Rules Net CV Tree Rules Net 

Annealing 92.3 + 3.3 93.9 + 2.8 99.0 + 0.8 99.0 + 0.8 0 0 10 
Glass 66.8 + 6.1 66.8 + 5.5 45.7 + 11.0 65.9 + 6.1 6 4 0 
Image 96.9 + 1.2 97.1 + 1.2 89.8 + 5.2 96.9 + 1.2 10 0 0 
Sonar 69.2 + 10.2 71.6 + 11.0 82.6 + 6.9 80.7 + 9.5 0 1 9 
Vowels 76.5 + 4.1 72.4 + 4.1 58.4 + 5.9 76.5 + 4.1 10 0 0 
Average 80.3 80.0 75.1 83.8 

As noted in the introduction, CV achieves superior average accuracy when it is applied 
to a mix of  problems that includes a reasonable proport ion favoring different constituent 
strategies. Since problems for this experiment were chosen to be unfamiliar  to the author, 
the results demonstrate that it may be profitable to a s s u m e  such a mix and to select a 
classification method by cross-validation when problem-specif ic  knowledge relevant to 
the selection is not available. 

Of  course, the test suite was deliberately constructed to include problems favorable to 
two different paradigms.  In light of  this, it is interesting to note that the attempted balanc- 
ing turned out to be ineffectual and, hence, irrelevant.  As table 3 shows, CV turned in 
the best average predict ive performance both for the three problems presumed favorable 
to symbolic processing and for the two presumed favorable to connectionist processing. 

A last main point about the experimental results is that they support the first hypothesis--  
CV ' s  performance is always within 2 % of  the best  of  the other tested strategies. Compar-  
ing this relative performance with that o f  the other strategies, as in table 4, illustrates 
how effectively cross-validation cuts the risk of  highly suboptimal performance. Someone 
using C4.5 uniformly on the problems of  the test suite would stumble badly on the Sonar 
problem,  missing models that accurately classify an additional 13.4% of  fresh cases on 
average. Someone using the tested version of BP would do even worse, missing models 

Table 3. Cross-validation performs best even for specialized test suite subsets. 

Average Accuracy 

Problems Tree Rules Net CV 

Glass-Image-Annealing 85.3 85.6 78.2 87.3 
Sonar-Vowels 72.8 72.0 70.5 78.6 

Table 4. Cross-validation cuts risk. 

Worst Relative Performance 

Method Gap Problem 

Tree 13.4 Sonar 
Rules 11.0 Sonar 
Net 21.1 Glass 
CV 1.9 Sonar 
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that accurately classify an additional 21.1% of fresh cases on average for the Glass data. 
By comparison, CV is extremely safe; in these trials, its average performance is always 
close to the best observed. 

Moreover, for obvious probabilistic reasons, the more at stake, the less likely CV is to 
choose the wrong model. Looking back at table 2, we see that when there is a large dif- 
ference in accuracy between the best model and the next best--as in the Annealing, Sonar, 
and Vowels problems--CV rarely makes the wrong choice. It is only when two models 
are almost equally good--as for Glass and Image--and distinguishing between them is 
relatively unimportant that cross-validation begins to falter. 

3. Caveats 

The most important point to balance against the positive features just illustrated is that, 
although it may seem natural to distinguish a meta-strategy like cross-validation from direct 
strategies for classification, this distinction is purely conceptual. In fact, cross-validation 
simply provides one additional mapping from training sets to models. Any mapping of 
this kind constitutes an inductive bias; hence, like any other classification strategy, the per- 
formance of cross-validation depends on the environment in which it is applied. 

The results just presented suggest that there may be practical environments in which cross- 
validation will outperform other well-known strategies for induction, but the same evidence 
may be used to illustrate how it might be inferior in other applications. If most problems 
in an environment were like Sonar, for example, the predictive accuracy of BP would be 
better than CV's by about two percentage points. 

Deciding when cross-validation will yield higher predictive accuracy than a simple alter- 
native amounts to deciding when the implicit bias is appropriate. This is precisely the same 
kind of decision that Quinlan considered in weighing symbolic and connectionist methods, 
and it can be made only on the basis of similar kinds of domain-specific information. In 
the absence of knowledge that the mix of problems we face is more favorable to cross- 
validation than to a simple alternative, all we can rely on is that it is relatively safe. And, 
as with all forms of insurance, security carries a cost; if the mix of problems favors a single 
constituent strategy, the average predictive accuracy of cross-validation must be somewhat 
worse. See Schaffer (1993) for an extended discussion of this point. 

A second caveat is that the degree of security provided by cross-validation depends, among 
other things, on the number of constitutent strategies. In the experiment reported here, 
cross-validation was used to select between three classification strategies, but it is trivial 
to extend the technique to select between 5 or 50. We might like to include neural networks 
with a range of numbers of hidden units, purely statistical techniques, alternative strategies 
for decision tree or rule induction, and so on. But, the more poor strategies we inadvertently 
add, the higher the probability that one of them will appear superior to a much better strategy 
by pure chance. 

A last negative point is that cross-validation necessarily takes many times longer for in- 
duction than the slowest of the constitutent strategies. For the problems and strategies con- 
sidered in this note, the cost of cross-validation was not exorbitant--the longest CV runs 
were under one hour on a Sun 4--but it could easily be prohibitive for some applications. 
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4. Cross-validation and prior knowledge 

The introduction to this note cast cross-validation as an alternative to the use of prior 
knowledge in selecting a classification method. We have just argued, however, that ap- 
propriate application of cross-validation depends on prior knowledge. In i~act, the key is 
the kind of prior information available. If we know we are faced with a parallel classifica- 
tion problem, this information suggests that we should choose a connectionist induction 
method. On the other hand, if we know only that we will face a stream of' problems in- 
cluding both parallel and sequential types, we might prefer a cross-validation strategy. 

In general, cross-validation may be viewed as a means of applying partial information 
about appropriate methods for classification. When we know very little about a problem, 
we may apply cross-validation, as in this note, to select between classification strategies 
spanning a number of paradigms. When we know more, we may use it to select strategies 
within a single paradigm--to select the appropriate number of hidden units in a neural 
network, as is often done, or to select an appropriate degree of pruning in inducing a deci- 
sion tree, as in the CART program (Breiman et al., 1984). 

Cross-validation may also be useful when prior knowledge is suggestive, but not conclu- 
sive in selecting a classification method. From a Bayesian point of view, a cross-validation 
study provides information that should be used to adjust our beliefs. As a practical matter, we 
may believe that a particular problem is sequential, and hence amenable to decision tree 
methods, but if the evidence of a cross-validation study suggests that a neural network will 
be much more predictive, we clearly ought to consider adopting a connectionist approach. 

In short, cross-validation and prior knowledge are best seen as complementary. Little 
has been done to date to help us understand how to apply them together in classification 
work, and this appears to be an important area for future work. 

5. Related work 

Some work has been done in applying cross-validation in conjunction with prior knowledge 
in the context of multivariate function estimation (Wahba, 1990). It is not clear whether the 
results of this work carry over to the problems typically tackled in machine learning research. 

Statisticians appear not to have directly addressed the question of the risk protection af- 
forded by cross-validation and its dependence on the number and diversity of constituent 
strategies. They have, however, undertaken in-depth analyses of other aspects of cross- 
validation. The theoretical relationship between cross-validation and related methods, in- 
cluding bootstrapping, is discussed by Efron (1982); Stone (1977) gives results on the per- 
formance of cross-validation in the long run, as the number of training cases approaches 
infinity. Wolpert (1992a) attempts, among many other things, an analysis of the conditions 
under which cross-validation increases predictive accuracy. 

Finally, Wolpert (1992b) has advocated using the results of a cross-validation-like study, 
not to choose a single prediction model, but to combine the predictions of several. Initial 
results are promising (Breiman, 1992), as might be expected from other work on the value 
of combining multiple models (Buntine, 1991; Kwok & Carter, 1990; Gams, 1989; Jacobs 
et al., 1991). With regard to the issues raised here, however, two points are worth keeping 
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in mind. First, the risk protection afforded by cross-validation can be undermined or even 
reversed by some combination schemes. Second, although we may conceptually distinguish 
between simple models and combinations, both are deterministic mappings from attribute 
vectors to classes. Thus schemes for combining models, however sophisticated, amount 
to fixed mappings from training sets to the same kinds of predictive models produced by 
simpler methods and are no less instantiations of bias. Whether combination methods will 
perform better than simple cross-validation or even the application of  a single constitutent 
strategy depends on the mix of  problems to be encountered. 
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Notes 

1. The author's copy of BP was received with shell scripts that happen to run the program with these parameter 
settings and they were not adjusted to improve performance on the problems of this experiment. This is not, 
and is not intended to be, a sophisticated use of neural networks. 

2. A paired comparison is essential, since variation between problems would otherwise overwhelm differences 
between strategies. Standard errors are purposely omitted in the last row, where they would reflect mainly 
between-problem variation and obscure the highly significant difference in performance between CV and the 
other strategies. 

Appendix: Notes on the data 

All data were transformed in three ways for use by BE Continuous variables were scaled 
(linearly) to the range [0, 1]. Binary discrete variables--including the class variable for 
Sonar--were coded using a single variable taking on the values 0 and 1. Multivalued discrete 
variables--including the class variables for problems other than Sonar--were replaced with 
a set of binary variables, each one taking on the value 1 for one of the original values 
and the value 0 for the others. 

Annealing. The data set used here is the result of  concatenating the files anneal .data and 
anneal.test in the UCI repository. Missing values indicated by a question mark were treated 
specially by C4.5 and C4.5nales; for BP these were simply considered an additional discrete 
value. 

Image.  The data set used is the result of  concatenating the files segmentation.data and 
segmentation.test in the UCI repository. 

Sonar. The data set used is from the f'de sonar.all-data in the UCI repository. 

Vowels. This data consists of  measurements of  15 speakers repeating 11 vowel sounds 6 
times each. Originally, neural networks were used to classify utterances of the last 7 speakers 
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on the basis of experience with the first 8. Here the 990 (= 15 x 11 x 6) utterances 
are divided at random into training and test sets. 
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