
Machine Learning, 14, 27-45 (1994) 
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Tracking Drifting Concepts By Minimizing 
Disagreements 

DAVID P. HELMBOLD 
CIS board, UC Santa Cruz, Santa Cruz, CA 95064 

DPH~CSE.UCSC.EDU 

PHILIP M. LONG PLONG~IGI.TU-GaAZ.AC.AT 
Institute for Theoretical Computer Science, Technische Universitaet Graz, Klosterwiesgasse 32/2, 
A-8010 Graz, Austria 

Editors: Ming Li and Leslie Valiant 

A b s t r a c t .  In this paper we consider the problem of tracking a subset of a domain (called the 
target) which changes gradually over time. A single (unknown) probability distribution over the 
domain is used to generate random examples for the learning algorithm and measure the speed 
at which the target changes. Clearly, the more rapidly the target moves, the harder it is for 
the algorithm to maintain a good approximation of the target. Therefore we evaluate algorithms 
based on how much movement of the target can be tolerated between examples while predicting 
with accuracy e. Furthermore, the complexity of the class 7-/of possible targets, as measured by 
d, its VC-dimension, also effects the difficulty of tracking the target concept. We show that  if 
the problem of minimizing the number of disagreements with a sample from among concepts in a 
class 7{ can be approximated to within a factor k, then there is a simple tracking algorithm for 
7-t which can achieve a probability e of making a mistake if the target movement rate is at most 
a constant times e2/(k(d + k) In 1), where d is the Vapnik-Chervonenkis dimension of 7-t. Also, 
we show that  if 7-/ is properly PAC-learnable, then there is an efficient (randomized) algorithm 
that  with high probability approximately minimizes disagreements to within a factor of 7d + 1, 
yielding an efficient tracking algorithm for 7-I which tolerates drift rates up to a constant times 
e2/(d 2 In ¼). In addition, we prove complementary results for the classes of halfspaces and axis- 
aligned hyperrectangles showing that  the maximum rate of drift that  any algorithm (even with 
unlimited computational power) can tolerate is a constant times e2/d. 

K e y w o r d s :  Computational learning theory, concept drift, concept learning 

1. Introduct ion 

In the fairy tale, Rip van Winkle slept for 20 years and when he finally woke up, 
he discovered that he was out of step with the world. Presumably, Rip would have 
been much better off if he woke up every day. However, if he woke for only one day 
each week or month or year how comfortable would Rip be with the world after his 
20 year slumber? This leads to the question "How long can one nap before losing 
touch with the world?" which is the subject of this paper. 

More formally, let D be a probability distribution on some set X and ~ be a 
class of {0, l}-valued functions defined on X. In the sleeper example, each h E T/ 

represents a possible state of the world. When Rip van Winkle wakes for the t th 
time, the world is in some state ht E 7-/. Rip gets xt, a randomly drawn (w.r.t. D) 
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element of X,  and is asked for the value of ht(xt). One interpretation is tha t  xt is 
a possible course of action, and ht(xt) -- 1 when xt is appropriate in the current 
world state. Just before Rip goes back to sleep, he is told the value of ht(xt). 

In other words, given (Xl, h i (x i ) ) ,  (x2, h2(x2)), . . . ,  (xt_i,  ht-i(xt-1)), and a 
point xt, Rip is asked to predict the value of ht(xt). If Rip's prediction is incorrect 
we say that  he makes a mistake on x~. If Rip rarely makes mistakes, then he 
successfully tracks the state of the world. In our model, an adversary chooses the 
probability distribution D and the sequence of functions ahead of time, before the 
xi 's are generated. 

The sequence of examples could be uninformative for two different reasons. First, 
xi  through xt-1 may come from an uninteresting part of the domain. Any learning 
algorithm using randomly drawn examples must deal with this potential difficulty. 
A more severe problem is that  the ht chosen by the adversary may be unrelated to 
the previous hi's. If the adversary randomly chooses ht to be either the constant 
function I or the constant function 0, then no algorithm can expect to predict ht(xt) 
correctly more than half the time. We deal with this problem with an assumption 
that  the state of world evolves slowly. Thus the adversary must choose sequences 
of functions where each hi is "close" to h i - i .  This is made precise in Section 2. 

Many readers will notice the similarity of our model to the prediction model 
studied by Haussler, Littlestone and Warmuth (1988, 1990) and others. The key 
difference is that  in our model there is no single target function, but rather a 
succession of related target functions. Since the learner may receive only a single 
example before the target changes, it is unreasonable to expect that  the hypotheses 
converge to a target. However, it is possible to bound the probability of a mistake 
on a trial in terms of how much the target is allowed to change between trials and 
the complexity of 7-/. 

Our results include: 

• a general-purpose algorithm which tolerates target movement rates up to 
cle2/(dln ¼) (Theorem 1 and Corollary 3), and 

• a possibly more computationally efficient variant of this algorithm which toler- 
ates target movements of up to c2c2/(d 2 in ¼) (Theorem 5), 

• bounds for the classes of axis-aligned halfspaces and hyperrectangles showing 
that  for all n and c < 1/12, no algorithm can tolerate target movement greater 
than C3~2/?~, where n is the dimension of the space from which examples are 
drawn (Theorem 12). 1 

In the above, the c4's are constants, e denotes the desired probability of error, and 
d is the VC-dimension of 7-/. The first general-purpose algorithm above is computa- 
tionally efficient whenever the problem of finding a member of T/which minimizes 
the number of disagreements with a set of examples can be solved efficiently. Its 
variant is computationally efficient whenever the problem of finding an element of 
7-I consistent with a set of examples can be solved efficiently, as is the case with 
both halfspaces and hyperrectangles. 
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Our algorithms use only the most recent t examples (rather than the entire se- 
quence) to make their predictions. They work by either minimizing or approxi- 
mately minimizing the number of disagreements with the most recent examples, 
and using the resulting hypothesis to predict the label of the next point. To ana- 
lyze such algorithms, one might imagine applying the results of Vapnik and Chef- 
vonenkis (1971) to show that  if for each hypothesis h in the class, we estimate the 
probability that  h will make a mistake on the next trim by considering the fraction 
of the last t trials on which h made a mistake, none of these estimates will be very 
far from the true estimated probabilities. The movement of the target prevents us 
from simply applying their results. To remedy this, we first bound the probability 
tha t  for any hypothesis h, the estimate we obtain is very far from the estimate we 
would have obtained, had the target not been moving. Then we are ready to apply 
uniform convergence results. 

If we now apply the results of Vapnik and Chervonenkis, however, our analysis 
indicates that  these algorithms are more than a factor of c from the best upper 
bounds we can prove on the maximum tolerable rate of drift. In the case of learning 
stat ionary targets, it was observed by Blumer, Ehrenfeucht, Haussler and Warmuth 
(1989) tha t  uniformly good estimates of the quality of hypotheses were not required 
for learning in Valiant's (1984) PAC-model. Instead, one only needed to bound the 
probability that  an "c-bad" hypothesis was consistent with a sequence of examples. 
They  were then able to shave a factor of 1/c off the bound on the number of 
examples required for learning with accuracy c obtained by simply applying the 
results of Vapnik and Chervonenkis (1971). However, in our case, there may not 
be any hypothesis consistent with more than a few of the most recent examples. 
Nevertheless, given reasonable restrictions on the rate of drift there is, with high 
probability, some hypothesis having very few disagreements with a reasonable sized 
suffix of a random sequence of examples. Thus, we are able to apply another of 
the results of Blumer, et al (1989), which bounds the probability that  any c-bad 
hypothesis is consistent with all but a fraction c/2 of the examples. The number 
of examples required to bound this "e-bad but highly consistent" probability by 
5 is within a constant of that  for the completely consistent case. Thus, ignoring 
constants, the factor of 1/c savings is retained, reducing our tracking bounds by a 
factor of c. 

The result of this analysis is a simple "minimize disagreements" algorithm which 
is within a log factor of optimal for halfspaces and hyperrectangles. A slightly mod- 
ified analysis holds for the case in which the tracking algorithm uses a hypothesis 
which only approximately minimizes disagreements with a suffix of the examples. 

In Section 4, we give a general purpose algorithmic transformation turning a ran- 
domized polynomial time hypothesis finder ~4 (as defined by Blumer, et al (1989)) 
which, with high probability, returns a hypothesis consistent with an input sam- 
ple, into an algorithm which effÉciently approximately minimizes disagreements to 
within a factor of Yd + I, where d is the VC-dimension of the target class. We use 
a technique due to Kearns and Li (1988) and Abe and Watanabe (1992), working 
in stages, where at each stage, we subsample according to the distribution which is 
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uniform over the sample, hoping to get a subsample for which there is a consistent 
hypothesis, so that  we can successfully apply A. We then return the best hypothe- 
sis of those produced by ~4 during the various stages. We use the tightest available 
PAC-learning bounds, due to Anthony, Biggs and Shawe-Taylor (1990), to argue 
that  with high probability, a hypothesis consistent with the subsample can' t  be too 
bad on the whole sample. 

Littlestone and Warmuth (1989) describe a variant of the weighted majority Mgo- 
ri thm where the weights are kept above some lower limit. This allows the weighted 
majority algorithm to recover and adapt to changes in the target. However, if the 
target changes k times, then their mistake bound for the weighted majority algo- 
ri thm goes up by about a factor of k. It is difficult to translate these bounds into 
our model as our targets potentially change with each example. 

Kuh, Petsche and Rivest (1990,1991) studied a variety of models in which the 
target changes over time, including cases in which the target drifts slowly. For 
many of their main results, it is assumed that  the sequence of targets is produced 
by an adversary which at each time has access to the earlier random examples seen 
by the tracking algorithm. In contrast, we assume that  the sequence of targets is 
chosen by an adversary before any random examples are generated. 

Aldous and Vazirani (1990) studied a different version of learning in a changing 
environment. In their model the target concept is fixed, but the examples are 
generated by a Markov process rather than from a fixed distribution. 

The conclusions contain potential applications, observations, and a list of open 
problems. 

The results presented here improve on preliminary results described by the au- 
thors (1991). 

2. Notation and Mathematical Preliminaries 

Let N denote the positive integers and Q denote the rationals. Let In denote the 
natural logarithm, and log denote the logarithm base 2. 

After Vapnik (1989), we will adopt a naive att i tude toward measurability, assum- 
ing that  every set is measurable, and simply speak of probability distributions on 
sets. This assumption is not unreasonable, since if a digital computer is to input or 
output representations of arbitrary set elements, the set must be countable. If X is 
a set, and D is a probability distribution on X,  and if ¢(x) is some mathematical  
statement containing x as a free variable, define Prx~D(¢(x))  as D({x  • X :  ¢(x)}). 
Define ExcD similarly for expectations of random variables defined on X.  We will 
drop the subscripts where there is no possibility of confusion. 

If X is a set and 7-/is a family of {0, 1} valued functions defined on X,  then the 
Vapnik-Chervonenkis (1971) (VC) dimension of 7-/is 

max{ITI : T = { t l , . . . , tk}  C X , { ( h ( t l ) , . . . , h ( t k ) ) :  h • H}  = {0, 1}]T]}. 

We will assume throughout that  all classes discussed have at least two elements, 
and thus have VC-dimension at least one. 
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A tracking problem consists of a set (or domain) X and a family 7-/of {0, 1}-valued 
functions defined on X,  called the target class. A (0, 1} valued function defined on 
X is called a concept. We will speak of a concept and the subset of X on which 
it takes value 1 interchangeably. An example is an element of X × {0, 1}, and a 
sample is a finite sequence of examples. A function h agrees (resp. disagrees) with 
an example (x, p) when h(x) = p (resp. h(x) 7£ p). A function is consistent with a 
sample if it agrees with all examples in the sample. We often use the discrete loss 
function, l(c~, fl), defined to be 0 when c~ = ~ and 1 otherwise, to count numbers of 
disagreements. 

Let F be the set of all infinite sequences of bits, and 5 /be  the distribution which 
sets each bit in the sequence independently with probability 1/2. A (randomized) 
tracking strategy is a mapping from (Um(X x {0, 1}) m) X Z x F to {0, 1}. 

If S = {ft}tcN is a sequence of concepts and 2 E X n with n > m, the m-sample 
of S generated by 2, written saturn(S, 2), is the sequence of pairs ((xl, f l ( x l ) ) ,  ..., 
(xm, fm(Xm))). Informally, samm(S, 2) is simply the first m examples which are 
used by a tracking strategy to predict fm+l(Xm+l). 

Let D be a probability distribution over X. If A _> 0, a sequence (ft)tE N of 
concepts is called (A, D)-admissible if for each t C N, PrxdD (ft(x) ~ ft+l(X)) <_ A. 

Let A be a tracking strategy. We say that  A (e, A)-tracks ?-/if there is an m0 c N 
such that  for all m > m0, for all probability distributions D on X,  and for all 
(A, D)-admissible sequences S = (ft}teN of functions in 7-/, 

Pr~eD.~+l,~eu(A(samm(S, 2), Xm+l, ~) 7 £ fm+l(Xm+l)) ~__ e.  

We say that  7-/is (e, A)-trackable if there is a tracking strategy which (e, A)-tracks 
7-/. 

To discuss issues of computational efficiency, we will need the following definitions. 
We say that  7-/-- {7-/n : n E N} is a stratified tracking problem if for each n E N,  
(Qn, 7-/n) is a tracking problem. 2 An algorithm for a stratified tracking problem 
consists of a tracking algorithm An for each n. We assume that  the random bits 
are presented on an auxiliary tape, and thus accessing the next random bit in the 
sequence takes unit time. 

We say that  A = {An} efficiently tracks 7-/if there is a polynomial p and positive 
constants c and k such that  for all relevant c, n, 

• each prediction is computed in time bounded by p(1/c, n, b), where b is the 
number of bits needed to encode the "largest" example seen. 

• at most p(1/e, n, b) space is required to store information between trials, 

• if A < c(e/n) k, An (e, A)-tracks 7-/n. 

Note that  the bound on the space required is not allowed to grow with the num- 
ber of trials. Thus an efficient tracking algorithm may not, in general, keep all 
previously seen examples. 
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3. Increasingly unreliable evidence and hypothesis evaluation 

In this section we analyze a simple tracking algorithm which ignores M1 examples 
beyond some time in the past and uses the hypothesis which disagrees with the 
fewest remaining examples for prediction. The results of this section, together with 
those of Section 5, show that  this apparently naive algorithm is within a constant 
times a log factor of optimal for the classes of halfspaces and hyperrectangles. We 
also show that  it is sufficient to only approximately minimize disagreements to 
within a constant. 

As discussed in the introduction, the fraction of the considered examples dis- 
agreeing with a hypothesis can be viewed as an estimate of the probability tha t  
the hypothesis will make a mistake on the next example. In the following series of 
lemmas we bound the probability that  there exists a hypothesis h in class ~ / such  
that  the estimate of h's error is small but the true probability that  h will yield an 
incorrect prediction is large. 

We will make use of the standard Chernov bounds, which we state here. This 
form of the bounds appears in Angluin and Valiant (1979), Littlestone (1989), and 
Hagerup and Rub (1990). 

L e m m a  1 Let t E N ,  and let rl, ...,rt be independent {0, 1}-valued random vari- 
t ables. Choose a, 0 < a < 1. Let p = ~i=1 Pr( r i  = 1). Then 

P r  ri >_ (1 + ~)# __. e - ~ " / 3 .  

For each h C 7-/, f c ~ ,  m E N, • E X m, define 

e r / (h)  = PrxeD(h(x)  • f ( x ) )  

(D is to be understood from context), and define 

m 

d r / in ,  ~) = 1 E l(h(x~), f (x i ) ) .  
m 

i = 1  

Note that  grf  is the empirical estimate of the error of h obtained when the (un- 
changing) target concept is f .  

Our first lemma follows immediately from the results of Blumer, et al (1989). 

L e m m a  2 For any set X and concept class TI over X ,  for any distribution D 
on X ,  for any f E ~ ,  for all 0 < ~ < 1/2, if  m > 64d~ In ~ ,  where d is the 
VC-dimension of Tl, then 

Prx~D-~(~h e 7-/: err(h)  _> ~,drf(h) < e/2) <_ ~. 

We are now ready to present the main result of this section. The following theorem 
shows that  if a randomized tracking strategy is likely to predict with a hypothesis 
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tha t  approximately minimizes disagreements on the previous examples, then the 
probabil i ty that  the algorithm makes a mistake on the next example is small. 

T h e o r e m  1 Let ( X , ~ )  be a tracking problem, d = VCdim(~) ,  and choose c > 
O. Suppose A is a randomized tracking algorithm which, with probability at least 
1 - e/6, predicts using an h c 7-I having at most k times the min imum number of 
disagreements on the previous trials. Choose a distribution D on X and 

( 1 9 2 d i n 1 9 2  72k 6 )  
r e _ m a x  - -  - - , - - l n  . 

e 

Then if the sequence of targets from ~ ,  S = ( f i ) i cN,  satisfies 

m 

E PrxeD( f i (x )  ~ fm+l(X)) <_ me/(24k),  
i = 1  

the probability that A makes a mistake on the (m + 1)st trial is at most e. 

Proof: Fix m and k. For each 2 E X m, let mindis(2) be the set of all hypotheses 
in ~ which approximately minimize disagreements with saturn(S, ~) to within a 
factor of k. 

Define F to be the event that  the hypothesis chosen by A is not in mindis(~). 
Define F ~ to be the event that  there are more than  twice the expected number  of 

disagreements between the previous trials and fro+l, i.e., 

m 

F'  = {~ e X m  : E l ( f i ( x i ) , f m + l ( x i ) )  > me/(12k)} .  
i = 1  

Applying Lemma 1 (with a = 1), we have 

P r i e D  m (F  l) ~ e -mc/(72k) <_ e/6, 

since m > 72k In 6 
- -  C 3 "  

Define E = F U F r. Then P r ( E )  < e/3. 
For each ~ E X m, (7 E F, let h~,~ be A's hypothesis after seeing the sequence 

(Xl, f l ( x l ) ) ,  ..., (x,~, fm(Xm)) 

of examples and the random sequence (7. Let 

G = {(~,(7) • Z m × F :  er/m+l(h~,~) > e/3}, 

be the set of sequences of points and random bits that  cause A to produce an 
inaccurate hypothesis. 
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If mistake is the event that A makes a mistake on trial m + 1, we have 

Pr(e,y,~)~D-~ xDxu(mistake) <_ Pr(mistake 0 F,) + Pr(mistake N E) (1) 

< Pr(mistake 0 E) + Pr(E)  (2) 

<_ Pr(mistakeO E) + e/3 (3) 

< Pr(mistake n E n G) + 
Pr(mistake n E C~ G) + e/3 (4) 

< Pr ( / )  A G) + 2e/3. (5) 

Next, we have 

Pr(/~ 0 G) = Pr(erfr~+ ,(he,.) > e/3 
m 

and --1 E l(fi(xi), fm+i(xi) ) <_ e/(12k) 
m 

i = I  

and he,~ E mindis(~)) (6) 

< P r  (erfm+~(he,,) > e/3 
m 

and 1 E l(k(xi)' fm+l(Xi)) <_ e/(12k) 
m 

i = l  

and --1 E l(f~(xO, he,~(x~)) <_ e/12 (7) 
m i = 1  

since f,~+l E ~ and h~,~ E mindis(~) implies that h~,~ has at most k times as many 
disagreements as fm+i. Recalling that k > 1 and applying the triangle inequality 
for l, we have 

Pr(/~ []G) < P r  (erf~+l(he,~) > e/3 

) and --1 E l(h~,o(xi), fm+l(Xi)) _< e/6 (8) 
r n  / = 1  

< (9) 

by Lemma 2, since m >_ ig~a In -7-'192 Plugging in to (5) yields the desired result. [] 
If {fi) is a (A, D)-admissible sequence of functions, then 

PrxcD(fi(x) # fm+i(x)) _< (m -- i + 1)A, 

and 

m 

EPrxcD( f i ( x )  ¢ fm+i(x)) <_ m(m + 1)A/2. 
i = 1  

Thus we obtain the following corollary. 
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C o r o l l a r y  2 Let A be a tracking strategy that predicts using a .randomly chosen 
hypothesis which, with probability 1 - e/6, approximately minimizes the number o] 
disagreements on the first m trials to within a factor of k. Choose e and m as in 
Theorem 1. Then if  A < 12k(~+1), the probability that A makes a mistake on the 

(m + 1)st trial of a (A, D)-admissible sequence of functions is at most c. 

Note that  by ignoring (not counting disagreements with) examples beyond a cer- 
tain point in the past we can, loosely speaking, make any later trial "look like" the 
(m + 1)st trial. This observation leads to the following Corollary. 

C o r o l l a r y  3 Let X be a domain, and 1-{ be a class of concepts over X of VC- 
dimension d. Assume A is a randomized algorithm which with probability 1 - ~/6 
finds an h E ?-{ which approximates, to within a constant factor k, the minimum 
number of disagreements on a sample. Let A ~ be the tracking algorithm which pre- 
dicts using the hypothesis produced by A from the most recent m = [ (cld /e) log(i/c)] 
examples, where Cl > 0 depends on k. There is a positive constant c2, depending 
only on k, such that for any 0 < A < ~ where 

C2 ~2 
A < - -  

- -  i ' d log 

strategy A'  (e, A)-tracks 7-{. 

4. Efficiently Approximately Minimizing Disagreements 

In this section we discuss the application of the techniques of Kearns and Li (1988) 
to the problem of approximately minimizing disagreements from among the hy- 
potheses in a class 7-{, showing that  if there is an efficient algorithm which returns 
a hypothesis with no disagreements if there is one, then there is an efficient ran- 
domized algorithm which with high probability returns a hypothesis that  minimizes 
disagreements to within a factor of a constant times the VC-dimension of 1-/. Re- 
sults very similar to those described here are implicit in the work of Kearns and Li 
(Theorems 12 and 16), although some minor modifications are necessary, u Also, we 
make use of the techniques of Kearns and Li (1988) in our proof. Furthermore, al- 
gorithm Min-Disagreements from Figure 1 is very similar to the Algorithm B given 
in a recent paper by Abe and Watanabe (1992), which was described to us some 
time ago by Abe. However, our applications appear to be substantially different. 

First, the results of Anthony, Biggs and Shawe-Taylor (1990) may be applied 4 to 
obtain the following. 

T h e o r e m  4 (An thony ,  et  al (1990)) Let X be a set and let ~ be a concept class 
over X of VC-dimension d. Let D be a probability distribution over X .  Choose 
f • 7-{ and e < 1/2. Then if  m > (7d/e) ln(9/e), 

Pr~cDm(3h • 7-/: Vi, h(xi) = f ( x i )  and PrvcD(h(y  ) ~ f (y ) )  >_ e) << 1/2. 
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Algorithm Min-Disagreements 

Inputs: 

a sample S of m examples; 

l, the number of iterations to run; 

d = VCdim(7-ln); 
desired approximation factor 7 > 1. 

Uses: 

A randomized algorithm A for the consistency problem 

associated with ?~n. 

choose an h E 7-/n arbitrarily; 

for opt := I to rn/v  do 

s := [ ( 7 d ( m -  ~-pt)/vo"pt)ln(9(m- ~'ppt)/vg~-ppt)]; 

for j := l to l do 
draw S ~, an s-element subsample of S uniformly at random with 

replacement; 

run A on S ~ obtaining hypothesis h~; 

if h ~ has fewer disagreements with S than h, set h := h~; 

end for;, 
end for, 
return h; 

Figure 1. Algorithm Min-Disagreements 

Now, we turn to the main result of this section. If ~ is a concept class, then the 
consistency problem associated with 7-/is as follows: 

Given a sample, find any hypothesis in 7-/consistent with the sample if there 
is one, otherwise return any h C 7q. 

A randomized polynomial time algorithm for the consistency problem returns, in 
t ime polynomial in VCdirn(?-l) and the size of the sample, an h in 7{. If the sam- 
ple is consistent with some hypothesis in ~ then, with probability q > 1/2, the 
returned h will be consistent with the sample. Note that  by repeatedly running 
such an algorithm (and checking each result against the sample) an arbitrarily high 
confidence can be acheived. 

Algorithm Min-Disagreements (see Figure 1) uses a randomized polynomial time 
algorithm for the consistency problem to approximately minimize the number of 
disagreements. 
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It should be obvious that  if A runs in randomized polynomiM time then the 
algorithm Min-Disagreements runs in time polynomial in d, 1 and m. 

T h e o r e m  5 For any n E N,  7-l~ C 2Q ~ of VC-dimension d, and set of m examples 
S, i f  A solves TI~ 's consistency problem with probability q > 1/2 and there is an 
element of ~ consistent with all but opt of the examples in S, then Algorithm 
Min-Disagreements with inputs S ,m, l ,d ,7  finds a hypothesis consistent with all but 
(~/ + 1)opt examples in S with probability at least 

1 - exp( - ( l (2q  - 1)/2eU'~)(7opt/9(m - opt))7d/~). 

Proof: Choose m E N and let S = {(xi, Yi) : 1 < i < m} be a sample. Let 

opt = min{l{i : h(xi) ~ Yi}l: h e 7-/} 

be the minimum possible number of disagreements between the sample and an 
h C ?-/. We focus our attention on the case where opt < m/( 'y + 1), since otherwise 
the theorem is trivial as any hypothesis is consistent with all but (7+ 1)opt examples 
of S. 

Choose hopt from among those hypotheses in ~ n  which have opt disagreements 
with S. Let bad c S be the subset of the examples in S with which hopt disagrees. 
Let D be the uniform distribution over S, and let D'  be the uniform distribution 
over S -  bad. 

Consider the stage of the algorithm where opt = opt and a particular iteration 
j of the inner loop where .A produces hypothesis hq Let clean be the event that  
none of the examples sampled during iteration j are in bad and consist be the event 
tha t  h' is consistent with the subsample. By applying a standard approximation, 
we have 

Pr(clean and consist) >_ q(1 - opt~m) s (10) 

( 5 
_> qexp \m----~ppt/ (11) 

Now define close to be the event that  h ~ agrees with all but 7 opt of the examples 
in S -  bad, i.e. Prz~D,(h'(z) ~ hopt(Z)) <_ 7 opt /(m - opt). (Note that  when close 
occurs, h' agrees with all but (7 + 1)opt of the examples in S.) We have 

Pr(s,,~)cD~×u(close I clean and consist) = Pr(s,,~)~(D,)~×u(close I consist) 

since the distribution obtained by conditioning D s on clean is (D') ~ (recall that  
5t is the uniform distribution over sequences of bits, so that  (r represents the ran- 
domization of consistency algorithm ,4). Note that  if both clean and consist occur 
then h' and hop t agree with the examples in the subsample. Thus, 

Pr(s',~)eD~ ×u(close I clean and consist) 
_< Pr(s,,~)e(D,)~ ×u(close and consist) / P r (  consist) 
_ ~Pr(s,,~)c(D,), xu(PrzeD,  (h (z) ~ hopt(Z)) > ~/opt/(m - opt) (12) 

and V(x, y) e S', h'(x) = hopt(X)) 
_< 1/2q, 
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where the last inequality follows from Theorem 4 and the algorithm's choice of s. 
Thus, 

Pr(s,,~)eD~×u(elosel clean and consist) >_ (2q -  1)/2q. 

Now we can bound the probability of close. 

Pr(s,,~)eDs×u(close) >>_ Pr(close and clean and consist) (13) 

= Pr(close I clean and consist)Pr(clean and consist) (14) 

> 2 q -  1 exp ( -opts  "~ (15) 
- 2 \ m -  opt/ 
> 2 q - - l e x p ( - - o p t  ~ ( -Td  9 (m-op t ) )  
- ~ \ m -  opt/exp in 7V~p- f (16) 

> 2q 2 le_1/,), ( ~___opL ~ 7d/')" (17) 
- \ 9(m - opt) ] 

Thus, the probability that the hypothesis returned after l iterations has more 
than (7 + 1)opt disagreements with S is at most 

( 2q-1 (7opt  h7d/~hl< (--/(2q__--1)( 7opt )Td/-r) 
1 2--e~ 9(rrT- opt)] ] _ exp ~ 2el/,7 \ 9 ( m  -- o p t )  " 

This completes the proof. [] 

Corol lary  6 If 7 = 7d and 1 >_ (3m/(d(2q - 1)))ln(1/5) then with probability at 
least 1 - 5 Algorithm Min-Disagreements returns a hypothesis consistent with all 
but (7 + 1)opt of the examples in S. 

Proof: If opt = 0, then the Corollary is trivial. Assume opt > 1. Then 

_ exp \ 2el/3, Ik9(Tr~-- opt)] ] (18) 

-71dopt(2q:l) 
< exp 18(m--opt)eU(Td)] (19) 

(-71d(2q-1)  ) (20) 
_< exp 1--g--me 1~ 

( - l d ( 2 q - 1 )  ) (21) < exp ~ -  

< (22) 

Pr(algorithm fails) 

This completes the proof. [] 
We can now take advantage of the following two theorems, which address learning 

in Valiant's PAC model. 

a 
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Theo rem 7 (P i t t  and  Valiant (1988)) If  7-{ C un2q ~ is properly PAC learn- 
able, then there is a randomized polynomial time algorithm which solves the consis- 
tency problem for ~ .  

T h e o r e m  8 (Blumer,  et al (1989)) / f  ~ = UnT-gn, where each 7in c Qn is 
properly PAC learnable, then there is a polynomial p such that for all n • N,  
VCdim(7-l, 0 <_ p(n). 

Combining these with Corollary 6 we obtain the following. 

Corol la ry  9 Let ~ be a stratified tracking problem. Then if the corresponding 
learning problem is properly PA C learnable, 7-{ is efficiently trackable. 

Combining Corollary 6 with Theorem 3, we obtain the following result for halfs- 
paces and hyperrectangles in particular. Let HALFSPACES,  be the set of indicator 
functions for the following sets: 

{{~ • Qn : ~ . ~  k b} : ~ • Q~,b • Q}. 

Let BOXESn be the set of indicator functions for the set of axis parallel hyperrect- 
angles in n-dimensional space, i.e. 

n 

{H[ai ,  bi]: ~, b • Q~}. 
i = 1  

Corol la ry  10 There is a constant c > 0 and there are efficient tracking algorithms 
for each of {HALFSPACES,~ : n • N} and {BOXESn : n • N} that (e,A)-track 
these classes for 

c e  2 
A <  

- n 2 log(l/e)'  

Finally, Kearns and Li (1988) showed that, loosely speaking, significantly im- 
proving the factor of approximation of our algorithm for minimizing disagreements 
for hyperrectangles (in particular, removing the dependence on d) would lead to 
corresponding improvements on the approximation algorithm for set cover, which 
has not been significantly improved since the 1970's. Nevertheless, it remains possi- 
ble that, via other methods, one might obtain efficient algorithms that track these 
classes at rates even closer to optimal. The results of this section have recently 
been improved somewhat (Long, 1992), but the linear dependence on d remains. 

5. Upper bounds on the tolerable amount of drift 

In this section we prove upper bounds on the tolerable amount of drift for two 
commonly studied concept classes: halfspaces and axis-aligned rectangles. Our 
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upper  bounds show that  the algorithm of Section 3 is within a log times a constant 
factor of optimal for each of these classes. 

First, we will prove an upper bound for BASICn, the class of indicator functions 
for the following family of subsets of the unit interval: 

n 

(i + : [0,1]n}. 
i=1 

This class can be viewed as dividing the unit interval into n subintervals of equal 
length. Every concept in the class is the union of an initial segment from each of 
the subintervals. It  is easy to see tha t  VCdim(BASICn) = n. 

Our argument for the upper bound on BASICn uses ideas from earlier arguments 
by Ehrenfeucht, et al (1989) and Haussler, et al (1990) giving lower bounds on the 
probabil i ty of a mistake when predicting a s tat ionary target  function. 

The  intuition behind the argument is as follows. Suppose there is a water truck 
rolling down a section of dusty road at 10 kilometers per hour. Either the truck 
is empty  or it is spraying water (unknown to us, but both  possibilities are equally 
likely). Each minute a point on the road is picked at random and we predict whether 
or not the point is wet before looking at it. If  the point has not yet been passed 
by the water  truck, then we can safely predict tha t  it is dry. If  a previously picked 
point had already been passed by the water truck when it was picked, then we 
know whether or not the truck is spraying water and can always predict correctly. 
However, our prediction always has a 1/2 chance of being wrong on the first point 
which the water truck has passed. This idea can be extended to to n watertrucks 
(each of which is independently spraying or empty) on n different roads. Whenever 
a point on road i tha t  has been passed by truck i is picked, and none of the previous 
points had been passed by truck i when they were picked, we will make a mistake 
with probabil i ty 1/2. 

T h e o r e m  11 For all n E N,  BASICn is not (c, A)-trackable if c < 1/e 2 and 
A >_ e%2/n. 

Proof: By contradiction. Assume tha t  tracking strategy A (~, A)-tracks BASICn 
for some 0 < c _< 1/e 2, n E N, and A _> e4c2/n. Thus after seeing at least m0 
examples drawn from distribution D and labeled by any (A, D)-admissible sequence 
of targets, the probabili ty tha t  A makes a mistake on the next example is at most  
C. 

Without  loss of generality, set A = e4c2/n. With the restriction on c, A _< 1/n 
(and n _< l / A ) .  Also, since no non-degenerate class is (c, A)-trackable if A > e and 
c _< 1/3, we may assume tha t  A _< 1/e 2. 

Let = Lv  J. Since _< _< V /A, we get < t < V -/A and 
et < n /A .  These inequalities will be used at the end of the proof. 

For each 2 E {0, 1} n and 0 < i < t, define f~,i E BASICn as the indicator function 
for 

U~= 1 [j/n, (j + iAzj) /n) .  
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Since t _< 1 /A (using n _< l /A) ,  every interval in the union has length at most 
1in. Note that fz,0 is the function mapping everything to 0. Choose m such that  
m > t + l  and m > m0. Let S(2) be the sequence o f m  elements of BASICn 
defined by S(e) = (fz,0, f~,0, . . . ,  f~,o, f~,l, f~,2,...,  f~,t). Let U be the uniform 
distribution on X = [0, 1]. One can easily verify that  for all e c {0, 1} n, S(e) is 
(A, U)-admissible. 

Let E be the event that  for a random ~ c [0, 1] m, xm is the first "passed" point 

in its subinterval. More formally, Xm [nx,~ _< __tA and for all 0 < i < t, xm-t+i 
n n 

n n 

For each e E {0, 1} n, 2 E [0, 1] ~,  o c F, let mistake(e, 2, o) be the event that  

A(samm_l(S(e), YJ, Xm, 0) # fz,t(Xm), 

i.e. that  strategy A incorrectly predicts the label of the ruth example where o 
represents the strategy's internal randomization. Finally, let U t be the uniform 
distribution over {0, 1} n. We have 

Pr(~,z,~)c u-~ x v' ×u (mistake(2, 2, 0)) 
> Pr(mistake(e, 2, o ) I E ) P r ( E  ) = ½Pr(E) 

since, when given E, it is equally likely that  f~,,t(Xm) is 0 or 1, independent of the 
previous examples. Now, 

[nxmJ <_ tA and 
P r ( E )  = P r  xm n n 

t - -1  

= tAH(1 -Ai n ) (24) 
i = 1  

t - 1  ( __~. "~ 
> tA H e x p  

- - i f -  
= tA exp ~ i  

\i=i n 

> tAexp  2 ( e ~  1) n ] 

> 

(25) 

(26) 

(27) 

 d exp ( 2(e! T)) 
(since t <_ n/(eA) ) (28) 

(since ~ x//n-/A < t < ~ )  (29) 
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Noting that  ~exp ( ~ )  > ~ yields 

Pr(mistake) > e2 

Since 

(30) 

(31) 

Pr(~,~,o)~u-~+l ×u,×u(mistake( 2, 2, cr) ) > ¢, 

there is a 2 for which 

Pr(~,¢)cu,~+l ×u (mistake (2, 2, ~)) > ~, 

contradicting the assumption that  that  A (¢, A)-tracks BASICn.[] 
Recall the definitions of HALFSPACESn and BOXESn from the previous section. 
The following theorem follows from the bounds for BASICn via a trivial embed- 

ding of BASICn into HALFSPACESn and a similar embedding of BASIC2n into 
BOXESn using a simplified version of the prediction preserving reductions (Pit t  
and Warmuth, 1990). The same embeddings were employed by Haussler, et al 
(1990). The details are omitted. 

T h e o r e m  12 For all ¢ < 1/e 2 and n E N, HALFSPACES~ is not (¢, A)-trackable 
when A > e4¢2/n, and BOXES~ is not (~, A)-trackable when A > e4c2/2n. 

This theorem, along with the facts that  the VC dimension of HALFSPACESn is 
n + 1 and that  of and BOXESn is 2n, establishes that  the general purpose algorithm 
described in Section 3 is within a constant times a log factor of optimal for these 
two natural concept classes. 

~8 

6. Conclusions 

We have defined a learning model in which the target concept is allowed to change 
over time and discovered a general-purpose algorithm whose performance nearly 
matches our lower bounds (on at least two natural target classes). However this 
algorithm relies on a potentially expensive subroutine for minimizing disagreements 
within a constant factor. To combat this difficulty, we have found an efficient way 
to approximately minimize disagreements to within a factor that  depends (linearly) 
on the VC-dimension. This gives us a second generic algorithm which, although 
not proven able to tolerate quite as much drift, is more likely to be computationally 
efficient (as it is for halfspaces, hyperrectangles, and any other target class which 
is properly PAC learnable). 

Our algorithms are robust in the sense that  they don't  need to know the rate of 
drift A ahead of time, although attempting to achieve a t /accuracy  e amounts to 
an implicit assumption of an upper bound on A. 
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Although our results have usually been stated in terms of how much target motion 
can be tolerated, they can viewed in other ways. Bounds like "all A < cc2/(d 2 In c) 
are tolerated" are easily converted to "the error rate, ~, is at most c~dA U(2-~) for 
arbitrarily small a." Also, our bounds indicate how frequently one must sample 
to achieve a desired accuracy when given a bound on the continuous rate of target 
drift. This interpretation may be the more useful one. 

Consider an assembly line process where the machines slowly drift out of align- 
merit, gradually increasing the defect rate. One wants to sample the finished prod- 
ucts in order to determine when an adjustment is required. It is often infeasible to 
inspect each item produced as the inspection process might be very expensive or 
even destroy the good. Thus a more complicated inspection plan indicating when 
to inspect and how to evaluate the inspection results is needed. The results in 
Section 3 are applicable to this problem. 

Intuitively, the following approach seems as if it should lead to improved track- 
ing algorithms. Instead of simply minimizing the number of disagreements with 
a suffix of the previous examples, an algorithm might weight previous examples 
with gradually decreasing nonnegative weights which sum to one. Then for each 
hypothesis h in the target class, the algorithm might use the sum of the weights of 
the examples with which h disagrees as the estimate of the probability that  it will 
make a mistake on the next trial, then use the hypothesis which minimizes this, 
possibly more accurate, estimate. One wonders whether such an algorithm might 
significantly improve on the simple "minimize disagreements" algorithm analyzed 
in this paper. 

It is easy to see how to alter our arguments to obtain results in a related model 
(often called "agnostic learning") in which the algorithm doesn't know a priori a 
class which contains each of the sequence of targets, and tries to predict nearly as 
well as possible using hypotheses in a certain class ~-/. More formally, suppose for 
a worst case sequence of concepts f l ,  f2,.. .  (not necessarily in the hypothesis class 
T/), for each t we defined ~t to be minhcn P r (h (x )  # ft(x)). It can be shown by 
modifying the proofs of Section 3, that  for A _< cc3/(dln(1/c)),  an algorithm can 
achieve probability of mistake at most ~t + e for all large enough t (Helmbold and 
Long, 1991). One wonders whether these results can be improved. 

Haussler (1991) has generalized the results of Blumer, et al (1989) to apply to 
learning in many frameworks, one of which is the learning of real valued functions. 
Using Haussler's results, the techniques of Section 3 can trivially be extended to ap- 
ply to uniformly bounded classes of real valued functions (e.g., feed forward neural 
networks of a particular architecture which has one output  node), where, in place 
of the Vapnik-Chervonenkis dimension, we use Pollard's (1984) pseudo-dimension, 
and instead of wanting to make the probability of mistake small, we want to make 
the expectation of the absolute value of the difference between our prediction and 
the t ru th  small. In place of an algorithm for minimizing disagreements, we require 
an algorithm for minimizing the sum of absolute errors on a sample. It would be 
interesting to obtain results for more general loss functions, e.g. the square loss. 
Also, we have no general lower bounds for the tracking of real valued functions. 
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O t h e r  n a t u r a l  p r o b l e m s  inc lude:  o p t i m i z i n g  t h e  c o n s t a n t s  a n d  r e m o v i n g  t h e  

1 / I n  ¼ g a p  b e t w e e n  ou r  b o u n d s  on  A .  
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1. Since, in both the case of halfspaces and that of hyperrectangles in n-dimensional space, the 
first algorithm above tolerates drift rates up to a constant times e2/(nln ¼), these bounds 
establish the fact that the first algorithm is within a constant times a log factor of optimal. 

2. We assume rationals are encoded by encoding both the numerator and the denominator in 
binary. 

3. The difference between the result trivially obtainable by combining Theorems 12 and 16 of 
Kearns and Li (1988) and our result is that in the former, the sample is restricted to have the 
same number of positive and negative examples. 

4. For d > 1, use Theorem 2.1 of their paper with 6 = 1/2, and for d ---- 1 a simple argument 
along the lines of the proof for their Theorem 2.1 suffices. 
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