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Abstract.  For a common class of artificial neural networks, the mean integrated squared error 
between the estimated network and a target function f is shown to be bounded by 

where n is the number of nodes, d is the input dimension of the function, N is the number of 
training observations, and Cy is the first absolute moment of the Fourier magnitude distribution 
of f .  The two contributions to this total risk are the approximation error and the estimation error. 
Approximation error refers to the distance between the target function and the closest neural net- 
work function of a given architecture and estimation error refers to the distance between this ideal 
network function and an estimated network function. With n ~ Cf (N/(d log N))1/2 nodes, the or- 
der of the bound on the mean integrated squared error is optimized to be O(Cf ((d/N) log N)1/2). 
The bound demonstrates surprisingly favorable properties of network estimation compared to tra- 
ditional series and nonparametric curve estimation techniques in the case that d is moderately 
large. Similar bounds are obtained when the number of nodes n is not preselected as a func- 
tion of Cf (which is generally not known a priori), but rather the number of nodes is optimized 
from the observed data by the use of a complexity regularization or minimum description length 
criterion. The analysis involves Fourier techniques for the approximation error, metric entropy 
considerations for the estimation error, and a calculation of the index of resolvability of minimum 
complexity estimation of the family of networks. 

g e y w o r d s :  Neural nets, approximation theory, estimation theory, complexity regularization, 
statistical risk 

1. Introduction 

W i t h  a r t i f i c ia l  n e u r a l  n e t w o r k s  or  o t h e r  m e t h o d s  of  p a r a m e t r i c  e s t i m a t i o n  of  func-  

t ions ,  i t  is de s i r ab l e  to  b a l a n c e  t h e  o b j e c t i v e s  of  sma l l  a p p r o x i m a t i o n  e r ro r  a n d  

s m a l l  e s t i m a t i o n  er ror .  T h e  a p p r o x i m a t i o n  e r ro r  b e t w e e n  t h e  t a r g e t  f u n c t i o n  a n d  

t h e  c loses t  n e u r a l  n e t w o r k  f u n c t i o n  o f  a g iven  n e t w o r k  f a m i l y  c a n  be  m a d e  as s m a l l  

as  de s i r ed  by  i n c r e a s i n g  t h e  n u m b e r  of  nodes  (see, for e x a m p l e ,  C y b e n k o ,  1989, 

H o rn ik ,  et .  al.,  1989, a n d  B a r r o n ,  1993). Howeve r ,  a l a rge  n u m b e r  o f  n o d e s  m a k e s  

i t  m o r e  di f f icul t  t o  e s t i m a t e  a c c u r a t e l y  t h e  p a r a m e t e r s  of  t h i s  n e t w o r k  for m o d e r a t e  

s a m p l e  sizes. I n  th i s  p a p e r  we add res s  t h e  c o m b i n e d  effect  of  t h e  a p p r o x i m a t i o n  

a n d  e s t i m a t i o n  e r ro r  on  t h e  overa l l  a c c u r a c y  of  a n e t w o r k  as an  e s t i m a t e  o f  t h e  

t a r g e t  func t ion .  T h e  t a r g e t  f u n c t i o n  is no t  a s s u m e d  to  be  k n o w n  or  e v e n  k n o w n  to  
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be a member of a finite-dimensional family. Rather it is only assumed to satisfy a 
certain smoothness property expressed through the Fourier transform. Previously, 
White (1990) showed that  the overall statistical risk of an estimated neural network 
converges to zero as the sample size and number of nodes increases to infinity. Here 
we develop bounds that  demonstrate the rate of convergence. 

The theory of learning applied to neural networks, as in (Haussler, 1992), has 
focussed on the estimation error component of the problem: that  is, the difference 
in risks between an estimated network and the best network of a given size and 
architecture. The same may be said of much of the parametric statistical theory (as, 
for example, in Seber and Wild, 1989) that  could also be applied to artificial neural 
networks. In contrast, the nonparametric statistical theory of curve estimation 
and classification (which has seen extensive development for the last 35 years), has 
shown that  one can deal effectively with the total risk of the estimation of functions, 
including both the approximation error (bias) and the estimation error (variance), 
at least for functions of moderately small dimension, for target functions restricted 
only by general smoothness properties (see, for example, Silverman (1986), Eubank 
(1988), Hardle (1990)). 

In recent years, theory has been developed in which a parametric family is not 
restricted to a given size, but rather the dimension of the family is increased at 
a certain rate as a function of the sample size, so as to get the smallest possible 
total  risk, uniformly over classes of smooth functions, (see Cox, 1988, Stone, 1990, 
Barron and Sheu, 1991). A surprising aspect of this work is that  the same rates of 
convergence of the total risk that  are achievable by nonparametric estimators can 
be achieved by sequences of parametric families. It is also possible in this context 
to allow the dimension of the family to grow, not as a deterministic function of 
the sample size, but  rather as determined from data  so as to optimize a model 
selection criterion (see, for instance, Vapnik, 1982, Rissanen, 1983, Li, 1987, Barron 
and Cover, 1991). In this paper we build on past work of the author (Barron, 
1989, 1990) where a theory of model selection is developed that  is applicable to 
artificial neural networks and other nonlinear models. Bounds on the total risk of 
network estimators are given there in terms of an index of resolvability. This index 
of resolvability expresses the bounds on the risk in terms of the approximation 
error, the complexity of the networks, and the sample size (see Theorem 2 below). 
However, at the time there were not yet available bounds on the approximation 
error that  could be used to complete the application of tha t  theory to artificial 
neural networks. 

Very recently, a bound on the approximation error for feedforward networks with 
one layer of sigmoidal nodes has been developed. It is shown in Barron (1993) tha t  
the integrated squared error of approximation is bounded by O(C~/n), where n is 
the number of nodes and Cf quantifies the regularity of the function via an integral 
involving the Fourier transform, that  is, Cf = f IwllS(w)l dw (see Theorem 1 be- 
low). Armed with this result we are here able to evaluate the index of res01vability 
and thereby to derive bounds on the total risk of network estimators. The mean 
squared error between the estimated network and the target function is shown (in 
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Theorems 3 and 4) to be bounded by O(C~/n) + O(nd/N)log N, where d is the di- 
mension of the input, N is the sample size, and n is the number of nodes. Moreover, 
when the number of nodes is optimized (either by setting n ~ C/(N/(d log N)) 1/2 
or when Cf is unknown by using the complexity regularization criterion to select 
n) the mean squared error is shown to be bounded by O(Cf ((d/N)log N)1/2). 

A surprising aspect of this result is that, in terms of the first order behavior of the 
risk, the rate of convergence as a function of the sample size N is of order ( l /N) 1/2 
(times a logarithmic factor), where the exponent 1/2 is independent of the dimen- 
sion d. In contrast the minimax rate of convergence of the mean integrated squared 
error for functions in traditional smoothness classes (i.e., functions with bounded 
norms of the derivatives of order s for some s > 0) is of order (1/N) 2s/(2s+d) 
as shown in the work of Ibragimov and Hasminskii (1980), Pinsker (1980), Stone 
(1982), and Nussbaum (1986). Characteristic of the traditional smoothness classes 
is the fact that linear combinations of fixed basis functions (e.g., sinusoids, poly- 
nomials, and splines) are asymptotically minimax. Even sigmoidal basis functions 
with fixed internal weights are nearly minimax as shown by McCaffrey and Gal- 
lant (1991). However, the use of fixed basis functions prevents the opportunity to 
provide more accurate estimators for interesting subclasses of functions. (Excep- 
tions to the minimax optimality of linear estimators hold for certain non-Hilbertian 
classes in Nemirovskii (1985) and Nemirovskii, Polyak, and Tsybakov (1985).) The 
dependence of the rate on the dimension d in the denominator of the exponent is a 
curse of dimensionality that does not apply to the class of functions examined here. 

Although the rate ( l /N) 1/2 as a function of N is independent of the dimension 
d, it is possible for the constant Cf to be exponentially large in d for sequences 
of functions f o f  increasing dimensionality. Indeed, many radial functions have 
@ exponentially large, so do many tensor products, that is, functions of the form 
f(x) = gl(Xl)g2(x2)'..." gd(Xd). (More elaborate networks than the single hid- 
den layer networks considered here may be able to provide accurate estimates in 
some of these cases.) Nevertheless, there are a number of interesting examples for 
which C/ exhibits only moderate growth with the dimension, such as order O(d), 
including positive definite functions that are continuously differentiable at the ori- 
gin, and translation mixtures of such functions, see Barron (1993). Various closure 
properties of the class of functions are given there for sums, products, and certain 
compositions of functions with polynomially bounded spectral norms. 

Key to the advantageous approximation and estimation properties of artificial 
neural networks is the fact that the model is not linear in all its parameters (ac- 
tivation weights). The adjustment of the scale, direction, and location parameters 
of the sigmoidal basis functions permits them to be adapted to the estimation of 
the target function. Nonlinear adjustment of sinusoidal, polynomial, spline, and 
wavelet basis functions is also possible, and it is anticipated that similar approxi- 
mation and estimation bounds can be obtained in each of these cases by the same 
technique as used here for sigmoidal basis functions. (Indeed, approximation prop- 
erties of nonlinearly adjusted sinusoidal expansions is at the heart of the analysis 
in Jones (1992) and Barron (1993) for projection pursuit and neural network ap- 
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proximation, respectively.) If  at tention were restricted to approximation by linear 
combinations of a fixed set of n basis functions, then by a result in (Barton 1993) 
there is no such basis for which the integrated squared approximation error is less 
than  order (C/d)(1/n) 2/g uniformly for all functions with Cy < C for any C > 0. 
Consequently, it is seen tha t  for the class of functions considered here, (adaptive) 
neural network estimation has approximation and estimation properties tha t  are 
superior to traditional linear expansions for each dimension d ~ 3. 

2. Technical Summary 

Functions f(x) with bounded domain in R d are approximated using feedforward 
neural network models with one layer of sigmoidal nonlinearities. These networks 
implement functions of the form 

n 

f (x) = A(=,o)  = ek¢(a#x + bk) + Co, 
k=l 

(1) 

which is parameterized by the vector 0, consisting of ak E R d, bk, ck E R,  for 
k = 1, 2 , . . . ,  n, and co E R,  where n > 1 is the number of nonlinear terms (also 
called nodes or hidden units). The function ¢(z) is assumed to be a given sigmoidal 
function, tha t  is, it is a bounded function on the real line satisfying ¢(z) --+ 1 as 
z --* co and ¢(z) -~ - 1  as z ~ - c o .  This property of a sigmoidal function implies 
tha t  for large T the scaled sigmoidal function ¢~(z) = ¢( rz )  is close to the signum 
function sgn(z), which equals +1 for z positive and - 1  for z negative. 

For functions f(z) on R d with a Fourier representation of the form f(x) = 
fR d eiJX f (w)dw, let 

P 

cs = J I 111]( )Id , (2) 

where [Wll = ~d j=1 lwJ] is the ~i norm of w in R d. More generally, if f(x) : 

fR d e~TZF(dw), for some complex-valued Fourier distribution _F, we define CI -= 

f lwliF(dw) where F -- I/~I is the Fourier magnitude distribution of f. For 
approximation on a bounded set B, it is required only that the representation 

f(x) = fRa eiwTxF(dw) holds for x in B for some F with f [wll[F(dw)l finite. 
We measure the accuracy of an approximation f~(x) to the target  function f(x) 

in terms of the L2(#, B) norm 

IIf - f~l[ 2 = fB If(x)  -- f~(x)121z(dx), (3) 

for an arbitrary probability measure # with support B assumed to be contained 
in the cube [-I, I] d. (Other bounded domains may be rescaled to be contained 
in this cube; see Barron (1993) for the form of the approximation bound for arbi- 
trary bounded domains.) For approximation of a Boolean function the measure is 
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restricted to the set {0, 1} d. For simplicity it is assumed that  the vector x = 0 is 
included in the domain of f .  

In the case that  ]n is a neural network function estimated from data, the norm 
IIf - ]nil measures the ability of the neural net to generalize to new data  drawn 

N X with distribution #. In contrast the empirical risk ( l / N )  ~-~i=l( f (~)  - f n ( Z i ) )  2 
only measures the accuracy at the observed data  points Xi, i = 1, 2 , . . . ,  N. The 
first step in obtaining a bound on the generalization error (statistical risk) n f -  ]n II 
is to bound the approximation error Ill - full of the best neural network of size n. 

We shall make use of the following special case of a recent result in Barron (1993). 

T h e o r e m  1 Given an arbitrary sigmoidal function ¢, an arbitrary target function 
f with CI finite, and a probability measure p on a domain in [-1,  1] d, then for 
every n > 1, there exists an artificial neural network of the form (1) such that 

IIf - All  c f  (4)  

For functions f with Cf < C, the parameters in (1) may be restricted to satisfy 
~ k = l  Ickl < C, Ico - f(O)l <<_ C, and ]bkl < lakll. 

C o r o l l a r y  1 I f  we constrain lakll to be not larger than Tn, then under the same 
restrictions as in Theorem 1, there exists an artificial neural network of the form 
(1) such that 

IIf - full < Cf  
_ - ~  + Cf dis t (¢~ ,  sgn), 

where dist(¢r,  sgn) denotes the distance between the scaled sigmoidal function and 
the signum function given by 

dist(¢T,sgn) = inf (2e + sup I¢(Tz) -- sgn(z)l ). 
0<¢<1/2 i~1_>~ 

In particular, assume Tn is chosen such that 

dist(¢T~, sgn) _< 1/V~. (5) 

Then 
2 c f  

IIf - f, ll (6)  

The constraints on the magnitudes of the parameters are convenient for obtain- 
ing the statistical risk bound in Theorem 3 below. Later in this section, for The- 
orem reftheorem4, we drop these constraints and use penalty terms in the perfor- 
mance criteria to permit the automatic determination of magnitudes for the lak I1 
and ~ k = l  ICkl and the network size n that  best resolves the function. 

The choice of Tn is based on the rate at which ¢(z) approaches its limits. If 
¢(z) is equal to ±1 outside a finite interval then ~-~ may be set to be of order 
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V~, if ¢(z) approaches its limits exponentially fast (as in the case of the standard 
sigmoid (1 - e-Z)/(1 + e-Z)) then 7n may be set to be of order v ~ l o g n ,  and if 
¢(z) approaches its limits polynomially fast (in the sense that  ( - 1  - ¢(z))/NP 
and (1 - ¢(z))/Izl p remain bounded as z ~ - c o  and z --~ +c~, respectively, for 
some p > 0) then Tn may be set to be of order n (p+I)/2p. Henceforth, we restrict 
attention to sigmoidal functions ¢ for which T~ is bounded by a polynomial function 
of n, i.e., Tn ~_ ro nrl for some to,r1 > 0. For convenience, we will also restrict ~-n 
to be greater than or equal to some positive value To to be specified later in the 
treatment.  

Throughout  this paper logarithms are taken with base e. Expressions of the form 
O(g(Cf, n, d, N)) refer to quantities bounded by a constant times g(CI, n, d, N), for 
all permit ted values of C/,  n, d, and N, where the constant is independent of f ,  
n, d, and N. However, the constants may depend on the choice of sigmoid ¢ (e.g., 
through the quantities r0 and r l )  and they may depend on the assumed range of the 
response variable (through the quantities A and b introduced below); for simplicity, 
tha t  dependence is not always made explicit. 

Suppose that  (Xi, Yi), i = 1, 2 , . . . ,  N are independently drawn from a distribution 
Px,Y with conditional mean f(x) = E(Y  I X = x) and marginal distribution 
Px = P with support contained in [-1,  1] d, and with sample size N ~ 2. We 
assume that  the support of Y is in a known interval -To with length bounded by 
some b > 0. (These distributional assumptions are a special case of somewhat 
more general assumptions in Barron (1990) that  can also be used to handle some 
distributions for Y that  have unbounded support and satisfy Bernstein's moment 
conditions, such as the case that  the conditional distribution of Y given x is normal 
with mean f(x) and variance a2.) Here are two important  cases: 

(a) The function f is observed without error at randomly selected sites, tha t  is, 
Yi = f(X~), for i = 1, 2 , . . . ,  N, and the range of f is in a known interval of 
length bounded by b. 

(b) The response Y~ E {0, 1} is a class label for a binary classification problem 
with overlapping class boundaries and f(x) = P{Y  = 1 I X = x} is the optimal 
discriminant function based on X.  In this case b = 1 and Io = [0, 1]. 

Note, in particular, that  the commonly studied setting of Boolean functions that  
are observed without error at randomly selected inputs is covered by both of these 
cases. Our framework allows for the possibility that  the response is subject to error, 
tha t  is, Y~ = f(X~) + ci where E(~ilX~) = 0; however, the assumption regarding 
the support of Y requires that  both f(x)  and c are bounded. 

Because the function f(x) is known to have range in a given interval I0 = [Q, i2], 
we improve the fit by replacing fn(X, 0) with 

fn(x, 0) = elip(f~(x, 0)), (7) 

where clip(y) = y for y c I0, -- il  for y < i~, and = i2 for y > i2. Note that  clip() is 
a sigmoidal function with range -To. Thus the composition of clip() with functions 



ACCURACY OF NEURAL NETS 121 

of the form (I) forms a two layer sigmoidal network. By clipping the candidate 
functions to a range of a given length b, we satisfy one of the requirements for the 
application of a theorem from Barron (1990), see Theorem 2 below. 

Our task is to incorporate the approximation bound into an analysis of the 
actual risk I I f -  /n,N]l for the network /n,N that  minimizes the empirical risk 
( l / N )  N ~ i=1  ( Y / - f n  (Xi, 8)) 2 (or a penalized version of this empirical risk). First we 
recall some machinery from Barron (1990) that  permits us to carry out this task. 

For each number of nodes n and sample size N,  let On = On,N be a discrete 
set of parameter vectors 8, and let Ln,g(O) be nonnegative numbers satisfying, 
Ln,N(O) >_ 1 for some constant l > 0, and 

_< 1. (s) 
0EO~ 

The numbers Ln,g(O) In 2, rounded up to the nearest integer, may be interpreted as 
the lengths of a binary code for 0 E On, for then (8) becomes the Kraft-McMillan 
condition for the existence of uniquely decodable codes of these lengths (see Cover 
and Thomas (1991)). Another interpretation is that  e -L~,~ (e) is a prior probability 
for 0 E On, for then (8) becomes the condition that  these prior probabilities sum 
to not more than one. If Ln,g(O) = Ln,N is constant and @n = @n,~ is a finite 
set of points such that  every 0 is within distance s of a point in On,~, then (8) 
implies that  Ln,N is a bound on the Kolmogorov ~-entropy (or metric entropy) 
of the set of possible 0's. Indeed, in that  case (8) reduces to log~(~n,~ _< Ln,N, 
where ~@n,~ denotes the cardinality of the set. (There is considerable freedom 
in the choice of metric to use in defining the e-entropy: the requirement for us is 
that  the metric on the parameter permits the distance between network functions 
to be controlled, see condition (19) and Lemmas 1 and 2). As in Barron and 
Cover (1991), we blend these complexity, prior probability, and metric entropy 
interpretations. The notation Ln,g(O) is used here in place of the notation CN(O) 
from Barron (1990,1991) to avoid confusion with the quantity Cf  defined above. 
We call Ln,N(0) the complexity assigned to the parameter value 0 in On, for a given 
n and a given sample size N. 

For a given n and N,  we define the index of resolvability (as in Barron 1990) to 
be 

Rn'g(f)= ece~min (llf -- fn(',O)ll 2+ ~Ln'N(O) ) , (9) 

where ), is a given positive constant that  will be restricted to a certain range of values 
in Theorem 2 (one valid choice is )~ = 2b2). Equation (9) gives the resolvability 
for a neural network family with a given number of nodes n. Let L(n) be numbers 
satisfying ~n~__l e -L (n )  ~ 1. For the collection of networks indexed by n = 1, 2 , . . . ,  
the index of resolvability is 

rain IP~,N(f) ' , L(n)'~ RN(f) n>_l \ ~- ~ - ~ - )  . (10) 
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It will be seen that  we may restrict the minimization in (10) to n < N/d, without 
affecting our bounds on the resolvability. This restriction has the effect of obeying 
the statistical rule that  the number of parameters be less than the sample size. In 
fact the best n is typically much smaller. The minimization in (10) determines the 
n that  yields the best resolvability. 

The minimum complexity estimator (or complexity regularization estimator) of 
a neural network of a given size n is 

where 

L,N(X) : L ( x ,  O,~,N) (II) 

~n ,N=argmi  n ~ ( y i _ f , ~ ( X i , O ) ) 2 + A L n  (/9) . (12) 
OEOn i = 1  

Thus f,~,N is the least squares estimator with a complexity penalty. The minimum 
complexity estimator, with both n and 9 estimated, is 

/N  = h , ~  (13) 

1 N +ALn,N(~n,N) L(n) )  
= argmin -N E ( Y ~  - ]n'N(Xi))2 N + £--N-  " 

n i = 1  

(14) 

where 

Complexity regularization (as defined in (12) and (14)) is closely related to Vapnik's 
method of structural risk minimization (Vapnik 1982) and Rissanen's minimum 
description-length criterion (Rissanen, 1983, Barron and Cover, 1991). 

We make use of a theorem from Barton (1989,1990), specialized here to neural 
network estimators. 

T h e o r e m  2 Let a neural network be estimated by least squares with a complexity 
penalty as in (12), (14), where the range of Y and each candidate function is 
restricted to a known interval of length b, then for A > 5b2/3, for all n >_ 1, and all 
N > I ,  

23"~ (15) gll f  - i n , N i l  2 ~ 3"Rn,N(f) + ~"- ,  

and 
27A 

EII f  - ]Nil 2 _< 3 'R~( f )  + -~--,  

wh~re 3' = (3~ + b~)/(3~ - 5b~). Thus 

EII f  - fNII 2 ~ O ( R N ( f ) ) .  

(16) 

(17) 

To illustrate the small magnitude of the constant 3' in the bound on the risk, 
note that  3' = 7 and 3' = 2.5 for the choices A = 2b 2 and A = 3b 2, respectively, 
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in the complexity regularization criterion. (Smaller values of A than the 5b2/3 
assumed in the theorem are sometimes advocated: for instance, the choice A = 2~r 2 
is mot ivated by the minimum description-length criterion using a Gaussian error 
model with variance a 2 and Barron and Cover (1991) give analogous resolvability 
bounds for tha t  case. I t  may be possible to use A = 2(r 2 even in non-Gaussian 
cases, but it is not proven whether the theorem is valid with such a choice of A.) 

The  index of resolvability automatically captures the effect of the approximation 
error Ill - fnl[ 2 and the estimation error, E[Ifn -/n,N[] 2. Theorem 2, as proved in 
Barron (1990), is based on the idea tha t  by controlling these sources of error, it is 
possible to obtain bounds on the total  mean squared error. Indeed, by the triangle 
inequality, 

]If - ]n,N][ <_ ]If -- full + It fn - f in,Nit .  (18) 

Armed with the recent results summarized in Theorems 1 and 2, we are now in 
position to obtain a specific rate of convergence for the mean squared error and the 
index of resolvability for functions with finite C/ .  This leads to Theorem 3 below, 
which is the new result of this paper. 

For these estimation results, more regularity of the sigmoid in our analysis is 
needed than  for the approximation results. One natural  assumption is tha t  the sig- 
moidal function ¢(z) has a bounded derivative on R.  More generally, it is assumed 
tha t  ¢ satisfies a Lipshitz condition, tha t  is, ]¢(z) - ¢(z*)] < VlIZ - z* I for some 
Vl > 0. We let v0 _> 1 denote a bound on [¢(z)[ and set v = max{v0, vl}. (A special 
role is played by the ramp sigmoid tha t  equals VlZ for [z[ < 1/Vl and equals - 1  
and +1, respectively, for z < - 1 / V l  and z > 1/Vl. For Lipshitz sigmoidal functions 

it is seen tha t  the quanti ty ~-,~ in (5) satisfies 7n > 2~-~ with equality when ¢ is 
- -  V l  

a ramp sigmoid with slope vl.) We continue to assume tha t  ¢(z) approaches its 
limits at least polynomially fast (as z --* +co  and z --+ - c o ,  respectively) so that ,  as 
mentioned above, the quanti ty 7n can be bounded above by a polynomial function 
of n. 

Recall tha t  the parameter  vector 0 in the sigmoidal network (1) consists of the 
weights ak, bk, Ck for k = 1, 2 , . . . ,  n, and Co, where each ak is d -d imens iona l  vector. 
For ~- > 0, a continuous parameter  space On,~ contained in R n(d+2)+l is taken to 
be the set of all such 0 for which [ak[1 _< ~" and Ibk[ < ~-. For any C > 0, let 
On,~-,c C O~,~ be the subset of parameters  with ~ n  k=l ]ek] _< C and co E Iv ,  where 
I c  = [il - C, i2 + C] and I0 = [il, i2] is the given range of the target  function. 
Theorem 1 and its corollary guarantees the existence of an accurate approximation 
to the target  function f ( x )  by a network f n (x ,  0) with 0 E On,~-,,c provided C _ C /  
and provided ~- = ~-~ is chosen to satisfy (5). Note tha t  the parameter  space On,~-, 
may be realized as the union of the compact  sets On ....  c for C = 1, 2, ...: this fact 
enables us to provide estimates of f in the case tha t  a bound on C~ is not known. 

Next we control the precisions with which the coordinates of the parameter  vectors 
are allowed to be represented. For each s > 0 and C > 1, let (9,~,~,~,c be a discrete 
set of parameter  points in a n(d+2)+l tha t  s-covers  (~)n,r,c in the sense tha t  for every 
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0 in O~,~,c there is a O* in ~)~,¢,~,c such tha t  for k = 1 ,2 , . . .  ,n,  

lak - a~lt <_ 

Ibk - b~l <_ 

~ lck - 41 <- c~ 
k = t  

and 

(19) 

I~o-41  < c~. 
In (19) one may use a distance of e instead of C¢ for the ck's; however, the broader 
spacing permits a somewhat smaller cardinality set with the same order of accuracy 
in covering the space of functions {/n( ' ,  0) : 0 E en,~,c}. The accuracy of this 
coverage is indicated in the following lemma. In the lemma the choice of ~- is 
arbitrary, whereas the choice ~- = Tn satisfying (5) is needed for the corollary. 

L e m m a  1 If  (19) holds, then for each 0 in the continuous parameter set On,r,c 
there is a O* in the discrete set On,e,~,c such that uniformly for x E B 

Ifn(x,O) - fn(x,O*)l <_ 4vCe 

and hence 
I l f , ( ,  o) - A(. ,  o*)11 _< 4vCe, 

where A(x,  O) is the family of sigmoidal networks of the form (I). 

C o r o l l a r y  2 For functions f with Cf < C, there exists a neural net approximation 
fn of the form (1) with parameter restricted to the discrete set On,~,~,c such that 

2Cf IIf -fnl[ <- - - ~  + 4vCe. 

Consequently, if  a sequence e,~ is chosen to be of order O ( 1 / v ~ ) ,  then the approx- 
imation error remains of the same order as in Theorem 1, that is, 

1If - All : o ( - ~ ) .  

The proof of Lemma 1 is in Section 3. The corollary follows from Theorem 1 and 
Lemma 1 by application of the triangle inequality. I t  will be seen tha t  a somewhat  
different choice of e~ can achieve the best tradeoff between approximation error 
and complexity for a given n, N,  and C. 

Now we consider a choice for the finite set O~,~,~,v which satisfies (19) and exam- 
ine the cardinality. We may take O~,~,~,c to be a rectangular grid spaced at width 
e /d  for the coordinates of ak, width e for bk, width Ce for Co, and width C e / n  for 
ck for k -- 1, 2 , . . . ,  n. Intersecting the grid with O~,~,c yields a set On,~,~,c tha t  
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satisfies the requirements of (19). The following lemma bounds the cardinality of 
this set. We have expressed both the grid spacing and the range for the ck pa- 
rameters as proportional to C, so the bound on the cardinality is independent of 
C; nevertheless, dependence of the cardinality on C may occur implicitly through 
choices of n and e to be stated later. 

L e m m a  2 For each e > 0 and C > 1, there is a set O~,~,~,c that satisfies (19) 
and has cardinality bounded by 

The proof of Lemma 2 is also given in Section 3. The factors in the bound arise 
naturally from a count of the number of choices for ak, bk, and ck. 

Lemma 2 shows that  the logarithm of the cardinality of On,~,~,c is bounded by 

n ( d + l ) l ° g ( 2 e ( l + ~ ) ) + n l ° g ( 2 ( 1 + 1 ) )  + l ° g ( l + b + 2 )  e 

Here we choose TO > 1 to be large enough that  2e(1 + TO) > b + 3. Then for ~-n > To 
and e restricted to 0 < c < 1 we have the convenient (but weaker) bound 

log ~t3~,~,~,c <_mr~log(2e(l~zr~)).  

Here rn~ is the total  number of parameters in the network which equals 

rn,~ : n(d + 2) + 1. 

The metric entropy of the class of neural networks {f~(., 0) : 0 E Or,c} is the loga- 
r i thm of the cardinality of the smallest set covering the class with error I If~(', 0) - 
fn(.,O)l I bounded by a given 5 > 0. Equating 5 = 4vCe, it follows from Lemma 1 
and Lemma 2 that  the metric entropy is bounded by mn(log(SvCe(1 + 7)/5),  for 
0 < ~ <_ 4vC. 

ACCURACY OF THE CONSTRAINED LEAST SQUARES NEURAL NET ES- 
TIMATOR 

For each n, N, and C, let fn,N,C(X) be defined as the least squares estimator with 
0 restricted to O~,~,~,c, that  is, 

A,N,c(x) = A(x ,  

where ) On,N,O= argmin ( Y i -  fn(xi ,  o)) 2 . (20) 
OEOn,~,..~,c \ i=1 
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Note that this neural net estimator is the same as a complexity regularization 
estimator with constant complexity penalty ALn,N(O)/N for 0 in On,e,rn,C, where 
Ln,N(O) is set to equal the log-cardinality of On,e,rn,C. Using the corollary to 
Lemma 1 and Lemma 2 we can bound the index of resolvability (defined in (9)) as 
follows 

Rn,N(f) <_ IIf - fnll2 + ~ log¢~O,~,~,~-,.c 

assuming 0 < s < 1. By calculus it is seen that  the choice for s that  optimizes this 
bound is 

= ( 2 2 )  

provided this choice is not greater than 1. With this choice for ~, the resolvability 
bound becomes 

Rn,N(f) < -F log (16vC(1 -~- Tn))2C 3 - 

We recognize that  this bound is of order 

(C_~_~) /nd T2nN' 
_<o + o 

The implication for the constrained least squares estimator is summarized in the 
following Theorem. Using (21) it is seen that  bounds of the desired order hold for 
a broad range of choices of e. The precision ~ = e(n, d, N, C) may be allowed to 
depend on n > 1, d _> 1, C _> 1, and N _> 2. It is assumed to be not smaller than 
the reciprocal of a polynomial in N, n, d and C, that  is, for some p _> 1, 

> . ( 2 3 )  

Also it is assumed either that  
- 1  

_< O ( ~ n )  (24) 

or that  

The constraint in (24) or (25) is imposed so that  in the additional error due to 
discretization of the parameters of the network approximation is not large compared 
to either the approximation term or the complexity term, respectively, of the index 
of resolvability. The constraint in (23) is imposed to prevent excessive complexity 
penalties tha t  would result from too fine a precision. A consequence of (23) (and 
the assumption that  ~-n is bounded by a polynomial in n) is that  the log-cardinality 
of On,~,'rn,C satisfies 

log ~O~,~,Tn,¢ ~ O (ndlog(Cndg)). (26) 
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T h e o r e m  3 Let ]n,N,C(X) be the least squares neural net estimator defined above 
with parameter vector restricted to a set @n,~,~,c, satisfying (19), (26), and either 
(P4) or (25), with "r~ satisfying (5). If the target function f satisfies Cf < C, then 
the global accuracy of the estimator, as measured by the mean integrated squared 
error, satisfies 

E[[f - fn,N,C[[2 < O (C---~) +O ( ~ l o g N )  (27) 

which is of order O(C((d/N)log N) 1/2) for n ~ C(N/(dlog N)) 1/2. 

The proof of Theorem 3 follows from plugging the bound on e from either (24) 
or (25) into the approximation error bound of the corollary to Lemma 1 and then 
adding the complexity penalty bound from (26) to get that  the index of resolvability 
satisfies 

Consequently, by Theorem 2, 

E,If -- /n,N,C,, 2 < o (C----~) + O ( ~  log(CndN)) . (28) 

To complete the proof note that  IIf - •,N,Cll 2 is bounded by a constant (2b) 2. 
Therefore, the desired bound (27) trivially holds for those C, n, d, and N for which 
either C 2 > n or nd> N/log N. It remains to restrict attention the those cases in 
which C 2 < n and nd < N/log N, but then the desired bound follows from (28). 

As we have seen it is possible to give explicit bounds that  involve rather messy 
expressions, if instead of treating general sets, we use the specific choice of e~,~ ,~ ,c  
tha t  has the cardinality bound of Lemma 2. It is of some interest to give a detailed 
bound in the case of the ramp sigmoid (for which ¢(z) equals z for Izl < 1 and 
equals - 1 ,  +1 for z < - 1 ,  z > 1, respectively), because the ramp sigmoid has the 
smallest ~-~, equal to 2v/-n , when v = 1. With this choice and with e chosen as in 
(22), the ratio T~/e is not greater than 16C(N/£(d + 2)) 1/2 (uniformly in the size 
of the network n) and the index of resolvability is bounded by 

-~mn . (29) 

This bound is optimized with a number of network nodes equal to 

n = C ( 8 N / ( A ( d + 2 ) l o g ( 2 e 3 / 2 ( l + 1 6 C ( A ( d N 2 ) ) l / 2 ) ) ) )  1/2 

rounded to an integer, yielding a resolvability that  satisfies 

( d-~ ( ( ( N  ~ 1/2~)) 1/2 
Rn,N(f) < 4C . 2 A ( 3 )  log 2e 3/2 1 + 16C A ( d ~ 2 ) ]  ] (30) 



128 A.R. BARRON 

Consequently, we have an accurate neural network est imator if C(d/N)1/2 is small. 

ACCURATE NEURAL NET E S T I M A T O R  WHEN C IS UNKNOWN 
If a bound on Cf  is not known, then the constrained least squares est imators 

given above would not necessarily yield accurate estimates because we would not 
necessarily have Cf  less than  or equal to a prescribed C. One fix is to t ry  an 

increasing sequence of bounds C, impose a suitable penalty, and chose a C tha t  
yields an accurate estimate. 

Let fn,N(X) be the complexity regularization est imator  of the function for 0 in 

e~,~,~ = U ~° C = I  ~)n,e,~-~,C given by 

]~,g(X) = ]~,g,5(X), (31) 

where 

) 5 = argmin E ( Y i  - f,~,N,c(Xi)) 2 + -~ (log #On,~,~-~,C + 2 log(1 + C)) , 
C i=1  

(32) 
and ]mg,c is the least squares est imate given in (20). The minimization in (32) is 
restricted to positive integer values of C. The te rm 2 l og ( l+C)  is a convenient choice 
for which the summabil i ty condition (8) is satisfied by the complexity penalty. In 
place of 2 log(1 + C) we may use log liP(C) for any probabili ty mass function p(C) 
for which log 1/p(C) = O(log C). 

The  index of resolvability can be bounded in the same manner  as before, using 
the fact tha t  the parameter  space now includes integers C tha t  are greater than  
Cf.  We find tha t  it is bounded by 

and consequently tha t  the mean integrated squared error satisfies 

Ellf--]n,NII2<_O + 0  - ~ - l o g N  . (34) 

NEURAL NET ESTIMATES USING A C O M P L E X I T Y  PENALTY BASED ON 
P R I O R  P R O B A B I L I T Y  

The use of a prior for C is a special case of a more general class of complexity 
penalties. The parameter  space does not have to be a union of discrete sets re- 
stricted to the spaces On,~ ,c ,  with complexity penalties tha t  are constant on each. 
These choices were partially a mat te r  of convenience. We are free to use larger 
parameter  spaces that  do not restrict the magnitude of the ak bk, and Ck and to 
use non-constant penalties subject to the summabil i ty constraint (8). The essence 
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of what is needed for the above reasoning to work is that  there is are finite subsets 
of the parameter space On that  accurately cover the spaces On,rn,c and that  the 
complexities assigned to the elements of at least one such approximate cover is of 
order not larger than nd log(CndN). 

One way to accomplish this is to take a prior probability distribution with density 
function Pn (0) that  is continuous and positive on all of R m~ where rnn = n(d+ 2) + 1. 
Then partition R m~ into disjoint rectangles of width e/(d + 1) for the coordinates 
of ak and bk and width e/(n + 1) for the Ck, where e = 1/v/-~. With these choices 
conditions (19) and (24) are satisfied. By the mean value theorem, within each 
of these rectangles there is a point 0 (called a representer of the rectangle) such 
that  the prior probability of the rectangle is equal to the volume times the value 
of the density at 0. We take the complexity penalty to be the minus logarithm of 
the prior probability of the rectangles (for each of the disjoint rectangles in R m~) 
and we take the discrete parameter space On to be these representers 0. Then the 
summability condition (8) is satisfied as is the requirement (19) for C > 1. The 
complexity penalties satisfy 

Ln,N(O) = n(d + 1)log ( d + l )  + ( n + l )  l o g n + l o g  1 (35) 
~ pn(O)" 

The first two terms play an important role in complexity regularization. Compare 
with maximum posterior likelihood estimators, in which only the log 1/p,~(O) term 
would appear. For a given size model, complexity regularization and maximum 
posterior likelihood estimators can be essentially the same; however, complexity 
regularization adds additional terms that  provide the possibility of accurate selec- 
tion among different size models. 

For application of the theory in the case of variable length complexity penalties, 
we check the analogue of (26), namely that  

Zn,N (0) : O(nd log(OndN)) (36) 

uniformly in the intersection of On with the bounded set On,T,~,c, for each C > 1. 
With the given choice of e = 1 /v~ ,  it is enough to check that  

1 
log pn(O) - O(ndlog Cnd) (37) 

uniformly on On,r~,C for each C > 1. For example, a prior density that  makes the 
coordinates of the parameter vector independent standard Canchy random variables 
satisfies the condition (37) as do other densities with polynomial tails, while a 
prior density with independent standard normal components does not satisfy this 
condition. It is possible to formulate the reasonable bounds for a normal prior, 
provided care is taken to chose prior variances for the ak and bk components to 
be proportional to Zn 2. Then with unit prior variance for the ck components, the 

i = O(C 2) + O(ndlogCnd) uniformly on O ~ , c  for normal prior satisfies log p--2-D5 

each C > 1. The order C 2 term in the complexity does not adversely affect the 
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order of the bounds, since it contributes order C2/N to the resolvability, which is 
dominated by the sum of the other terms in the bound. 

We conclude the main part of the paper by stating a theorem that  encompasses 
the different cases in which we have obtained the rate of convergence stated in 
the abstract. It is assumed that  there is a discrete parameter space ~n,N and 
complexity penalties satisfying (8). It is assumed that  for each C > 1, there is a 
subset of On,N n ~n>~,C denoted O~,~,~ n,o satisfying (19) for some ~ satisfying (24) 
or (25). The complexity penalties assigned to the parameter values in this subset 
are assumed to satisfy 

Lmg(O ) < O(C 2) + O(ndlog CndN) (38) 

uniformly for 0 in On,~,~,c for each C >_ 1. 
We let fn ,g  be the neural network estimated by complexity regularization as in 

(11), (12) and we let / g (x )  = £,N(X) be the complexity regularization estimator 
with ~ determined as in (14) with the penalty L(n) chosen to satisfy ~n~=l e -L(n) < 
1. (One such convenient choice is n(n) = 2 log(1 + n).) It is assumed that  L(n) < 

T h e o r e m  4 Let finn and IN be the neural network estimators defined above, 
where the complexity penalties satisfy the summability condition (8) over all can- 
didate values of the parameters. It is assumed for each C > 1 there is a subset of 
these parameters that satisfies conditions (19) and (38) for some precision satisfying 
either (2~) or (25). Then the statistical risk satisfies 

EIIf -/n,NII 2 <-- O + O -~- logN (39) 

and 

- _ , ( 4 0 )  

respectively. 

Theorem 4 is proven in the same manner as Theorem 3 above, using the lemmas 
and appealing to the results of Theorems 1 and 2. 

3. Proofs of  Lemmas 

Here we prove Lemmas 1 and 2. 
For the proof of Lemma 1, let 0 and 0*, respectively, be parameter vectors in 

On,~,c and On,~,~,c for which (19) holds. Consider the difference between the 
values of the corresponding network functions 

I n ( x ,  0) - : n ( x ,  0*) = ck¢(zk)  -- 4 ¢ ( z D  + (c0 -- 4 )  
k=l  
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n n 

= ~ Ck (¢(Zk) -- ¢(z;))  + ~ ( c k  -- c~)¢(z;) + (Co -- c~). (41) 
k = l  k = l  

T * = a~Tx -Jr b* k. By the triangle inequality and the where Zk = a k x - I -bk  and z k 
Lipshitz condition this yields 

n ~ 

[A(x ,  o) - f n (x ,  0")1 _< ~ Ickl[¢(zk) - ¢ (z ; ) l  + Ick - c~ll¢(z~)l + Ico - c;I 
k=l  k=l 

V 1 [CkiiZ k -- Z•[ + VO ~ ICk -- C~I + ICo -- C;t. (42) 
k=l  k=l  

Now Izk - z;I is bounded by 26 for x in B and v = max(vl,v0) is at least 1, so it 
follows that  

IA(x, e) - / ,<(x,  o*)1 < 2w ~ I~kl + v ~ Ick - ~1 + Ico - ~:~1 
k=l  k=l  

4vC¢. (43) 

Here we have used (19) and the bound ~ = 1  ICk[ <- C for £7 in O~,~,c. This 
completes the proof of Lemma 1. 

Finally we give the proof of Lemma 2. Consider a rectangular grid spaced at 
width ¢/d  for the coordinates of ak, width ~ for bk width C¢ for co, and width 
C e / n  for ck, for k = 1, 2 , . . . ,  n. Intersecting the grid with On,~,c yields the desired 
set On,~,~,c satisfying the requirements of (19) and we bound its cardinality. Now 
O~,~-,c = {£7 : ]ak]l <_ % Ibk[ <_ "r, CO E c , ~ k = l  Ickl <-- C}  is a cartesian product  
of constraint sets for the a's b's and c's so the desired cardinality is obtained as a 
product  of the corresponding counts. First we bound the number of grid points in 
the simplex S~- = {a E R d : Jail < m}, where the grid points are spaced at width 
~/d  in each coordinate. The union of the small cubes that  intersect S~ is contained 
in S(~+~). (Indeed any point a in this union has ~1 distance less than ~ from a point 
a '  in S~, whence la]l < ]a'll + ]a - a'I1 < ~- + 6, so a is in ST+~.) Trivially, the 
volume of this union of cubes is the product of the number of cubes and (¢/d)  d. 
Also, the volume of the covering simplex is (2(~- + c))d/d!.  So the number of cubes 
that  intersect S~ is not greater (2d(m + c) /¢)d/d!  ~ (2e('r + e)/C) d. For n such 
parameter vectors ak, the total count is bounded by (2e(T + ¢) /c)  nd. In the same 
way the count for the b's is not more than (2(~- + ¢)/e)~, the count for co is not 
more than (b + 2C + C s ) / ( C ~ )  < (b + 2 + s)/(¢) for C > 1, and the count for the 
rest of the Ck'S is not more than (2e(1 + c)/¢) ~. Taking the product  of the counts 
yields 

This completes the proof of Lemma 2. 
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We note tha t  some reduction in the count is possible by restricting to positive Ck 
coefficients (which does not restrict the class of functions represented by formula 
(1) in the case of sigmoids tha t  satisfy the symmet ry  proper ty  ¢ ( - z )  = - ¢ ( z ) ) .  
Also, the ak vectors may be restricted to have magnitude equal to ~-~ (instead of 
lak[1 ~_ Tn). The  effect of the equality constraint would be to reduce the dimension 
of the parameter  space from n(d  + 2) + 1 to n(d  + 1) + 1. For simplicity we have 
not taken advantage of the slight improvements in the constants tha t  would result 
from such reductions. 

Remark 

After this paper  was completed for the 1991 Workshop on Computat ional  Lea~ming 
Theory, McCaffrey and Gallant (1991) obtained an extension to Theorem 2 tha t  
uses a continuity argument based on the proof in Barron (1990) to show tha t  
the network optimization need not be restricted to a grid of parameter  points. For 
instance, using their extension it is permit ted to use the least squares est imator  over 
the continuum of values of 0 in ~),~,~,c, to get the bound O ( C 2 / n ) + O ( n d / N ) l o g  N 
for the risk in the case of estimation of functions with CI  < C. McCaffrey and 
Gallant use their result to establish rates of convergence for the statistical risk of 
sigmoidal networks for functions in the traditional Sobolev smoothness classes. I t  
may also be possible to adapt  their argument to determine conditions tha t  permit  
a suitable penalty te rm tha t  depends continuously on 0 without constraint on the 
magnitudes of the parameters.  

Acknowledgements 

This work was supported by ONR contracts N00014-89-J-1811 and N00014-93-1- 
0085. 

References 

Barron, A. R. (1989). Statistical properties of artificial neural networks. Proceedings of the IEEE 
International Conference on Decision and Control, (pp. 280-285). New York: IEEE. 

Barron, A. R. (1990). Complexity regularization with applications to artificial neural networks. 
In G. Roussas (ed.) Nonparametric Functional Estimation, (pp. 561-576). Boston, MA and 
Dordrecht, the Netherlands: Kluwer Academic Publishers. 

Barron, A. R. (1991). Approximation and estimation bounds for artificial neural networks. Pro- 
ceedings of the Fourth Workshop on Computational Learning Theory, (pp.243-249). San Mateo, 
CA: Morgan Kaufmann Publishers. (Prelimary version of the present paper). 

Baxron, A. R. (1992). Neural net approximation. Proceedings of the Seventh Yale Workshop on 
Adaptive and Learning Systems, (pp. 69-72). K. S. Narendra (ed.), Yale University. 

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. 
IEEE Transactions on Information Theory, 39, 930-945. 



ACCURACY OF NEURAL NETS 133 

Barron, A. R. ~: Cover, T. M. (1991). Minimum complexity density estimation. IEEE Transac- 
tions on Information Theory, 37, 1034-1054. 

Barron, A. R. & Sheu, C.-H. (1991). Approximation of density functions by sequences of expo- 
nential families. Annals of Statistics, 19, 1347-1369. 

Cover, T. M. & Thomas, J. (1991). Elements of Information Theory, New York: Wiley. 
Cox, D. D. (1988). Approximation of least squares regression on nested subspaces. Annals of 

Statistics, 16, 713-732. 
Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Mathematics of 

Control, Signals, and Systems, 2, 303-314. 
Eubank, R. (1988). Spline Smoothing and Nonparametrie Regression, New York: Marcel Dekker. 
Hardle, W. (1990). Applied Nonparametric Regression, Cambridge, U.K. and New York: Cam- 

bridge University Press. 
Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other 

learning applications. Information and Computation, 100, 78-150. 
Hornik, K., Stinchcombe, M., ~: White, H. (1988). Multi-layer feedforward networks are universal 

approximators. Neural Networks, 2, 359-366. 
Ibragimov, I. A., and Hasminskii, R. Z. (1980). On nonparametric estimation of regression. 

Doklady Acad. Nauk SSSR, 252, 780-784. 
Jones, L. K. (1992). A simple lemma on greedy approximation in Hilbert space and convergence 

rates for projection pursuit regression and neural network training. Annals of Statistics, 20, 
608-613. 

Li, K. C. (1987). Asymptotic optimality for Cp, CL, cross-validation, and generalized cross-valid- 
ation: discrete index set. Annals of Statistics, 15, 958-975. 

McCaffrey, D. F. &: Gallant, A. R. (1991). Convergence rates for single hidden layer feedforward 
networks. Rand Corporation working paper, Santa Monica, California and Institute of Statistics 
Mimeograph Series, Number 2207, North Carolina State University. 

Nemirovskii, A. S. (1985). Nonparametric estimation of smooth regression functions. Soviet 
Journal of Computer and Systems Science, 23, 1-11. 

Nemirovskii, A. S., Polyak, B. T. & Tsybakov, A. B. (1985). Rate of convergence of nonparametric 
estimators of maximum-likelihood type. Problems of Information Transmission, 21, 258-272. 

Nussbaum, M. (1986). On nonparametric estimation of a regression function that is smooth in a 
domain on R k. Theory of Probability and its Applications, 31, 118-125. 

Pinsker, M. S. (1980). Optimal filtering of square-integrable signals on a background of Gaussian 
noise. Problems in Information Transmission, 16. 

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. 
Annals of Statistics, 11, 416-431. 

Seber, G. A. F. ~ Wild, C. M. (1989). Nonlinear Regression, New York: Wiley. 
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, New York: Chap- 

man and Hall. 
Stone, C. J. (1982). Optimal global rates of convergence for nonparametric estimators. Annals of 

Statistics, 10, 1040-1053. 
Stone, C. J. (1990). Large-sample inference for log-spline models. Annals of Statistics, 18, 717- 

741. 
Vapnik, V. (1982). Estimation of Dependences Based on Empirical Data, New York: Springer- 

Verlag. 
White, H. (1990). Connectionist nonparametric regression: multilayer feedforward networks can 

learn arbitrary mappings. Neural Networks, 3, 535-550. 


