
Machine Learning, 16, 121-155 (1994) 
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Acquiring and Combining Overlapping Concepts 
JOEL D. MARTIN 
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260 

martin @ cs.pitt.edu 

DORRIT O. BILLMAN billman@pravda.cc.gatech.edu 
Department of Psychology, Georgia Institute of Technology, Atlanta, GA 30332 

Editor: Michael Pazzani 

Abstract. This article presents OLOC, an incremental concept formation system that learns and uses overlap- 
ping concepts. Or,oc learns probabilistic concepts that have overlapping extensions and does so to maximize 
expected predictive accuracy. When making predictions, OLOC can combine multiple overlapping concepts. 

Keywords: concept formation, overlapping concepts, conceptual combination, incremental algorithms 

1. Introduction 

With little supervision, people can divide their world into categories and use those cat- 
egories to predict missing information or to comprehend novel inputs. Furthermore, 
people classify instances into overlapping categories: Fido is both a pet and a dog (Osh- 
erson & Smith, 1982); soccer is both a game and a sport (e.g., Hampton, 1987). Existing 
unsupervised concept formation methods (e.g., COBWEB, Fisher, 1987) capture much of 
the flavor and qualitative specifics of human category learning. However, such methods 
often assume that every instance is a member of exactly one category at each level of 
a hierarchy of categories. In this paper, we present an unsupervised learning algorithm 
that learns about and uses overlapping categories. 

Several well-known concept formation systems learn hierarchies or flat sets of cate- 
gories by classifying each instance into only one category at each level of the hierarchy 
(e.g., Fisher, 1987; Anderson, 1990). In these systems, a category is any set of instances 
and a concept is an internal representation of that category. The learner classifies in- 
stances into categories and manipulates the corresponding concepts by creating, changing, 
or deleting them. Existing concept formation systems were designed around results from 
cognitive psychology, such as descriptions of a basic, or maximally predictive, level of 
categories (see Gluck & Corter, 1985). Inspired by psychological research, they were 
then tested as psychological models and produced impressive quantitative matches with 
many studies of human category learning (Anderson, 1990). 

A major assumption of these approaches, that instances are classified into one category 
at any level in the hierarchy, is somewhat counterintuitive and inconsistent with other 
psychological research. People appear to have overlapping categories and, as an example, 
can classify the dolphin as both an aquatic animal and a mammal. Two or more categories 
are said to overlap when they share instances but neither category is a subset of the 
other. The mammal category and the aquatic animal category overlap because 
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they share instances; yet, not all mammals are aquatic and not all aquatic animals are 
mammals. 

People readily combine information from overlapping concepts, that is concept repre- 
sentations whose corresponding categories overlap (e.g., Murphy, 1990; Hampton, 1987, 
1988; Jones, 1982). Indeed, Osherson and Smith (1981, p. 55) state that "the ability 
to construct thought and complex concepts seems to lie near the heart of human menta- 
tion." Humans appear to combine concepts by computing an internal representation of 
the combined concept using the internal representations of the constituent concepts (e.g., 
Smith & Osherson, 1984). This fundamental ability is used for many related purposes: 
understanding noun phrases (e.g., Osherson & Smith, 1982), understanding categories in 
context (Roth & Shoben, 1983), deriving ad-hoc categories that are relevant to current 
goals (Barsalou, 1983), and determining the point of view of other individuals (Barsalou 
& Sewell, 1984). 

Besides the evidence that humans use overlapping concepts, there are also computa- 
tional reasons both to learn and to use such concepts. First, with overlapping concepts, 
the same knowledge can often be represented more succinctly. This is the traditional 
advantage of multiple classification for the representation of knowledge. For example, if 
we know about 100 animal species that can be either pets, wild animals, or performers, 
we would prefer to represent this information with 100 distinct animal concepts, a pet 
concept, a wild animal concept, and a performer concept. Without overlapping concepts, 
a system would need 300 separate concepts to represent the distinctions between all 
possible combinations. 

A second computational reason to use overlapping concepts is that doing so accelerates 
learning when overlapping concepts best represent the knowledge in question. A learner 
who can recognize overlapping categories can divide a complex learning problem into 
two or more simpler learning problems and thereby learn using fewer examples. For 
example, the world may contain pets, wild animals, performers, cats, dogs, and horses. 
Without overlapping concepts, the learner must see a few examples of every combination 
of a role (pet, wild, performer) and animal type to have an adequate model of the 
world. Alternatively, when overlapping concepts are possible, the learning problem can 
be decomposed. Now, the learner must still see a few examples of pets, wild animals and 
performers to have an adequate model of the roles animals can play. The learner must 
also see a few examples of each animal type to have a model of those animals; however, 
the same example can be used as an instance of both an animal role and an animal type. 
Thus, when learning overlapping concepts, the learner need not see examples of every 
combination. For example, the learner need never have encountered a pet horse to have 
a model of such a thing. 

Despite these potential benefits, learning overlapping concepts has not been widely 
addressed in the concept formation work from the machine learning community (cf. 
Lebowitz, 1987). Many models of concept formation do not form overlapping concepts 
at all. We present OLOC (One-level for Learning Overlapping Concepts), a concept for- 
mation system that learns overlapping concepts, and we specify a simple but informative 
rule for combining such concepts once learned. 
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Table 1. A probabilistic concept 

Probability = 0.4 
Attributes Values with Probabilities 
Found 
Food-Type 
Mobility 
Covering 
Legs 
Reproduction 
Appearance 

inside (0.83) outside (0.17) 
packaged (0.83) fresh (0.17) 
swims (0.42) walks (0.29) 
scales (0.42) hair (0.29) 
zero (0.42) two (0.29) 
fertilizes (0.33) produces-eggs (0.67) 
plain (0.5) pretty (0.5) 

flies (0.29) 
feathers (0.29) 
four (0.29) 

In the next two sections, we will present OLOC. In Section 2, we describe the repre- 
sentation and organization of concepts. Also, we describe how OLOC uses such concept 
structures for classification and prediction. Section 3 then presents the learning method 
that OLOC uses to construct structures of overlapping concepts. Section 4 demonstrates 
that OLOC can learn successfully in both artificial and natural domains and can out- 
perform learning systems that do not acquire overlapping concepts. Section 5 briefly 
presents an interesting, though limited, set of findings from human conceptual combina- 
tion and shows how OLOC exhibits the same qualitative pattern of findings. Section 6 
summarizes the design of OLOC, assesses its promise as a cognitive model, and presents 
directions for future research. 

2. Concept representation and use 

OLOC'S organization of overlapping concepts is novel, as are its methods for using and 
learning such concepts. Each concept in this structure is probabilistic and those concepts 
representing mutually exclusive categories are grouped together into sets called contrast 
sets. Concepts in different contrast sets represent overlapping categories. OLOC classifies 
instances into one or more overlapping categories and can use the corresponding concepts 
to generate predictions. 

2.1. Representation o f  concept  structures 

Concepts in OLOC specify the information needed to compute the utility those concepts. 
A concept in OLOC is probabilistic, such that predictive associations between categories 
and attribute values are represented as probabilities (cf., Smith & Medim 1981; Fisher, 
1987). Gluck and Corter (1985) and Fisher (1987) used a probabilistic measure of the 
utility of a contrast set of categories. This measure required that the representation of 
a category, Ck, contain at least the probability that an instance is classified into the 
corresponding category, P ( C k ) ,  and, for each attribute value, Ai = Vii, the conditional 
probability of that attribute value given classification into the corresponding category 
P ( A i  = Vij lCk) .  Concepts in OLOC have the same form as those used by Fisher 
(1987). An example of a concept is shown in Table 1. As in Fisher's (1987) system 
COBWEB, OLOC'S concepts explicitly store observed frequencies, e.g., the number of 
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instances classified into a category. These frequencies are used to estimate probabilities. 
In particular, the estimated probability of classification into a category, P(Ck), is the 
number of instances classified into that category, F(Ck), divided by the total number of 
instances, N.  

P(Ck) ,-~ F(Ck) (1) 
N 

With continued random sampling, this estimate converges on the expected value of the 
probability of classifying an arbitrary instance into the category. 

Furthermore, the estimated conditional probability, P(Ai = Vij lCk), of a value given 
classification into a category is a function of the number of instances classified into that 
category, F(Ck), and the number of those instances that contained the value in question, 
F(Ai = VijlCk). In COBWEB (Fisher, 1987), this function is a simple division of 
frequencies as for the P(Ck);  however, with small samples, such a calculation can 
be grossly misleading. We use a more conservative approximation (cf., Anderson & 
Matessa, 1991) namely, 

1 + F(Ai = Vij lCk) 
P(Ai = VijlCk) ~ (2) 

hA, + F(Ck) 

In this equation, na~ is the number of values of the attribute, Ai. This estimated proba- 
bility converges on the expected value of the true probability. Further, this approximation 
provides a way of exploiting additional knowledge about the values for a particular at- 
tribute. O g o c  does not require these values, but when they are known, better estimates 
of probabilities are possible. 

OLOC's probabilistic concepts are organized into multiple contrast sets. The categories 
represented in one contrast set are mutually exclusive, such that no instance can be 
classified into more than one category in the set. The concepts in different contrast sets, 
i.e., overlapping concepts, are independent. In other words, knowing to which category 
an instance was classified in one contrast set does not provide any new information 
about which category is best in another contrast set. By assuming independence, OLOC 
attempts to minimize redundant categories between contrast sets. 

OLOC allows learning of contrast sets, sets of non-overlapping concepts, for two rea- 
sons. First, classification into multiple categories can be more efficient if OLOC knows 
which categories contrast with a given one. Once an instance is classified into one cat- 
egory, OLOC need not consider adding the instance to any of its contrasting categories. 
Second, there is evidence that humans build and maintain contrast sets of concepts and 
use those sets for prediction (e.g., Rosch, 1978). 

2.2. Multiple classification and concept combination 

OLOC, like many other concept formation systems, supports two basic functions on 
concept structures: classification and prediction. Classification consists of choosing one 
or more appropriate categories for a given instance. For example, a description of 
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a goldfish might be classified into a fish category instead of a mammal category 
because the description of the goldfish is a better match to the description of f i s h .  

Once the instance is classified into one or more categories, the system may use statistical 
information from the corresponding concepts to predict characteristics of a novel instance. 
For example, a description of a particular shark may not explicitly state that that shark has 
a 2-chamber heart. To predict the type of heart the shark has, the system first classifies 
the shark based on what it does know, such as that this animal lives in the water, etc. 
Once the instance is classified as a f i s h ,  the system can then predict that the shark 
has a 2-chamber heart based on the knowledge that most known fish have two-chamber 
hearts. 

Classification of instances into overlapping categories and the combination of corre- 
sponding concepts for prediction requires different methods than those used for trees of 
categories. Trees of non-overlapping categories are a familiar part of biology and other 
sciences. Living things are classified into exactly one kingdom (e.g., animal or plant), 
one phylum (e.g., mammal, bird, fish, etc.), etc. In a tree of categories, classification is 
based on the familiar idea of a best-match: A bluejay is a better match to other birds 
than it is to reptiles so it is classified as a b i r d .  Unfortunately, a single best-match is 
not a sufficient means for allowing multiple classification. 

Furthermore, the path of increasingly specific concepts in a tree (e.g., Animal, Mammal, 
Cow, etc.) can be combined simply based on the familiar idea of inheritance: a bluejay 
breathes like other animals, lays eggs like other birds, and sings like other songbirds. 
Whenever characteristics inherited from different concepts conflict, the more specific of 
the two concepts overrides the more general. For example, birds fly, but a penguin is a 
bird that cannot. In this case, the more specific category p e n g u i n  ovenides the more 
general, b i r d .  The combination of overlapping concepts is not so simple, because the 
concepts to be combined are not ordered explicitly by any relation such as specificity. 
For example, when an activity is classified as both a sport and a game, itt is not clear, 
without an analysis of content, which of the two concepts should dominate, in which 
respects, when they are combined. 

2.2.1. Classification 

In OLOC, multiple classification is performed by finding several best-matching concepts 
and doing so sequentially. An instance is first classified into the category whose concept 
representation best matches the instance, then a new best match is determined. Later 
best-matches are influenced by earlier classifications as described below. This process 
continues until a combination of all the selected concepts is sufficient to determine all 
attribute values (algorithm in Table 2). For example, a shark may be an overall better 
example of a f i s h  than it is of a m a m m a l  or a p e r f o r m e r  or a p e t .  It is first 
classified into the category f i s h .  This classification permits predictions about breathing 
method and other gross physiological characteristics. However, several characteristics, 
such as behavior, habitat, and food, are less predictable. Given that it is a f i s h ,  it 
cannot also be a m a m m a l  but it can be a p e r f o r m e r  or a p e t .  The shark is then 
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classified into whichever of the remaining categories whose concept representation best 
matches the instance. 

In OLOC, the determination of  which of several categories is the best match is deter- 
mined by a Utility score. This utility score is a probabilistic measure that is correlated 
with the probability of  a category given an instance. In other words, the more probable 
the category given the instance, the higher the utility score and the better the match. The 
exact measure used is motivated by issues encountered when learning concept structures 
and is discussed in detail when those issues are addressed below. 

Function M-Classify (Instance, Root); Returns Combination 
LET Combination be a copy of Root concept; 
Let Sets be the list of contrast sets; 
WHILE not PREDICTABLE(Instance, Combination) OR 

not IMPROVE(Instance, Combination) DO 
FOREACH ContrastSet in Sets 

FOREACH Concept in ContrastSet 
Add Instance to Concept; 

Calculate Utility using Combination; 
Remove Instance from Concept 

END 
END; 
LET BestConcept be Concept producing the highest Utility; 
Remove the contrast set containing BestConcept from Sets; 
LET Combination be COMBINE(Combination, BestConcept); 

END WHILE; 

Function COMBINE (Conceptl, Concept2) ; Returns Result 
/* Distribution Maximizing */ 
LET Result be a copy of Conceptl 
FOREACH Attribute 

IF most-probable-value(Attribute, Concept2) is more proba- 
ble than 

most-probable-value(Attribute, Conceptl) 
THEN 

replace the distribution for Attribute in Result 
with the distribution for Attribute in Concept2. 

Table 2. The algorithm for multiple classification 

2.2.2. Combining concepts 

A significant component of both classification and prediction in OLOC is the combination 
of multiple overlapping concepts. OLOC must calculate the probability of an attribute 
value given a subset of  concepts, P(A~ = Vij [Cl ,O2, . . . ) .  If concepts in different 
contrast sets are independent, this quantity can be calculated as follows: 
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P(Ai = VijlCk) 
P(Ai = VijlCl,C2,. . .)  = P(Ai = Vii) H -If--CA- i - ~ j )  

k 
(3) 

Although OLOC does assume independence, concept combinations should be robust 
when this assumption is not precisely true. Equation 3 does not meet this require- 
ment. First, when the concepts are not independent, this calculation will yield estimated 
probabilities for each value of some attribute that do not sum to one. Second, when the 
concepts are interdependent, the probability of a value given the combined concept varies 
widely. It is either considerably larger or smaller than the probability of that value given 
either of the concepts that were combined. We have chosen to use a measure without 
these two characteristics. When concepts are independent, our calculation produces the 
same result as does Equation 3.1 However, when concepts are not independent, it yields 
a more stable estimate} 

OLOC combines two concepts by considering each attribute separately and allowing 
the concept with the greatest certainty about the attribute's value to dominate in the 
combination. For example, if one concept predicts that body covering of an animal is 
f e a t h e r s  with a certainty (probability) of 0.99 and another concept predicts that body 
covering is h a i r  with a certainty of 0.7, OLOC accepts the description of the more 
certain concept. It then expects the body covering to be f e a t h e r s  with a certainty 
of 0.99. 

More specifically, for each attribute, OLOC compares the existing distributions from 
the two concepts and adopts one of the two distributions unchanged. A distribution is 
a list of the probabilities for each observed value of an attribute. For example, the dis- 
tribution for the attribute 'body covering' in one concept might be (feathers, 0.99);(hair, 
0.01);(scales, 0.0). For another concept, the corresponding distribution might be (feath- 
ers, 0.2);(hair, 0.7);(scales, 0.1). OLoc  determines which of the two concepts has the 
distribution with the largest maximum probability (the one with the most certainty about 
some attribute value) and adopts that concept's distribution for the resulting combination. 
In this example, OhOC observes that the maximum probability for any value in the first 
distribution (0.99) is greater than the maximum probability for any value in the second 
distribution (0.7). As a result, it adopts the first distribution unchanged. OLOe's com- 
bination method is called distribution maximizing and is further described in the lower 
half of Table 2. 

The distribution maximizing approach is similar but not identical to that advocated by 
Holland, Holyoak, Nisbett, and Thagard (1986). They suggest that a property with a low 
"degree of variability" for a concept should more highly influence the combined concept 
than should a property with a high degree of variability. A property whose value does 
not vary much will also have a high, maximum probability. The color of fire engines 
has a low degree of variability, meaning that the probability of the most common color 
(red) is nearly 1.0. 



128 J.D. MARTIN AND D,O. BILLMAN 

\ P(Flies IC1) = 0.6 ]~ P(Flies IC2) = 0.2 

"PET . . . .  WILD" "BIRD . . . .  MAMMAL" 

Figure 1. An overlapping concept structure with two contrast sets and four concepts. 

2.3. An example of classification and prediction 

We now consider an example classification of an instance and the subsequent prediction 
of missing attribute values. Figure 1 depicts an overlapping concept structure. The 
two rectangles represent contrast sets and the ovals represent concepts. The statistical 
information stored in the concepts is printed in the ovals. These concepts are not sharply 
defined but they approximate categories with the labels shown in quotes beneath each 
oval: pets, wild animals, birds, and mammals. These labels are not provided to OLOC. 

OLOC multiply classifies an instance by first classifying it into the best category overall 
and then in light of the first classification, classifies it into the best remaining category. 
Consider a hypothetical robin that lives outside, has feathers, two legs, fertilizes eggs, and 
appears pretty. The utility scores that result from adding the instance to each category 
are as follows: 1.105 for adding it to the b i r d  category, 1.053 for adding it to the 
m a m m a l  category, 0.925 for adding it to the w i l d  category, and 0.911 for adding it to 
the p e t  category. The most probable category given the instance is the b i r d  category. 
The instance is first classified into that category and the m a m m a l  category is no longer 
considered, because the concept structure states that an instance cannot be both a b i r d  
and a m a m m a l .  Moreover, a combined concept description is calculated. Because the 
instance has only been classified into one category, the combined description is the same 
as the b i r d  concept (see Table 3). 

Of the two remaining categories, p e t  and w i l d ,  the most probable one given the 
instance and the prior classification into b i r d ,  is the w i l d  category. The utility scores 
that result from adding the instance to each category are as follows: 1.162 for adding 
it to the w i l d  category and 1.083 for adding it to the p e t  category. The instance is 
classified into the wild category and a combined concept description is calculated. OLOC 
temporarily combines the two concepts to increase the chances of a correct prediction 
(see Table 4). 
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Table 3. The predictive description of the robin after classification as a "bird." 

Attributes Values with Probabilities 
Found 
Food-Type 
Mobility 
Covering 
Legs 
Reproduction 
Appearance 

inside (0.67) outside (0.33) 
packaged (0.67) fresh (0.33) 
swims (0.25) walks (0.25) 
scales (0.25) hair (0.25) 
zero (0.25) two (0.5) 
fertilizes (0.67) produces-eggs (0.33) 
plain (0.67) pretty (0.33) 

flies (0.5) 
feathers (0.5) 
four (0.25) 

Table 4. The combined description of the robin after classifying it both as a "bird" and as a "wild" animal. 

Attributes Values with Probabilities 
inside (0.25) outside (0.75) Found 

Food -Type 
Mobility 
Covering 
Legs 
Reproduction 
Appearance 

packaged (0.25) fresh (0.75) 
swims (0.25) walks (0.25) flies (0.5) 
scales (0.25) hair (0.25) feathers (0.5) 
zero (0.25) two (0.5) four (0.25) 
fertilizes (0.25) produces-eggs (0.75) 
plain (0.25) pretty (0.75) 

An important characteristic of  this combined description is that the result preserves 
extremes. The b i r d  concept strongly predicts f l i e s  and f e a t h e r s  and that 
information was preserved in the combination. Similarly, the w i l d  concept strongly 
predicts o u t s i d e  and f r e s h  food and that information was also preserved in the 
combination. 

Once the robin is classified as a b i r d  and a w i l d  animal and the combined concept 
description has been calculated, OLOC can predict the values of  unspecified attributes. 
In this instance, the values of  neither F o o d - T y p e  or Mob  i 1 i t y  are specified. Using 
the combined description in Table 4, OLOC chooses the most probable value for each 
unknown attribute. It predicts that F o o d - T y p e  is f r e s h ,  as for most wild animals, 
and that M o b i l i t y  is by F l y i n g ,  as for most birds. 

In general, then, OLOC multiply classifies an instance and as it does so, it generates a 
combined concept description relevant to the instance. This combined concept description 
can then be used to predict the values of unspecified attributes. 

3. OLOC: Learning overlapping concepts 

OLOC is an unsupervised, incremental concept formation system. It is incremental, 
because instances are incorporated into the concept structure as they are observed. It is 
unsupervised, because there is no teacher directing learning to enhance prediction of  one 
or a few specific attributes. 

We describe O L o e ' s  learning as a hill-climbing search through possible concept struc- 
tures (cf., Fisher, 1987). In OLOC'S hill-climbing search, there are operators;  i.e., pro- 
cesses that can transform one concept structure into another. The learner chooses which 
operator to perform based on the Utility score described above, a heuristic evaluation 
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function. The Utility score is probabilistic and estimates the predictive accuracy; i.e., the 
probability of producing correct predictions of missing attribute values. Therefore, OLOC 
searches for a structure of overlapping concepts that maximizes predictive accuracy. 

In this section, we describe OLOC'S learning algorithm by presenting: 

• The measure of predictive accuracy that is to be maximized, and 

• The operators and control strategy for altering concept structures. 

This description is followed by a detailed example of its operation in section 3.3. Some 
readers may wish to examine the example before reading about the algorithm in general. 

3.1. A measure of predictive accuracy 

The goal of OLOC is to find the concept structure, O, that maximizes the probability 
of correct predictions, P(correctlO ). OLOC considers concept structures as described 
above such that instances are organized into contrast sets, and concepts in one contrast 
set overlap with those in other contrast sets. 

The overall estimated probability of correct predictions is calculated as a geometric 
average of the probability of being correct given each contrast set. In turn, the probability 
of being correct given one contrast set is calculated by performing a weighted sum across 
the concepts in that contrast set. In particular, the estimated probability of being correct 
is calculated with the following measure, 

(4) 

SetUtility(St) = ~ P(CkIO) y ~  P(AdO)P(Ai = V~jICk, O) 2 (5) 
{eke&} i j 

In this equation, M is the total number of contrast sets and P(A~IO ) is the probability 
that the learner will need or want to predict the value of attribute, Ai, given a particular 
concept structure. 

1 In OLOC, this latter probability is a constant equal to nu,~ber of ,~ttrib~t,~" In Equation 
5, the term P(Ck]O) is the probability that an arbitrary instance will be classified into the 
k-th category in a particular concept structure 8. Finally, the term P(Ai = Vij[Ck, O) is 
the probability that an instance classified into the k-th concept will contain the j-th value 
of the i-th attribute. 

To calculate this Utility score, OLOC need only have access to the probability of 
concepts and to the conditional probabilities of values given concepts. Both types of 
quantity are stored in concepts. In the Appendix, the Utility score in Equation 4 is shown 
to be equal to the estimated probability of being correct given certain assumptions. 
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3.1.1. Advantages of the utility score 

Besides being a direct measure of predictive accuracy, the Utility score has three addi- 
tional desirable aspects. First, because the Utility score calculates a geometric average of 
a utility score for each contrast set, concept structures with differing numbers of contrast 
sets can be productively compared. 

Second, the contribution of the individual contrast sets to the overall measure can be 
calculated and updated independently. This means that local changes to a single contrast 
set do not require a complete recalculation of the Utility score. Additionally, it means 
that given an appropriate architecture, the Utility score can be calculated in parallel. 

Third, the Utility score favors contrast sets that balance the traditional goals of clus- 
tering: high within-class similarity and low between-class similarity (cf., Fisher, 1987). 
In probabilistic terms, a concept has high within-class similarity if the probabilities of 
attribute values given the concept, P(Ai = Via [Ck) are high. If these quantities are high, 
then most instances of the category will share the same attribute values. Conversely, con- 
cepts have low between-class similarity if the probabilities of concepts given attribute 
values, P(CaIAi = V/a), are high. If these quantities are high, then most instances in 
one category will have different attribute values than do other concepts. Fisher (1987) 
demonstrates that one measure for balancing these quantities, 

~ ~ P(Ai = V/a)P(Ck IAi = V/a)P(Ai = V/a ICk) 
k = l  i j 

(6) 

can be rewritten as, 

n 

P(Ca) E ~ P(Ai = V/jlCk) 2 
k = l  i j 

(7) 

(cf., Gluck & Corter, 1985). Without the normalizing constant P(AdO ), Equations 5 and 
6 would calculate the same quantity. 

3.2. OLOC~$ operators and algorithm 

To describe learning as a hill-climbing search, we must specify the operators that can 
transform one concept structure into another. At each point in the search--as each 
instance arrives the learner chooses the operator that most increases the Utility score. 
OLOC can transform a concept structure in three waysa: a) updating the representation 
of multiple overlapping concepts by adding an instance to a subset of those concepts; 
b) creating a new concept in an existing contrast set; c) and creating a new contrast set 
with one new concept. At each point in learning, OLOC attempts to find the operator or 
operators that will most improve the Utility score. 

Ideally, OLOC would tentatively add the instance to every subset of concepts to deter- 
mine the best. However, this is not practical, because the number of subsets of concepts 
is an exponential function of the number of concepts. 
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Instead, OLOC performs a greedy search for one set of overlapping concepts, such that 
if the instance were classified into all the concepts in this subset, the Utility score would 
be high. 

For each instance encountered, OLOC does the following: 

1. Considers all concepts in all contrast sets, 

2. Adds the instance to the one best concept (across all remaining contrast sets), creates 
a new concept, or creates a new contrast set, 

3. Removes from consideration the contrast set containing that best concept, and 

4. Iterates through steps 2 and 3 until there are no gains in predictive accuracy. 

In this algorithm, no gain in predictive accuracy means that the number of attribute 
values successfully predicted does not increase. An attribute value in an instance is 
predictable if that attribute value is the most probable value of the attribute given a 
concept or set of concepts. Table 5 outlines this algorithm in more detail. 

3.2.1. Maintaining independent contrast sets 

The above algorithm is not sufficient to ensure that the structure learned consists of 
independent sets of mutually exclusive concepts. Both step 2 and step 4 must be en- 
hanced. First, step 2 does not guarantee contrast sets with multiple concepts. To address 
this problem, OLOC requires that the second instance added to a contrast set be used to 
create a new, second concept in the contrast set. In some cases, this approach will lead 
to similar instances being classified into different categories. Although this problem can 
produce unnecessary concepts, in practice, it has not lead to poorer prediction perfor- 
mance. Below, we discuss an extension to OLOC that directly addresses this problem. 

Second, the iteration in step 4 does not guarantee that the concepts in different contrast 
sets will be independent. To best approximate independence, OLOC records how well 
attribute values are predicted by a subset of concepts and favors classification into those 
additional concepts that would improve the poorly predicted attribute values. Specifically, 
after the instance has been classified into a concept, that concept's description is combined 
with all other concepts before determining the next classification (Table 2 describes 
the combination algorithm). Whenever the Utility score is recalculated to determine 
additional overlapping concepts, it is calculated using the combined concept description. 
For example, a particular shark may be first classified as a fish. Subsequent classification 
decisions are then made in light of that first classification. If the shark might be classified 
as either a performer or a wild animal, OLOC first combines the fish concept with the 
performer concept and combines the fish concept with the wild animal concept. These 
combinations are only temporary and help determine classification. Classification is then 
made into performer or wild based on the better of the two combined concepts. 
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Function OLOC (Instance, Root); Returns Combination 
Update Root concept using Instance; 
LET Combination be a copy of Root concept; 
IF there are zero contrast sets 
THEN Create a contrast set with one new Concept; 

Update Concept using Instance; 
LET Combination be COMBINE(Combination, Concept); 

ELSE Let Sets be the list of contrast sets; 
WHILE not PREDICTABLE(Instance, Combination) OR 

not IMPROVE(Instance, Combination) DO 
LET BestConcept be BEST-CONCEPT(Sets, In- 

stance, Combination); 
LET CreateConcept be new concept in a new con- 

trast set; 
IF BestConcept gives a higher Util- 

ity than CreateConcept 
THEN IF BestConcept is new THEN create it; 

Update BestConcept using Instance; 
Remove the contrast set containing BestCon- 

cept from Sets; 

ELSE 

END IF; 

END IF; 

LET GlobalBest be BestConcept 
Create a contrast set with one new Concept; 
Update CreateConcept using Instance; 
LET GlobalBest be CreateConcept 

LET Combination be COMBINE(Combination, GlobalBest); 
END WHILE 

Function BEST-CONCEPT (Sets, Instance, Combination); Re- 
turns BestConcept 

FOREACH ContrastSet in Sets 
IF there is more than one concept in ContrastSet 
THEN FOREACH Concept in ContrastSet 

Add Instance to Concept; 
Calculate Utility using Combination; 
Remove Instance from Concept 

END 
END; 
FOREACH ContrastSet in Sets 

Create a new concept in ContrastSet; 
Add the Instance to the concept; 
Calculate Utility using Combination; 
Remove the new concept 

END; 
LET BestConcept be Concept or new concept producing the high- 

est Utility 

Table 5. OLOC'S algorithm 
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Table 6. Instance animal descriptions 

Name Found Food-Type Mobil i ty  Covering Legs Reproduction Appears 
Finch 
Angel-Fish 
Macaw 
Hamster 
Leopard 
Pigeon 
Goldfish 
Guppy 
CatFish 
Gopher 

inside packaged Flies feathers two produces-eggs plain 
outside fresh Swims scales zero produces-eggs pretty 
inside packaged Flies feathers two fertilizes plain 
inside packaged Walks hair four  fertilizes plain 
outside fresh Walks hair four  produces-eggs pretty 
outside fresh Flies feathers two fertilizes plain 
inside packaged Swims scales zero produces-eggs pretty 
inside packaged Swims scales zero fertilizes plain 
outside fresh Swims scales zero produces-eggs plain 
outside fresh Walks hair four fertilizes plain 

3.3. A n  example 

Figure 2 shows the process of learning four instances from Table 6. Each snapshot shows 
the multiple classification of each instance and the concept structure that is learned. Each 
illustration of  a concept structure consists of  a collection of  contrast sets (the rectangles) 
and concepts within the contrast sets (the ovals). Under each concept is a list of the 
instances that have been classified into the corresponding category. 

For this example, we assume that O b o c  begins with no concept structure. After 
encountering the first two instances in Table 6 ( 'finch' and 'angel-fish'), ObOC's concept 
structure is as in Figure 2a. 

In Figure 2a, there is only one contrast set, represented in the figure as a rectangle. 
There are two concepts, represented by ovals. Under each concept is a list of instances 
that have been classified into the corresponding category. Each concept in the contrast 
set has a probability, which is the probability that an instance will be classified into the 
corresponding category. The concept also has conditional probabilities of  attribute values 
given the concept. For simplicity, these probabilities are omitted from the figure. 

Figure 2b shows the process of  learning about the 'macaw.' The dotted arrows represent 
the action of  attempted classification and the solid black arrows represent the action of  
updating a concept structure. Learning in OLOC follows the algorithm in Table 5. For 
each of  the two concepts in the only contrast set, the instance is temporarily added to 
the concept and the Utility score is calculated. Next, a new concept (dotted oval) is 
temporarily created in the contrast set and again the Utility score is calculated. Finally, 
a new contrast set is created with a new concept and once more, the Utility score is 
calculated. The operator that yields the highest Utility score is then adopted. In this 
example, the Utility score for adding to the first concept, C1, is 0.513; the Utility for 
adding to the second concept, 02, is 0.469; the Utility for creating a new concept in the 
contrast set is 0.478; and the Utility for creating a new contrast set is 0.225. Therefore, 
the best operation is to add the instance to the first concept, C1. Hence, the 'macaw'  
instance is classified into the same concept as was 'finch.' 

After adding the instance to one concept, OLOC tests whether the number of predictable 
attributes is not rising or that each attribute value in the instance is the most probable 
value for the concept. In the first case, additional classification of  the instance does not 
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Figure 2. A graphical description of learning in OLOC. 
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improve predictive utility. In the second case, additional classification of the instance is 
unnecessary for accurate prediction. In this example, predictive accuracy is rising and 
some attribute values, reproductive role and appearance, are not predictable using C1 
alone. Therefore, OLOC continues processing the instance. Since there are no existing 
contrast sets to which the instance has not already been added, OLOC's only option is to 
create a new contrast set with a new concept, (Utility = 0.308). Note that in the figure, 
contrast sets with hash marks have been removed from consideration. 

Figure 2c shows the process of learning about the 'hamster.' Now there are two existing 
contrast sets, so OLOC must do more work. OLOC must consider adding the instance 
to any concept in the first contrast set, creating a new concept in either set, and creating 
a new set. It does not consider adding the instance to the third concept, C3, the one by 
itself in the second contrast set, because the second instance added to a contrast set must 
become a new concept. This requirement was imposed to ensure there is more than one 
concept in each contrast set. 

In this example, the Utility for adding 'hamster' to the first concept, C1, is 0.249; the 
Utility for adding to the second concept, 02, is 0.243; the Utility for creating a new 
concept in the first contrast set is 0.245; the Utility for creating a new concept in the 
second contrast set is 0.303; and the Utility for creating a new contrast set is 0.176. 
Therefore, the best operation is to create a second concept in the second contrast set. 

Again, OLOC tests whether the attribute values in the instance are predictable. In this 
case, all attribute values are predictable, because the instance is the only known instance 
of the new concept. All the attribute values of the instance are the most probable values 
for the new concept. When a new concept is created either in an existing set or in a new 
set, the instance will be predictable and processing will stop. 

Figure 2d shows the process of learning about the 'leopard.' There are still only two 
contrast sets. OLOC must again consider adding the concept to any concept in either 
contrast set, creating a new concept in either set, and creating a new set. 

In this example, the Utility for adding 'leopard' to the first concept, C1, is 0.267; the 
Utility for adding to the second concept, C2, is 0.282; the Utility for creating a new 
concept in the first contrast set is 0.278; the Utility for adding 'leopard' to the third 
concept, 03, is 0.290; the Utility for adding to the fourth concept, C4, is 0.297; the 
Utility for creating a new concept in the second contrast set is 0.297; and the Utility for 
creating a new contrast set is 0.178. Therefore, the best operation is to add the instance 
to the fourth concept along with 'hamster.' When there are ties for Utility score, OLOC 
prefers to add an instance to an existing concept rather than to create a concept. All 
attribute values are not yet predictable. In particular, the leopard does not live indoors 
and does not eat packaged-food. Therefore, OLOC continues processing the instance. It 
must now consider adding the instance to any concept in the first contrast set, creating a 
new concept in the first set, and creating a new set. Utility scores are calculated based 
on the combined concepts. 

In this example, the Utility for adding 'leopard' to the first concept, G1, is 0.339; the 
Utility for adding to the second concept, C2, is 0.355; the Utility for creating a new 
concept in the first contrast set is 0.348; and the Utility for creating a new contrast set is 
0.210. Therefore, the best operation is to add the instance to the second concept along 



ACQUIRING AND COMBINING OVERLAPPING CONCEPTS 137 

@ @  @ 
'finch' 'angel-fish' 'macaw' 

'macaw' 'pigeon' 'pigeon' 
'guppy' 'leopard' 

'catfish' 

'hamster' 'guppy' t 
'leopard' 'goldfish' 
'gopher' 'catfish' 

Concepts 

Instances 

Figure 3. The concept structure after learning all instances from Table 6. 

with 'angel-fish.' All attribute values are now predictable and processing of the 'leopard' 
instance stops. 

Figure 3 shows the results of learning all 10 instances from Table 6. The figure 
includes explanatory labels for the learned concepts (not created by OLOC) and the 
instances that were classified into each concept (listed beneath each concept). This 
figure highlights a characteristic of OLOC learning using small sample sizes. Although 
the internal descriptions of the concepts between contrast sets describe overlapping sets 
of instances, some of the instances were not classified into more than one concept, i.e., 
'finch', 'angel-fish', 'hamster' ,  'goldfish', and 'gopher.' There are two reasons for this 
phenomenon. First, early instances are encountered when there is only one contrast set 
and hence cannot be classified into more than one category. In the example, the second 
contrast set was learned while processing the third instance. Second, when a new contrast 
set is learned, the new concepts have only one or a few instances. As a result, these 
concepts are usually sufficient for predicting all attribute values of an instance. Hence, 
processing of the instances stops after the instance has been classified into only one 
category. Generally, after several instances have been classified into the categories in 
OLOC, subsequent instances are reliably classified into multiple categories. 

The concept structure that OLOC learns from a set of instances is dependent on the 
order in which it encounters those instances. The order of instances in Table 6 was 
chosen because it provided a clear example of learning. We ran OLOC on 1000 different 
orders of the instances in Table 6. For most, OLOC learned all the concepts shown in 
Figure 3. However, with some orders OLOC learned a third contrast set to attempt to 
predict the values of the attributes: appearance and reproductive-role. Further, with some 
orders, learning does not happen as quickly and some instances are misclassified, such 
as putting 'macaw' in the concept that evolves into the 'fish' concept. 

3.4. Extensions 

Here we describe how OLOC can be extended to delete concepts and learn hierarchical 
structures. These extensions are noted to illustrate the flexibility and power of our 
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approach. However, they are not to be used in any example or empirical test in this 
paper. The extended system will be called O c o c + .  

3.4.1. Deleting concepts 

OLOC+, like other incremental learners, is hindered by inopportune orders of its input 
instances, if, for example, the first few instances are very similar. To combat order 
effects, incremental learners need some learning operator that can reduce the effect of 
such orders. For example, COBWEB uses the splitting and merging of concepts to combat 
overly general or overly specific concepts formed early in learning. These operators are 
applied to a concept in a tree of concepts if they result in improvements to a Utility score. 
Splitting a concept is an operation that replaces a concept by its children concepts, those 
one level lower in the tree. In essence, the operator promotes concepts to a higher level 
in the tree. Merging, on the other hand, combines two concept descriptions into a single 
one. 

In contrast, OLOC+ uses a 'delete-concept' operator that can be applied to remove 
a concept from a contrast set. It does not use splitting and merging because of the 
complexities introduced by non-tree hierarchies of overlapping concepts. Every time 
OLOC adds an instance to a contrast set, it considers deleting the one concept from that 
set that contributes the least to the Utility score. It only performs the deletion if the 
Utility score after deletion is higher than that before deletion. 

One difficulty with a deletion operator is that information stored in the deleted concept 
is lost. OLOC+ provides an option to reclassify instances that were previously classified 
into the deleted category. There is a parameter c~ that determines the number of instances 
that will be reclassified. For example, if a = 2, then the last two instances classified into 
each category will be saved and reclassified if the concept is deleted. In many cases, 
this approach will not result in any lost information and can actually mimic splitting and 
merging in early learning. 4 In general, c~ need not be large because the problems that the 
deletion operator alleviates are most evident in early learning, with small sample sizes. 

3.4.2. Hierarchical structures 

Overlapping concepts can be arranged in hierarchical structures to represent concepts 
ordered by specificity. Just as for trees of concepts, more general concepts are linked 
to successively more specific concepts. In contrast to trees, however, a given specific 
concept may have several more general parent concepts. For example, a w o o d e n  
spoon concept is more specific than a wooden object concept and a spoon 
concept. In such a hierarchy, the more specific concept may be necessary to specify 
special exceptions about wooden spoons that are not generally true of either wooden 
objects or spoons, such as their large size. In other words, the more specific concepts 
allow O b O e +  to override the default combination of the two more general concepts. 

OLOC+ learns and uses a hierarchy of levels of overlapping concepts. Here a level is a 
collection of contrast sets as in Figure 1. Each concept within a level may have a 'child' 
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Table 7. Comparisons of Concept Formation Systems 

Feature: 

Ovedapping 
Contrasting 
Combination 
Uncertainty 

COBWEB Anderson Segen Unimem, PI OLOC 
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link to a more specific level or collection of contrast sets. For example, the spoon 
concept on one level of the hierarchy may be linked to other contrast sets such as one 
containing the concepts w o o d e n - s p o o n  and m e t a l - s p o o n .  After an object is 
classified as a s p o o n ,  it can subsequently be classified as a w o o d e n - s p o o n .  

Classification and learning occur as in OhOC and occur at several levels of the hierar- 
chy. OLOC+ classifies an  instance into categories at one level until adding the instance 
to a concept at the next more specific level yields a higher Utility score than adding it to 
concepts at the current level. Similarly, learning updates or creates concepts at the next 
more specific level when doing so results in a higher Utility score than does any change 
at the current level. 

Although there may be many 'child' links to follow to more specific levels, OLOC+ 
only follows one: the first such link encountered during classification. As in the example 
of the wooden spoon, both the concepts spoon and wooden-obj eet may have 
more specific levels, but only one of those is used by OLOC+. If the instance is first 
classified as a s p o o n ,  OLOC+ will use the child link of that concept and not the child 
link of w o o  d e n  - o b  j e c t .  O LO C + follows only one child link to more specific levels 
to avoid the combinatorial explosion possible by following all such links. As a result of 
this strategy, some more specific concepts that would be relevant to a current instance 
may be not accessed if they lie along other untraversed child links. An alternative, but 
more expensive, solution is to follow some larger but constant number of links. 

3.5. Related work 

Our approach to learning overlapping concepts is similar to existing methods of concept 
formation but differs along four dimensions. First, OLOC learns overlapping concepts, 
unlike some concept formation methods. Second, although it learns overlapping concepts, 
it permits some concepts to be mutually exclusive. Third, it permits the combination 
of multiple concepts. Finally, OLOC handles uncertainty or noise in a domain using a 
principled probabilistic model. Table 7 presents these four features and indicates which 
of several representative systems share those features with OLOC. 

Consider each feature in turn. There are several well-known concept formation systems 
that do not permit overlapping concepts (e.g., Fisher, 1987; Anderson, 1990; Cheeseman 
et al., 1988). They assume that every instance belongs in exactly one category at each 
level of the hierarchy. Despite this assumption, two of these systems, Anderson's (1990) 
system and AUTOCLASS (Cheeseman et al., 1988), do allow instances to be classified 
into multiple categories, giving the appearance of overlapping concepts. However, both 
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systems assume that all concepts are mutually exclusive. Instances are multiply classified 
only because the learner is uncertain where to classify the instance. As a result, the learner 
partially assigns an instance to each category based on the probability that the instance 
is a member of that category. A particular instance of a small dog may be an example 
of the dog  concept with a probability of 0.9 and an example of the c a t  category with 
a probability of 0.1. 

However, this technique does not produce overlapping concept descriptions in practice. 
This technique attempts to learn maximally distinct concepts. However, overlapping 
concepts are not maximally distinct, because they have shared instances. For example, 
the concepts dog  and p e t  are not as different as are dog  and c a t .  Therefore, learning 
methods that seek disjoint concepts will tend not to learn overlapping ones. 

A second point of difference with earlier systems is that OLOC allows some concepts 
to be contrasting (i.e., "negatively" interdependent), while other systems only permit 
independent overlapping concepts (e.g., Segen, 1988). In building a probabilistic system 
for concept formation, it is especially tempting to assume that all concepts are independent 
of all other concepts. This greatly simplifies the mathematics and allows classification and 
learning to be tractable. However, it is unusual for a domain to require only independent 
concepts. Fortunately, it is possible to achieve tractability by assuming that concepts are 
organized into contrast sets (cf., Ben Bassat, 1980; see Appendix). This implies that at 
least some of the concepts are not independent (i.e., in this case, mutually exclusive). 

Third, unlike other systems (e.g., Lebowitz, 1987; Carpineto & Romano, 1993), OLOC 
provides a method by which overlapping concepts can be combined to provide a con- 
sistent basis for prediction and other concept use. It is not enough that an instance 
be multiply classified if the resulting concepts do not interact to produce behavior. In 
GALOIS (Carpineto & Romano, 1993), for example, an instance is multiply classified 
and then one overlapping concept is chosen as the basis for prediction. Fourth, unlike 
some systems, OLOC explicitly represents uncertainty by using probabilistic concepts 
and a corresponding learning method. Such concepts have the advantage of being more 
sensitive to probabilistic structure in the world and less sensitive to noise and missing 
values. 

Despite OLOC's value with respect to these four features, some of the comparison 
systems do implement further desirable features that are not implemented in OLOC. For 
example, unlike OLOC, both Anderson's (1990) method and A U T O C L A S S  (Cheese- 
man et al., 1988) are based on more extensive Bayesian analyses. For example, they 
probabilistically classify instances into concepts in one contrast set. This provides an 
effective means of addressing some uncertainty that OLOC ignores. 

Furthermore, Segen's (1988) minimal representation method allows each concept to 
store only the attributes that are relevant to the concept. In OLOC, all concepts maintain 
summary information about all attributes. With overlapping concepts this is often un- 
necessary. If a learner has a mammal concept and a pet concept, the pet concept does 
not need to store any information about whether a pet bears live young. Segen presents 
one method for eliminating such unnecessary storage. 
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4. Evaluation of OLOC 

A primary purpose of concept formation is to allow correct predictions about novel 
instances. A model of concept formation must at least show successful learning. Fur- 
thermore, to be a model of human concept formation, a learning system must show that 
it is robust and that in the face of degraded input, its performance degrades gradually. 

4.1. An overlapping dataset 

To show learning in the presence of noise, we applied OLOC to a base dataset for which 
overlapping concepts are appropriate. An overlapping dataset is one in which there are 
two or more independent sets of interrelated attributes. The attributes can be partitioned 
into disjoint subsets such that the values of attributes in any one subset are interpredictive 
and the values of attributes in different subsets are independent. For example, a dataset 
may have attributes corresponding to animal type that can be separated from the attributes 
corresponding to the animal's role. The attributes for animal type are interpredictive, but 
are independent of the other attributes. 

For this experiment, we also varied the amount of noise of the attribute values. Here, 
the amount of noise refers to the probability that some attribute value will be randomly 
changed to some incorrect value of that attribute. 

Also to show the advantage of OLOC over systems that do not permit overlapping 
concepts, we applied two other systems to the same datasets. One system was an in- 
complete version of OLOC that does not permit overlapping concepts. We will refer to 
this system as SINGLE. The other system was COBWEB (Fisher, 1987). We compare 
with COBWEB because it is an effective concept formation system that does not permit 
overlapping concepts but does acquires a hierarchy of concepts instead of a single set of 
concepts. 

4.1.1. Dataset design 

Each instance from the base dataset is described using nine attributes, where each attribute 
has one of four possible values. The first three attributes (1-3) are all perfectly correlated, 
as are the second set of three attributes (4-6) and the third set of three attributes (7-9). 
Two attributes are said to be perfectly correlated if the value of one attribute is sufficient 
to predict the value of the other. All 64 possible instances in this domain are shown in 
Table 8. 

4.1.2. Procedure 

In this experiment, each system (OLOC, COBWEB, and SINGLE) was tested at each of 
four levels of noise. The noise parameter N represents the probability that each attribute 
value for an instance from the base dataset will be changed to some incorrect value of the 
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Table 8. Sixty-four instances from Overlapping Animal Dataset, nine four-valued attributes. Values are 
represented by digits from 0 to 3 and attribute is represented by position. 

000000000 111000000 222000000 333000000 
000000111 111000111 222000111 333000111 
000000222 111000222 222000222 333000222 
000000333 111000333 222000333 333000333 
000111000 111111000 222111000 333111000 
000111111 111111111 222111111 333111111 
000111222 111111222 222111222 333111222 
000111333 111111333 222111333 333111333 
000222000 111222000 222222000 333222000 
000222111 111222111 222222111 333222111 
000222222 111222222 222222222 333222222 
000222333 111222333 222222333 333222333 
000333000 111333000 222333000 333333000 
000333111 111333111 222333111 333333111 
000333222 111333222 222333222 333333222 
000333333 111333333 222333333 333333333 

same attribute. So if N = 0.1, the probability that any attribute value of  the instance will 
be changed randomly to an incorrect value of that attribute is 0.1. Noise is introduced 
to mimic the effects of nonlogical (probabilistic) relations between attribute values. We 

varied this noise parameter across the values 0, 0.1, 0.2, and 0.3. 
For  each system at each level of  noise, we performed 10 runs, for a total of  120 learning 

runs. For each of these 120 runs, a new run dataset was created which was a random 
order of  the instances in the base dataset with attribute values changed in accordance 
with the noise level. A learning run consisted of  presenting one system with the first 
54 (training) instances from the run dataset followed by a prediction test for each of the 
remaining 10 (test) instances from the run dataset. The training and test instances were 

chosen randomly without replacement from the run dataset. 

A prediction test for an instance consisted of, for each attribute, removing that attribute 
from the instance, classifying the partial instance into a category or categories, and 
predicting the value of  the removed attribute. The score on the prediction test was the 
proportion of  correct predictions across all attributes and across all test instances. 

4.1.3. Results  

The means are displayed in Table 9 and Figure 4. As expected, OLOC does learn well 
and its performance degrades gracefully as the input becomes noisier. Furthermore, for 
this dataset, OLOC does markedly better than either COBWEB or SINGLE. In turn, 
for low noise, COBWEB does better than SINGLE. SINGLE does particularly poorly 
because there is no single adequate set of mutually exclusive concepts for this dataset. 
COBWEB performs better because it can build a hierarchy of  concepts to compensate 
for an inadequate initial partition. OLOC performs the best because it directly identifies 
overlapping concepts. 



ACQUIRING AND COMBINING OVERLAPPING CONCEPTS 143 

0.8-  

.2 

e- 

h: 
e,  

0.72 

0.6- 

0.5- 

0.4- 

0.3- 

k x  c OLOC 
~ Rn- .  m .  COBWEB 

....... ~- ....... Single 
~ Guessing 

bme * l l ' ' ' l l e ' l l l a a ~ l ~ e l *  . . . . . . . . . . . . . .  o . . . . . . . . . . . . . . . . .  

....... ,, ..... ~ - - . .  ~ 

0.2 
I I I 

0 0.1 0.2 0.;3 

Amount of Noise 

Figure 4. Prediction performance for overlapping dataset for OLOC and two other methods for varying amounts 
of noise. 

Table 9. Proportion of correct predictions by learning system and amount of noise for the Overlapping dataset. 

Noise 0.0 0.1 0.2 0.3 
OLOC 0.721 0.501 0.400 0.262 
COBWEB 0.510 0.406 0.331 0.262 
SINGLE 0.353 0.342 0.303 0.250 

A two-factor ANOVA applied to the data yielded a significant main effect for system 
(F(2, 108) = 39.79, p << 0.01), a significant main effect for noise (F(3, 108) = 61.05, p << 
0.01), and a significant interaction effect (F(6, 108) = 9.075, p << 0.01). Planned com- 
parisons between OLOC and each of  the other two systems for each level of  noise (eight 
planned comparisons) (S(6, 108, p=0.01) = 4.212) showed that OLOC was significantly 
better than both systems for no noise (F(1, 108)=105.45, p < 0.01; F(1, 108)=34.739, 
p < 0.01) and for a noise level of  0.1 (F(1, 108)=19.683, p < 0.01; F(1, 108)=7.110, 
p < 0.01). Furthermore, OLOC was significantly better than SINGLE for a noise level 
of  0.2 (F(1, 108)=7.289, p < 0.01). No other planned comparisons were significant. 
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Table 10. Sixty-four instances from Non-Overlapping Animal Dataset, nine four-valued attributes. Values are 
represented by digits from 0 to 3 and attribute is represented by position. 

111111100 222222200 333333300 444444400 
111111101 222222201 333333301 444444401 
111111102 222222202 333333302 444444402 
111111103 222222203 333333303 444444403 
111111110 222222210 333333310 444444410 
111111111 222222211 333333311 444444411 
111111112 222222212 333333312 444444412 
111111113 222222213 333333313 444444413 
111111120 222222220 333333320 444444420 
111111121 222222221 333333321 444444421 
111111122 222222222 333333322 444444422 
111111123 222222223 333333323 444444423 
111111130 222222230 333333330 444444430 
111111131 222222231 333333331 444444431 
111111132 222222232 333333332 444444432 
111111133 222222233 333333333 444444433 

4.2. A non-hierarchical, non-overlapping dataset 

The previous result suggests that at the least, OLOC performs the task for which it was 
designed. However, it does not address whether OLOC performs as well as alternative 
methods for non-overlapping datasets. To show learning in a non-overlapping dataset, 
we applied OLOC, COBWEB, and SINGLE to a base dataset and we varied the amount 
of  noise. A non-overlapping dataset is one in which the attributes cannot be partitioned 
into independent sets of interpredictive attributes. 

4.2.1. Dataset design 

Again, each instance in the base dataset is described using nine attributes, where each 
attribute has one of four possible values. In contrast to the previous dataset, the first seven 
attributes differentiate between mammals, birds, reptiles, and insects; the remaining two 
attributes vary randomly. All 64 possible instances are shown in Table 10. The procedure 
for this experiment is identical to the previous one except that a different dataset was 
used. 

4.2.2. Results 

The mean proportion of correct predictions is displayed in Table 11 and Figure 5. As 
expected, OLOC does learn well in non-overlapping domains and, like alternative learning 
systems, its performance degrades gracefully as the input becomes noisier. Furthermore, 
even for this dataset, both OLOC and S~NGLE perform better than COBWEB for high 
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Figure 5. Prediction performance for non-overlapping dataset for OLOC and two other methods with varying 
amounts of noise. 

Table 11. Proportion of correct predictions by learning system and amount of noise for the Non-overlapping 
dataset. 

Noise 0.0 0.1 0.2 0.3 
OLOC 0.792 0.663 0.582 0.458 
COBWEB 0.778 0.585 0.435 0.382 
SINGLE 0.689 0.668 0.584 0.53 

noise conditions. COBWEB does particularly poorly because in the high noise conditions 
it attempts to improve predictions by deepening its hierarchy. As a result, the concept 
structure overfits the data and performance suffers. Therefore, when Or, o c  performs 
better than COBWEB, it may be because of  inherent overlapping structure in the domain 
or the lack of hierarchical structure in a noisy domain. 

For  a noise level of  0.3, OLOC shows a (non-significant) tendency to learn more poorly 
than SINGLE. It is possible that OLOC too is overfitting the instances because it learns 
many contrast sets to attempt to predict the noise. 

A two-factor ANOVA applied to the data yielded a significant main effect for system 
(F(2, 108) = 9.519, p << 0.01), a significant main effect for noise (F(3, 108) = 61.03, 
p << 0.01), and a significant interaction effect (F(6, 108) = 4.261, p << 0.01). Planned 
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Table 12. Proportion of correct predictions by learning system and dataset. 

COBWEB OLOC 
ZOO 0.807 0.752 
Soybean 0.817 0.732 
Congress 0.727 0.778 

comparisons between OLOC and each of the other two systems for each level of noise 
(eight planned comparisons) showed that OLOC did better than SINGLE for a noise 
level of 0.0 (F(1, 108) = 6.546, p < 0.05). Further, OLOC did significantly better 
than COBWEB for a noise level 0.2 (F(1, 108) = 13.400, p < 0.01). No other planned 
comparisons were significant. Post hoc Scheff6 comparisons (S(6,108,0.05) = 3.608) 
were conducted to determine whether the unexpected differences between COBWEB and 
SINGLE were significant. SINGLE is significantly better than COBWEB for a noise level 
of 0.2 (t(108) = 3.713) and a noise level 0.3 (t(108) = 3.6661). 

4.3. Datasets from the UC lrvine repository 

In the two previous experiments OLOC performed well for two artificial domains. How- 
ever, this does not address whether OLOC would also perform well for domains with 
other patterns of relationship between the attributes. To test its success in other domains, 
we applied OLOC and COBWEB to three datasets with nominally-valued attributes from 
the UC Irvine machine learning repository. 

The datasets used were the Soybean, ZOO, and Congress datasets. The Soybean dataset 
is a collection of 307 cases of 19 different soybean diseases. In this dataset, there are 35 
attributes besides the disease attribute. The ZOO dataset is a collection of 101 animal 
types distinguished by 17 carefully chosen attributes. The Congress dataset records how 
435 U.S Congressmen voted on 16 key issues in 1984. In this dataset, there are 17 
attributes: 16 are votes and the other is the political party affiliation. 

All the datasets were treated in the same manner. There were 10 runs for each pairing 
of a system and a dataset. For each run, an 80-instance training set and a 20-instance test 
set were randomly chosen without replacement. A learning run consisted of presenting 
one system with the entire training set followed by a prediction test for each of the test 
instances. 

A prediction test for an instance consisted of, for each attribute in the dataset, removing 
that attribute from the instance, classifying the partial instance into a category or cate- 
gories, and predicting the value of the removed attribute. The score on the prediction test 
was the proportion of correct predictions across all attributes and across all test instances. 
The prediction scores were averaged over the 10 runs. 

Table 12 shows the results for the application of both systems to the three datasets. 
All differences between systems are significant (ZOO, t(18) = 4.003; Soybean t(18) = 
6.937; Congress, t(18) = 2.677; P<0.05). For both the ZOO dataset and the Soybean 
dataset, COBWEB performed significantly better than OLOC. Likely, this advantage is 
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the result of hierarchical structure in the datasets. The ZOO dataset, in particular, has a 
clear hierarchical structure. 5 

Conversely, for the Congress dataset, OLOC performs significantly better than COB- 
WEB. As already noted, an advantage for OLOC may be caused either by inherent 
overlapping structure or by the absence of overfitting. 

To summarize, OLOC excels when learning about domains that have inherent overlap- 
ping structure; i.e., domains in which there are several good sets of mutually exclusive 
concepts. Furthermore, OLOC does at least as well as COBWEB for artificial and natural 
domains unless there is an inherent hierarchical structure. For such domains, OLOC must 
be extended to permit hierarchical concepts. 

5. Modeling conceptual combination 

Little research in psychology has investigated human acquisition of overlapping concepts, 
so it is difficult to compare OLOC's learning processes with those of people. In contrast, 
there is considerable research on the way established concepts are combined and used. 
The generative combination of concepts pervades cognition and is critical to productivity 
of thought, from language comprehension to novel problem solving (e.g, Osherson & 
Smith, 1981; Holland, Holyoak, Nisbett, & Thagard, 1986). OLOC addresses the combi- 
nation of overlapping concepts. Combinations of overlapping concepts are those that can 
sensibly be described as "An X that is also a Y" (e.g., a sport that is also a game, such 
as soccer). The two concepts in a combined concept (i.e., sport and game) are 
called constituent concepts. In this section we sketch OLOC's promise as a psychological 
model of the combination and use of established concepts. We describe the phenomena 
of selective inheritance and typicality, OLOC's account of these, and some limitations of 
this account. 

5.1. The overlapping concept phenomena 

Selective Inheritance Phenomena When people are asked to list properties of a com- 
bined concept (e.g. a pet that is also a bird), the properties they list are inherited 
from the constituent concepts (Hampton, 1987). The challenge is to predict when 
each concept will contribute the inherited value. Hampton suggested two principles 
that characterize this selection. First, the importance of a property to the combined 
concept is an average of its importance in the constituent concepts. Hampton called 
this phenomenon compensation. Second, property importance does not seem to aver- 
age for properties with extremely high or extremely low importance in a constituent 
concept. In such cases, the extreme value is more highly weighted. In other words, 
if a property is necessary in either constituent concept, it must be inherited and if 
it is impossible in either, it cannot be inherited. Hampton labeled this phenomenon 
impossibility/necessity. 

Typicality Phenomena When people are asked to judge how typical an instance is of 
a combined concept (e.g. guppy of the concept p e t  f i s h ) ,  they judge that some 
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instances are much more (or much less) typical of the combined concept than of 
either constituent concept (Osherson & Smith, 1981; Hampton, 1987). In addition, 
Hampton noted that one of the two constituent concepts tended to have more weight, 
or to dominate, the other concept in predicting typicality of the combined concept. 

Osherson and Smith (1981) and Hampton (1987) outline the inability of instance and 
prototype models to account for inheritance and typicality phenomena. First, the inher- 
itance phenomena are incompatible with instance models. Instance models represent a 
concept as its extension, that is, the instances that are its members. Instance models con- 
struct combined categories by operations on instances, such as identifying the instances 
that are members of both constituent categories and designating those as members of 
the combined category. However, combined categories are not like this. For example, 
some instances are judged to be members of the combined concept but are not included 
in either constituent (Hampton, 1987). It appears that the combined concept must be 
constructed from its intension (attributes), rather than its extension (instances). 

Second, typicality phenomena are incompatible with simple prototype theories (i.e., one 
prototype per concept). Prototype theory predicts that typicality is based on similarity to 
the prototype. They would thus compute the typicality of an instance to the combined 
concept as an increasing function of its typicality to the constituent prototypes. But a 
typicality function that only considers the global typicality of an instance to the constituent 
concepts does not accurately predict that instance's typicality to the combined concept. 
In contrast, typicality judgments for a combined concept must be determined attribute 
by attribute. 

5.2. OLOC'S account of the phenomena 

OLOC accounts for selective inheritance with its distribution maximizing rule. In OLOC, 
the distribution for a particular attribute in a new combined concept is inherited from 
a single constituent concept. The maximizing role is used to choose which constituent 
concept will supply the distribution, and does so independently for each attribute. For 
example, virtually all fish have scales, while pets vary in body covering. Hence, the 
concept p e t  f i s h  inherits the distribution for body covering from the concept f i s h  
not from the concept p e t .  Conversely, having-an-owner is invariably true for pets, but 
fish vary in ownership-status. Hence, the concept p e t  f i s h  inherits ownership-status 
from the concept p e t .  

OLOC provides a unified account of both inheritance phenomena that Hampton de- 
scribed: compensation and impossibility/necessity. Hampton proposed an averaging rule 
to account for compensation. OLoc's  maximizing rule is a different form of compen- 
sation, but is consistent with Hampton's reported data. Hampton also proposed that 
the averaging rule does not apply to necessary or impossible properties, but rather that 
extreme values dominate. In OLOC, properties such as Hampton discussed are repre- 
sented as binary attributes (two values). If a property is necessary or impossible, its 
attribute distribution will indicate that one of its two values ('present' or 'absent') will 



ACQUIRING AND COMBINING OVERLAPPING CONCEPTS 149 

have the maximum possible probability (1.0). Hence, the maximizing rule will select 
this distribution for the combined concept (barring ties). 

Hampton makes one further observation about inheritance. He found that people list a 
very small number of properties (e.g., lives in a cage) that applies only to the combined 
concept ( p e t  b i r d ) ,  not to its constituent concepts. His informal content analysis 
suggested that direct experience with combined concepts (i.e., observing pet birds) was 
the source of such properties. Since Hampton did not examine learning, his data cannot 
directly confirm this. However, that is exactly what a hierarchical OLOC would do. 
As new instances are classified into the combined concept, its attribute distributions are 
updated as for any other concept. 

Besides inheritance effects, OLOC also models the typicality effects. OLOC measures 
typicality of an instance to a concept as the probability of the instance given the concept, 
P(I]C). If a concept predicts many of the values that an instance actually has (and does 
so with high certainty) the instance is highly typical of that concept. For OLOC, a guppy 
is more typical of p e t  f i s h  than of either constituent, because many features of the 
guppy are probable for p e t  f i s h  but are relatively improbable for fish in general or 
pets in general. Indeed, if there were not instances that could be better predicted from the 
overlap concept, OLOC would not construct the concept or classify a particular instance 
into it. OLOC, and we believe people, use combined concepts precisely when neither 
constituent concept does an adequate job of characterizing an instance. 

Finally, Hampton suggested that concept dominance might derive from the way at- 
tributes are selectively inherited, specifically that the dominant concept would have a 
larger number of more important properties. OLOC explains dominance as a byproduct 
of constituent concepts that differ in their numbers of highly probable attribute values. 
The constituent concept with the most highly probable attribute values dominates in the 
combined concept. 

In sum, OLOC provides qualitative accounts for existing data about the combination 
of overlapping concepts. However, there are many instances of conceptual combination 
that are not cases of overlapping concepts and that OLOC does not address. Dog food, 
oil money, and beach houses are not combinations of two categories. An instance of 
dog food is not an example of a dog. In these cases, the modifier noun (e.g., 'dog') 
functions as the value of an attribute possessed by the head noun (e.g., "food that is 
eaten by a dog"). Interpretation of such combinations depends on several factors. The 
patterns of language specify that examples of dog food must be food, but need not be 
dogs. Familiar expressions (bus fare) may specify interpretation of novel analogs (bicycle 
fare). Or interpretation may be unspecified and require extended bouts of reasoning from 
context (table shoe) or learning about special cases. Interestingly, information available 
to OLOC would allow it to identify many cases where a combined concept :should not be 
treated as overlapping. Highly certain but conflicting values of the same attribute would 
provide one valuable clue that two concepts do not overlap. 
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6. Discussion 

OLOC is an effective concept formation system that was inspired by human cognitive 
abilities. Here we discuss the source of OLOC'S success, its value as a cognitive model, 
and future directions. 

6.1. OLOC as a machine learning system 

OLOC incrementally learns one layer of overlapping concepts. The concepts are orga- 
nized into multiple contrast sets--sets of mutually exclusive concepts. When learning or 
performing predictions, OLOC seeks overlapping concepts, which are then combined to 
form a composite concept. 

Because of its successful performance for many datasets, OLOC is a contribution 
to machine learning models of concept formation. It is the only system to provide a 
probabilistic means for learning, while using both contrasting and overlapping concepts. 

Our results show that when the domain of instances has multiple good sets of mutually 
exclusive categories, OLOC learns more effectively than do alternative systems. Further- 
more, for other domains, without overlapping categories, OLOC performs comparably to 
alternative systems. 

OLOC leads to superior predictive performance primarily because it can directly rep- 
resent multiple sets of mutually exclusive concepts; i.e., overlapping concepts. A sys- 
tem that permits hierarchical organizations of non-overlapping concepts can theoretically 
achieve the same performance as OLOC by progressively extending the depth of its con- 
cept tree. For example, where OLOC learns the concepts p e t ,  w i l d ,  dog, and c a t ,  
COBWEB would eventually learn the concepts p e t - c a t ,  w i l d - c a t ,  p e t - d o g ,  and 
w i l d - d o g  at some level of its hierarchy. Although COBWEB can learn every possible 
combination of the overlapping concepts, this process is much slower than is OLOC'S 
approach, and it does not organize information about overlapping concepts in easily 
generalized ways. 

There are two additional reasons why OLOC learns successfully. First, as OLOC learns 
overlapping concepts, it is not only performing a hill-climbing search, it can also be seen 
as performing a limited form of a beam search for a single best contrast set. For concept 
formation, a beam search considers several alternative concept structures simultaneously. 
OLOC can simultaneously entertain many alternative contrast sets, and it therefore has a 
greater chance than systems like COBWEB, of finding the single best contrast set. 

Second, OLOC incorporates two methods that help avoid overfitting the input data. 
When learning from noisy, erroneous input, the learner must be careful to base predictions 
on consistent regularities, not on random variation. If the learner relies on random 
variation present in training instances, it is overfitting the data and is more likely to 
produce incorrect predictions. 

Because small samples are often unrepresentative, OLOC does not trust such samples 
when estimating conditional probabilities. Hence, for small samples, OLOC is more con- 
servative than is COBWEB when deciding what variation should be considered consistent 
and what should be considered random. 
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OLOC also avoids overfitting the data because it only continues classifying an instance 
until all features are predictable or the number of predictable features does not increase. 
If OLOC were to continue classifying past this point, as can happen in COBWEB, it 
would attempt to learn consistency in what appear to be noisy attributes. 

6.2. OLOC as a psychological  model  

OLOC was designed as a concept formation system, not to address specific: psychological 
findings; it was designed primarily for computational efficiency, not necessarily as a 
model of what people do. Nevertheless, it provides a good account of one form of the 
phenomena of human conceptual combination. 

We consider the main successes of the model in qualitatively matching human perfor- 
mance to be the following. 1) OLOC correctly predicts that an instance can be included in 
a combined concept even if it is not included in both constituents. These and similar cases 
are not predicted by many models of concept learning or representation, particularly those 
that depend on instances or 'average' prototypes. 2) OLOC matches key characteristics of 
how humans allow a combined concept to inherit properties selectively, some from one 
and some from the other constituent concept. OLOC uses a single mechanism, the dis- 
tribution maximizing rule, to model the effects of compensation, impossibility/necessity, 
and dominance. 

6.3. Future  work 

In future work, we will extend Ogoc ' s  capabilities both as a machine learning algorithm 
and as a model of human concept learning. Although successful "as is," Ogoc ' s  ca- 
pabilities can be extended. First, O g o c  can be applied recursively to build a hierarchy 
of overlapping concepts. We will design several alternative approaches to hierarchical 
learning, including that outlined above, and determine the conditions under which each 
approach is warranted. Second, O c o c  does not explicitly acknowledge the possibility of 
positively inter-dependent overlapping concepts. Such concepts are common: sports and 
games overlap, but most sports are also games. Therefore, OLOC might be improved 
if an efficient Utility score can be found that does not assume independence among 
overlapping concepts. 

O c o c  can also be improved as a model of concept formation and use by people. 
First, we will assess the extent to which the current model is accurate. If people use 
the methods underlying OLOC, then O g o c  can be used to generate several predictions 
about human behavior. With respect to typicality judgments, O g o c  predicts that the 
best instances (Gretchen the Guppie) of a combined concept ( P e t  F i s h )  will be more 
typical of that concept than will the best instances (Tim the Trout) of its constituent 
concepts ( F i s h ) .  The combined concept is only formed if neither constituent concept 
is adequate for characterizing an instance, such as Gretchen the Guppie. 

Moreover, OLOC predicts that, if people learn overlapping concepts, they would gener- 
alize differently than if they do not. Suppose that a person encounters several examples 
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of objects that can be classified into two contrast sets, say pets, wild, performer, 
and canine, feline, equine. Furthermore, suppose that the person sees every 
combination of the concepts in the two contrast sets, except performing-felines. When 
finally presented with a partial instance of a performing feline, the person will use the 
learned concepts to make predictions. If, like COBWEB, the people learn a tree of con- 
cepts, they will be wrong consistently in these predictions, because all known examples 
of performing animals are different from felines and vice versa. However, if, like OLOC, 
the person learns overlapping concepts, the performing feline will be just a novel combi- 
nation of well-learned concepts. As a result, the predictions will be correct consistently 
for this artificial domain. 

OLOC'S account of conceptual combination can also be improved by extending it 
to other types of combination. There are circumstances in which a weak but universal 
composition method is incomplete. First, people do not always need to combine concepts 
explicitly. Their understanding of the concept pet-fish can be based on direct experience 
with 'exceptions'; i.e., a particular pet fish. Conceptual combination is critical for dealing 
with novel cases, but some related phenomena may be based on the direct learning of 
combined concepts (cf., Hampton, 1987, on "extensional feedback"). If made to be 
hierarchical, OLOC would learn about combined concepts directly from exceptions. 

Second, people have extended knowledge (or theories) beyond particular concepts, and 
this knowledge is important for conceptual combination as well (see Murphy & Medin, 
1985). People can reason about the size of a pet alligator to conclude it is probably 
smaller than the usual alligator, even if size were more important for alligator than pet. 
This reasoning is particularly important for cases in which some feature, such as 'alive,' 
is both necessary and impossible in the combined concept, such as stone lions. In general, 
we expect that a more local, automatic procedure, such as that used by OLOC, is used 
and preferred over open, extended reasoning. 

Finally, OLOC does not use information specified in the syntactic form of language to 
guide combination, and this is clearly important. The head noun gets more importance 
than do modifiers; a dog house is a house and a house dog is a dog. This is one major 
cause for asymmetry or non-commutativity effects. OLOC could use such information 
to guide combination, but does not currently include any sensitivity to 'external' factors 
such as language or theory. 
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Appendix A 

In this appendix, we derive the Utility score introduced in section 3. The derivation is 
based on six assumptions that concern how concepts, contrast sets, subsets of concepts, 
and predictions are interrelated. These assumptions are, 

1. An instance is classified into the elements of exactly one subset of concepts. 

2. The concepts in one contrast set are independent of those in other sets. 

3. A subset of concepts, Zs, consists of M concepts, one from each of M contrast sets. 

4. Each prediction event requests the value of one attribute. 

5. The values of each attribute are disjoint. 

6. The probability of guessing value, V/j, when an instance is classified into a category, 
Ck, is the probability that value is true given that classification, P(Aj  = V~j [ Ck). 

To derive the Utility score, we begin with a simple observation and gradually transform 
this observation into the Utility score. For each subset of concepts, there is a probability 
that an instance was classified into all the categories in the subset after we know that the 
learner's prediction was correct and we know that the learner has the concept structure 
0. Because each instance is assigned to exactly one subset of categories (Assumption 1), 
the sum of these probabilities is 1, as in Equation A. 1. 

1 : E P(Z~lc°rrect' O) (A.1) 
$ 

We assume that each concept in one contrast set is probabilistically independent of all 
concepts in all other contrast sets (assumption 2), i.e., P(Zs Icorrect, O) = 1-I{klCk czs} 
P(Cklcorrect, 0). As a result of this assumption, Equation A.1 becomes Equation A.2. 

1 =  E I I  P(Cklc°rrect'O) (A.2) 
s {klOkEZ.} 

The sum in Equation A.2 has an exponential number of terms. However, it can be 
simplified to have only one term per concept. To do so, we use the distributive principle 
of multiplication over addition and assume that an instance is classified into one category 
from each contrast set (Assumption 3). 

As a result of this assumption, Equation A.2 becomes Equation A.3. 

M 
x=II E 

1 {klCkeS~} 
P( Ck [correct, O) (A.3) 

In Equation A.3, M is the number of contrast sets. We next apply Bayes' theorem to 
produce Equation A.4. 
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M P(correctICk, O)P(Ck 10) 
1 =  I I  ~ P(correetlO) (A.4) 

l {klCkESz} 

Because  the term, P(eorrectlO ), does not  depend on the subscripts, k or l, Equat ion 

A.4 can be rewrit ten as, 

P(c°rrectlO) = ~/Ht {klCkeS,}~ P(correctlCk,O)P(CklO) (A.5) 

We next  specify the probabil i ty of  be ing correct g iven a concept.  We assume that on 
any predict ion trial, the learner will be  asked to predict the value of exactly one attribute 
(Assumpt ion  4). Therefore, we can write, 

P(eorrectlCk , O) = ~ P(AdO)P(eorrectlAi, Ck, O) (A.6) 
i 

We assume that the values of  one attribute are mutual ly  exclusive (Assumpt ion  5) and 

that the learner makes predictions about  an attribute value based on the probabil i ty  of 
that attribute value g iven that it was classified into a category (Assumpt ion  6). Equat ion 

A.6 becomes,  

P(eorrect[Ck, O) = E E P( AdO)P( Ai = VijlCk, 0) 2 (1 .7 )  
i j 

Finally,  by substi tuting this result  into Equat ion A.5, we obtain the Uti l i ty measure  

used by OLOC: 

V-,- 

SetUtility(St) = E P(CkIO) E E P(AdO)P(Ai = VijlCk, O) 2 (A.9) 
{klCk~S~} i j 

Notes 

1. When the concepts are independent, only one concept can have a P(Ai = VijlCk) that differs from 
P(Ai = l/~j). Using the Utility score, the values for P(Ai = VijlCk) will be larger than P(Ai = Vii). 
Therefore, that concept's distribution for that attribute will also have the largest maximum probability. 

2. Empirically, Equation 3 also leads to lower predictive accuracy. For the domain described in Section 4.1, 
when using Equation 3, there is significantly poorer prediction performance (t(ll) = 4.156, p < 0.01). 

3. There are many other possible operators such as the deletion of concepts or contrast sets (Martin, 1992) 
or merging and splitting concepts (Fisher, 1987). OLO¢ is able to find highly accurate concept structures 
without these operators, so they were not used. 

4. Splitting can be achieved because, as the instances are reclassified, two or more new concepts may be 
created. 

5. When OLOC is extended to permit hierarchies, performance on both the ZOO dataset and the Soybean 
dataset is indistinguishable from COBWEB'S. 
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