
Machine Learning, 16, 161-183 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Nonoverlapping Perceptron Networks
from Examples and Membership Queries
THOMAS R. HANCOCK hancock@learning.siemens.corn
Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540

MOSTEFA GOLEA golea @ physics.uottawa.ca
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ont., Canada KIN 6N5

MARIO MARCHAND mario @ physics.uottawa.ca
Ottawa-Carletole L~stitute for Physics, University of Ottawa, Ottawa, Ont., Canada K1N 6N5

Editor: Leonard Pitt

Abstract. We investigate, within the PAC learning model, the problem of learning nonoverlapping perceptron
networks (also known as read-once formulas over a weighted threshold basis). These are loop-free neural nets
in which each node has only one outgoing weight. We give a polynomial time algorithm that PAC learns any
nonoverlapping perceptron network using examples and membership queries. The algorithm is able to identify
both the architecture and the weight values necessary to represent the function to be learned. Our results shed
some light on the effect of the overlap on the complexity of learning in neural networks.

Keywords: Neural networks, PAC learning, nonoverlapping, read-once formula, learning with queries

1. Introduction

Despite the excitement generated recently by neural networks, learning in these systems has
proven to be very difficult from a theoretical perspective (Blum and Rivest, 1988; Judd, 1988;
Kearns and Valiant, 1988; Lin and Vitter, 1991). For this reason researchers have looked for
positive results by considering restricted classes of neural networks (Baum, 1990a; Lin and
Vitter, 1991), by providing the learning algorithm with additional information in the form
of queries (Baum, 1991), or by restricting the distribution of examples (B aum, 1990b).

In this paper, we investigate the problem of learning the class of "nonoverlapping" per-
ceptron networks (this terminology comes from Barkai, Hansel, and Kanter (1990) and
Barkai and Kanter (1991)). These are loop-free neural nets in which each node, including
the input units, has only one outgoing non-zero weight (figure l(a)). This class of rep-
resentations includes as a subclass nonoverlapping multilayer networks (figure 1 (b)) and
nonoverlapping cascade networks. Such networks, in which each node has fan-out 1, are
also referred to in the literature as read-once formulas. Our work is partly motivated by,
and uses techniques from, recent positive results for learning other classes of read-once
formulas (Angluin, Hellerstein, and Karpinski, 1993; Bshouty, Hancock, and Hellerstein,
1992a; Bshouty, Hancock, and Hellerstein, 1992b; Goldman, Kearns, and Schapire, 1990;
Kearns, Li, Pitt, and Valiant, 1987; Pagallo and Haussler, 1989; Schapire, 1991). In the
terminology of that literature, nonoverlapping perceptron networks are read-once formulas
(or synonymously # formulas) over the basis of weighted threshold functions.

162 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

One can think of this type of architecture as a network of"decoupleaV' perceptrons, which
in terms of architecture complexity lies somewhere between the single perceptron and the
traditional feed forward neural net. As such, studying this restricted class may shed some
light on the gap that exists, in terms of computational complexity, between training single
perceptrons, which can be done in polynomial time (Karmarkar, 1984) and training feed
forward nets, which has been proven to be intrinsically hard (Blum and Rivest, 1988; Judd,
1988), even if the algorithm is allowed to represent its hypothesis in ways other than as a feed
forward network (Kearns and Valiant, 1989; Angluin and Kharitonov, 1991; Kharitonov,
1993). i Of fundamental importance is the question of whether or not removing the overlap
between the receptive fields of the nodes makes the learning problem easier.

Standard techniques (Keams, Li, Pitt, and Valiant, 1987) show that the problem of learning
nonoverlapping networks from only examples drawn according to an arbitrary distribution
is no easier than the problem where the input variables may have an arbitrary number
of outgoing weights. Kearns and Valiant have shown that this (seemingly) more general
problem is intractable (Kearns and Valiant, 1989). Thus to achieve interesting results we
must consider a slightly easier learning model. We allow the algorithm to make membership
queries, in which the learner supplies an instance a to an oracle (perhaps a human expert)
and is told its classification f (a) . This seems a reasonable extension since people tend to use
queries in learning. With membership queries the problem of learning general perceptron
networks remains intractable (Angluin and Kharitonov, 1991), but the nonoverlapping case
becomes easier.

There are a number of previous algorithms for learning other classes of read-once for-
mulas once membership queries are allowed (Angluin et al., 1993; Bshouty et al,, 1992a,
1992b; Goldman et al., 1990). Angluin, Hellerstein, and Karpinski (1993) give an algo-
rithm that learns boolean read-once formulas over gates computing AND, OR, and NOT.
Bshouty, Hancock, and Hellerstein (1992b) have generalized this to allow gates that com-
pute any function that has a constant number of inputs or that is symmetric (including
those perceptrons that assign weights of equal magnitude to every input). Bshouty et al.
(1992a) also give a membership query algorithm that learns non-boolean arithmetic read-
once formulas, introducing the perceptron like ability to compute weighted sums (but not
to take thresholds).

Motivated by this relevant work, we study the learnability of read-once perceptron net-
works from examples and membership queries, We adopt Valiant's PAC model (Valiant,
1984) as our criterion for learning. We use an Occam algorithm (Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989) that achieves learning by drawing a certain number of ran-
dom examples and then fitting this sample with a consistent nonoverlapping perceptron
network. Our algorithm has the feature that all its membership queries are made on in-
stances where each input variable is set to some value from its observed domain in the
random sample. Thus the algorithm will work for any mix of real-valued, integer, boolean,
etc. variables without requiring any prior knowledge of the variable type. Note that in
contrast to most neural network learning algorithms, we do not assume the architecture
of the network is known in advance. Rather, it is the task of the algorithm to find both
the architecture of the net and the weight values necessary to represent the function to be
learned. The class of nonoverlapping perceptron networks either generalizes or is incom-

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 163

Xl X2 . . . Xi

Figure 1. (a) Architecture of a nonoverlapping perceptron network. Note that each node, including the input
variables but excluding the output, has only one outgoing connection. As examples of the definitions given in
Section 2, nodes 1 through 6 are hidden units, node 7 is the root and output unit, nodes 1, 2, 4, and 5 are bottom
level units, the parent of xl and x2 is node 1, variables Xl and x2 are siblings, variables xl and xi are descendants
of node 6, and the children of node 6 are node 3 and node 4. (b) A nonoverlapping layered network.

parable to all the known learnable classes of read-once formulas. Unlike perceptrons, none
of those classes allow nodes that compute functions that are both asymmetric and have an
unbounded number of inputs.

The main contribution of this paper is a polynomial time algorithm that PAC learns
any nonoverlapping perceptron network from examples and membership queries under an
arbitrary distribution of examples. The paper is organized as follows: In Section 2 we
introduce some notation and terminology. In Section 3 we review the PAC learning model

and calculate an upper bound on the number of examples needed to learn nonoverlapping
perceptron networks. In Section 4 we show how without loss of generality we may consider

simplified versions of the problem. Section 5 handles the problem of learning when the
architecture is known in advance, and it is intended primarily as an introduction to the
general case. In Section 6 we address the main problem of learning both the architecture and
weights necessary to represent our target function. We analyze our algorithm in Section 7.
In Section 8 we summarize our results and discuss future research directions.

2. Definitions

In this section we introduce some notation and terminology that we use throughout this
paper. Examples for some of the terms defined here are given in figure 1 (a).

A linear threshold function on a set X of n variables is specified by a vector of n real
valued weights (wO and a single real valued threshold (0). The output of the function is 1
if the following inequality holds, and 0 otherwise:

164 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

wixi > O.
x i ~ X

Such functions are also referred to as perceptrons or half-spaces.

A Nonoverlapping Perceptron Network (hereafter NPN) over a set of input variables X
can be viewed as a rooted tree (figure 1 (a)). The root is the output unit. Each internal node,
or computation unit, of the tree (including the root) is labeled with a perceptron that has one
input variable corresponding to each of the node's children in the tree. The computation
units other than the root are called hidden units. Each leaf in the tree is labeled with a
variable from X in such a manner that no variable appears on more than one leaf. The
network is evaluated by substituting values for the input variables and then propagating
these values to the root (output unit) in the usual manner. A NPN can also be referred to as
a read-once formula over the basis of linear threshold functions (or perceptrons). We refer
to a hidden unit whose children are all leaves as a bottom level unit.

Theparent of a node (or a variable) is the computation unit to which the node's output is
an immediate input. Every node is a child of its parent. We say two variables are siblings if
they share a common parent. We say a node (or variable) is a descendant of a computation
unit if the node appears in the subtree rooted at that unit.

Let X = {xl , x 2 , . . . , x,~} be the set of the n input variables. An assignment to X on
a domain D is a mapping from X to D, where D may be {0, 1}, the real numbers ~?, or
some other subset of ~. We denote such an assignment a by (al, az, • • •, an), where each
ai E D is the value assigned to x{ (i = 1, 2 , . . . , n). For a NPN f defined on X, we let f (a)
denote the output of the network when each input variable is set to its value in assignment a.
An example is an ordered pair (a, f(a)). If f(a) = 1, we say a is a positive example. If
f (a) = 0, we say a is a negative example. A sample is a set of examples.

A partial assignment to X is a mapping from X to D U {*}, where the value "*"
signifies being unassigned. For example, (, , . . . , *, Pi , . . . , P~) denotes a partial assignment
that assigns values to x i , . . . , Xn, leaving x l , . . . , Yi-1 unassigned. Let p be a partial
assignment to X. We denote byp/a the assignment to X obtained by setting p 's unassigned
variables according to a. So i f p = (* , . . . , *,Pi, . . . ,P~) and a = (al, a 2 , . . . , an), then

p/a = (a l , . . . , a~-a,pi ,Pn).

If x (°) is a value from the domain of a variable xi we shall write a~_x(o) to denote the

assignment that is identical to a on all variables except xi, on which it evaluates to x (°). If
W is a set of variables we shall use aw+__~(o) to denote the assignment obtained from a by
setting all variables in W to x (°), and we shall use aW~b (for some other assignment b) to
denote the assignment obtained from a by setting each variable xi C W to bi.

I f f is a function defined on X, each partial assignment p on X induces a projection,
fp, which is the function obtained from f by replacing by the appropriate constants those
variables in f to which p assigns values (so fp (a) = f(p/a)). Note that the class of NPNs
is projection closed, meaning that any projection of a NPN can also be represented as a
NPN (by absorbing the constants placed at leaves into their parents' threshold values).

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 165

3. The learning model and sample complexity

Intuitively, an efficient learning algorithm is one that, given a "reasonable" number of
examples labeled according to an unknown function, is "likely" to produce a "good" ap-
proximation of the unknown function after a "reasonable" amount of time. The unknown
(target) function may be any from some known class of functions. We adopt Valiant's for-
malization of this intuitive notion into what is known as the Probably Approximate Correct
(PAC), or Distribution Free, model of learning (Valiant, 1984; Blumer et al., 1989).

Definition 1. Let F be a class of boolean functions defined over an n-dimensional input
space. F is said to be PAC learnable from examples if there exists an algorithm A such that
for any target function f E F, for any 0 < e < 1, and for any 0 < 6 < I the following holds:

Given n, e, 6 as inputs, and access to examples generated according to a fixed but unknown
probability distribution P over the instance space, the algorithm runs in time polynomial
in (n, l /e , 1/6) and produces a hypothesis h from F that with a probability at least 1 - 6
disagrees with f on a future example generated according to P with probability at most e.

If the algorithm uses also membership queries, F is said to be PAC learnable from
examples and membership queries.

The sample complexity of the learning algorithm is the number of random examples
it draws.

A central concept of the PAC learning model is the Vapnik Chervonenkis (VC) dimension
of a class of functions. Intuitively, the VC dimension is a measure of how powerful a class
of functions is in terms of the size of the largest sample for which any split between positive
and negative examples is realized by some function in the class. The following notation is
from Baum and Haussler (1989).

Definition 2. Let F be a set of functions mapping ~n to {0, 1}. For a set S E)R n, let
AF(S) denote the number of distinct dichotomies of S induced by functions f E F. Let
A F (m) denote the maximum of AF(S) over all S E ~ of cardinality m. The Vapnik
Chervonenkis (VC) dimension of F, denoted by VCdim(F), is the value of the largest m
for which A F (m) = 2 TM (i.e. the largest m for which F induces all possible dichotomies
on some set of size m).

The following lemma shows that the PAC learning problem can be reduced to finding a
hypothesis consistent with a polynomial number of examples. (All logarithms in this paper
are taken base 2, and e is the base for the natural logarithm.)

LEMMA 1 (Blumer et al., 1989). Let F be a non-trivial, well-behaved 2 class offunctions
mapping ~n to {0, 1}. Then for any 0 < e, 6 < 1 and any sample of at least

166 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

randomly selected examples, the probability that any function from F that is consistent with
those examples has error at most e is at least 1 - 6.

In the following section we calculate an upper bound for the VC dimension of the class
of NPNs. From this we derive a sample complexity sufficient to achieve the PAC learn-
ing criterion.

3.1. The VC dimension of NPNs

In order to derive the sample size necessary to achieve PAC learning, we appeal to a result
from the literature. Lemma 2 is adapted from Corollary 3 of Baum and Haussler (1989).

LEMMA 2 [Baum and Haussler, 1989]. Let F be the class of all functions computed by feed
forward nets defined on a fixed underlying graph G with E edges and N >_ 2 computation
nodes, each of which computes a linear threshold function. Let W = E + N (the total
number of weights in the network, including one weight per edge and one threshold per
computation node). Then AF(rn) _< (Nero /W) W for all m > W and VCdim(F) <_
2W log (eN).

A NPN has at most 2n - 1 computation nodes (without loss of generality). That follows
since at most n - 1 of the nodes can have more than one input, and we may assume that single
input units appear only at the bottom level above one of the n input variables (single input
units are trivial if their input is boolean). Each node has an outgoing weight and a threshold,
so there are at most 4n - 2 weights and thresholds (we may assume the input weight for
any single input perceptron is 1). We cannot, however, immediately apply Lemma 2 with
N = 2n - 1 and W = 4 n - 2, because there is no fixed underlying graph known in advance.
Instead we use the result to prove the following lemma, bounding the VC dimension for
our class of functions.

LEMMA 3. The class of nonoverlapping perceptron networks with n inputs has VC dimen-
sion at most 13n log (2en) + 4n log log (4n).

Proof: Let g be a set of graphs each with E edges and N _> 2 computation nodes. Let
F (g) be the class of all functions computed by feed forward nets defined on any underlying
graph G E ~. Since no single graph in g can induce more than AF(m) dichotomies on a
sample of size m, it follows that AF(~)(m) < IGIAF(m). For N > 2 and W = E + N,
it is easily verified that for

m = log(Igl) + W l o g l o g (I g l) + 2Wlog(Ne) (1)

we have 2 "~ >]Gt(Nem/W) W. Therefore by Lemma 2, 2 ~ >]glAF(m) and hence,
as argued above, 2 "~ > AFco) (m). This states that F (6) cannot shatter a set of rn points,
giving us the result that VCdim(F (~)) <_ m.

Any NPN on n variables can be expressed on an underlying graph generated by 1) picking
a binary tree over n leaves (and adding unary gates at the leaves), 2) assigning each of the n
variables to a leaf, and 3) deciding for each of the n - 2 non-root internal nodes whether to

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 167

merge it with its parent, creating a single unit of larger fan-in. Thus we bound the number
of possible underlying graphs for a NPN as follows (the first two terms are the Catalan
number, counting binary trees with n leaves):

1 (2 n - 2 ") n! 2 n-2 I L<
- n \ i n - 1

< (2 n - 2)!2~_ 2
- (n- 1)!
_< (4n)

Substituting this bound on along with N _< 2n - 1 and E = 2n - 1 into equation (1),
we get

VCdim(NPX) < (n - 1) log (4n) + W log ((n - 1) log (4n)) + 2 W log (Ne)

< (n - 1) log (4n) + (an - 2) log ((n - 1) log (4n))

+ (8n - 4) l o g (e(2n - 1))

<_ 13n log (2en) + 4n log log (4n). I

Substituting this VC dimension bound into Lemma 1 gives us the sample complexity
result we need (m = 0 (~)) .

COROLLARY 1. If a nonoverIapping perceptron network h is correct on a sample of at least

(! 2104nl°g(2en) + 32nl°gl°g(4n) logl-3e)
m = max log ~, e

randomly selected examples, then with probability at least 1 - 6 the hypothesis h has error
less than e.

This result solves the statistical aspect of our learning problem. We can now concentrate
on the computational problem of using membership queries to fit a NPN to a sample of
m examples.

4. Some simplifying reductions

In this section we describe some standard reductions that allow us to make simplifying
assumptions about the form of our target function and our sample.

Suppose f is a NPN over the variable set X, and M is a set of examples classified
according to f . For each variable xi E X we define the induced domain on M to be the
set of values that x~ assumes in M. While the true domain of x~ may be continuous and/or
unbounded, our algorithm need only consider input settings from the induced domain. This
is a discrete set of values, so we may speak of the minimum and maximum value of a
variable. We shall say a sample is normalized if each variable assumes a minimum value
of 0 and a maximum value of 1. We may assume without loss of generality that this is the
case. We can normalize our sample by applying a linear scaling function for each variable,

168 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

mapping its induced domain to [0, 1], and then inverting this scaling function whenever we
make a membership query. But it is perhaps cleaner just to consider "0" and "1" settings
for variables in the remainder of the paper to be notation for the smallest and largest values
that the variable assumes in the sample. In our arguments we make repeated reference to
the most influential input to a hidden unit. This is the input for which the product of its
weight times the difference between its "1" and "0" values is largest (i.e. the swing in the
weighted sum obtained by flipping this input between its 0 and 1 values is maximal).

A justifying assignment for a variable is an assignment for which changing the value of
that variable changes the value of the target function (i.e. f (a x i ~ t) ~ f(ax~+--o)). We can
apply a standard procedure to our sample to obtain a justifying assignment for each variable
(Angluin et al., 1993; Hancock, 1991). This procedure checks each variable xi to observe
whether we can fix xi to 0 in every sample point without changing any of those examples'
classifications (determined by making membership queries). If there is such an "irrelevant"
xi, we instead learn the projection fp of f that forces xi to 0 (in effect removing xi from the
set of variables). Since the class of NPNs is projection closed, this modified target fp is still
realizable as a NPN. All future membership queries are made not on f , but on fp (i.e. we
intercept a query instance before passing it to the oracle and set xi to 0). The learning
goal is now to find a NPN consistent with fp on our sample (from which we can now
discard variable xi). Any such NPN not containing the eliminated irrelevant variable will
be consistent with the true function. We continue eliminating irrelevant variables until we
can do so no longer. At this point either none are left (in which case a constant function is a
consistent hypothesis), or else some subset of variables remain. The fact that those variables
cannot be eliminated means that the sample contains a justifying assignment for each.

A useful property of NPNs is that we may assume without loss of generality that the
perceptrons within our target network f contain negative weights only for those inputs that
lead directly from variables (rather than deeper perceptrons). This is by an analog to De
Morgan's laws that allows us to push negation of weights down to the leaves. Consider a
perceptron in f that has some term -w~x i in its weighted sum (where w~ > 0). We can
rewrite this term as wi (1 - xi) - wi. Thus we can eliminate the negative weight by adding
wi to the threshold and replacing the xi input by its logical negation. We complement
xi 's input by taking the perceptron whose output is xi and multiplying all its weights and
thresholds by - 1 (this also requires changing the comparison from _> to >, which we can
allow, or which we can simulate by adding a sufficiently small e to the threshold). Note
that while this process may introduce new negative weights, it does so at a lower level. By
repeating this process all negative weights will be pushed to the input level.

We say a function f over X is monotone in a variable xi E X, if for all assignments a
and any pair of values x (1) _> x (°), it is true that f (a ~ i ~ (1)) _> f (ax~x (O)) (i.e. as
xi increases, f does not decrease). We say a function f over X is anti-monotone in a
variable xi E X , if for all assignments a and any pair of values x (1) >__ x (°), it is true that
f (a ~ x (z)) <_ f (a~,_x(o)) (i.e. as xi increases, f does not increase). We say a function is
monotone if it is monotone in every variable. Since we assume f contains negative weights
only on input variables, every variable has either no negative weights on its path to the
root, in which case it is monotone, or it has exactly one, in which case it is anti-monotone.
Since we have a justifying assignment for each variable, we can easily determine which is

L E A R N I N G N O N O V E R L A P P I N G P E R C E P T R O N N E T W O R K S 169

the case. We may reduce our problem to the monotone case (i.e. no negative weights) by
replacing each anti-monotone xi with a new variable representing (1 - xi). Note that if a
is a justifying assignment for xi in M, and xi is monotone, it follows that f (a z ~ l) = 1
and f (a ~ - o) = O.

To summarize this section, we have argued that we may assume without loss of generality
that the target NPN is monotone and contains no negative weights. Furthermore we may
assume that our sample M is normalized and contains a justifying assignment for every
variable. In what follows, whenever we refer to the target NPN and the sample M we
suppose they satisfy these assumptions. Moreover, we assume that the target NPN has at
least one hidden unit. The case where the target NPN has only one computation node (the
output) is trivial.

5. Learning nonoverlapping perceptron networks: Known architecture

Let us assume for a moment that the architecture is fixed. In this case, the problem of learning
reduces to that of loading a given set of examples in a given architecture, i.e. finding the
weight values such that the given net is consistent with all the examples. We consider just
a simple NPN with two nodes (figure 2).

The problem, often called the credit assignment problem (CAP), is to determine the output
of the sub-function of each hidden unit on every example in the sample. Baum (1990a)
suggested that no approach that avoids the CAP will work. Here we can solve this problem
exactly by exploiting the fact that, because the receptive fields of the nodes are disjoint,
some examples can be separated by one and only one node.

X 1 X 2 . - . X k

W

Figure 2. The nonoverlapping perceptron net considered in section 5. It consists of two nodes. Node 1 is connected
to the set of variables W. Node 2 is connected to the set of variables X - W . Node 2 receives input also from
node 1.

170 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

To see this, let W = { x l , . . . ,xk} be the set of variables connected to node 1 and
(X - W) = { X k + l , . . . , X n } the set of variables connected to node 2 (figure 2). Let
a = (al , a 2 , . . . , an) be a justifying assignment for a variable xi C W. By definition,

f (a x , ~ l) • f(axi,--o).

Define the partial assignment p = aw,---,. Let b be an arbitrary input assignment for
which we wish to calculate the output of node 1. We use a membership query to determine
f (p /b) = f (b l , . . . , bk, a k + l , . . . , an). Note that the examples ax~,--1, ax,~O, and p/b
differ only on variables from W. The only node that can separate p/b from either ax,,--1 or
a ~ 0 is node 1. The output of node 1 on example b will be the same as its output on p/b
(b and p/b agree on all variables in W). This generalizes to give us the following fact for a
nonoverlapping (and monotone) network.

LEMMA 4. If f is a NPN over X, and p is a partial assignment that assigns values to
exactly those variables that are not descendants of some unit G in f , then the projection fp
will either be a constant function or will be equivalent to the subnetwork o f f rooted at G.

Proof: Let g be the subnetwork rooted at G. Let f~ be the NPN obtained from f by
deleting G and its descendants and replacing them with a new variable (representing the
output of 9). Since f is nonoverlapping, no variable is an input to both 9 and ft . The
projection fp is computed by evaluating f l when all its inputs except g are fixed as in p.
This projection of f / c a n either be a constant function (in which case so is fp), or it can
depend on the remaining input, g. Since f (and all its projections) are monotone, the only
way fp can be non-constant is if fp =_ 9 (were f non-monotone, we might have fp =_ -79).

[]

In other words, for any example b = (bl, b 2 , . . . , bn) in our sample we can compute
the induced output value from node 1 as fp(b) = f (b l , . . . , be, a~+l , . , . , a,~). Thus to
learn the perceptron associated with node 1, we learn a function consistent with fp (where
fp(b) = f(p/b)) . Once this is done, we can learn the perceptron associated with node 2
over the set of variables (X - W) t3 {y}, where the new variable g represents the output
of node 1. The method can be extended easily to an arbitrary NPN. This technique is taken
from work in read-once formula learning (Bshouty et al., 1992a and 1992b), where the
architecture is termed the "skeleton" of the formula.

Before we leave this section, we prove the following consequence of our discussion.
This will later prove useful as a criterion to rule out invalid architectures. We observe that
changing an assignment b by modifying the variables (W) from some subnetwork does not
affect f(b), as long as the modified assignment induces the same output (fp(b)) on that
subnetwork. One such way we can change b without affecting fv(b) is to set the variables
W - {xi} to agree with a justifying assignment a for xi, and to set x~ to fp(b).

LEMMA 5. If W C X are those variables that appear in the subtree of some hidden unit
of a NPN f, and if a is a justifying assignment for some xi E W, then for p = aw~-. it
will be true for every example b that

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 171

f(b) = f(bw-{xd,--~,~i~f~(b)).

Proof: Let b I = bw_ {x, }*--a,xl ~f~ (b). Since b and b / agree on all variables in X - W (those
not appearing in W's sub-network), we can have f(b) ~ f(b') only when fp(b) ¢ fp(b')
(Lemma 4). But fp(b') = f(p/b ') = f(ax~yp(b)). Since a is a justifying assignment for
xi (and f is monotone) this must equal fp(b). []

6. Learning nonoverlapping perceptron networks: Unknown architecture

6.1. Partitioning and the main routine

The problem is to find a NPN consistent with a sample M. Our basic approach is to search
for a partition of the variable set X into W U (X - W) for which we can apply the fixed
architecture solution of the previous section. We would like to find a set W that is exactly
those variables that are descendants of some hidden unit of f (figure 3). A partition allows
us to decompose our problem of finding a consistent hypothesis with f into the smaller
problems of finding hypotheses consistent with NPNs 91 and 92. Both 91 and 92 can be
expressed as projections of f . If a is a justifying assignment for x~ E W, then g2 --= fp
forp = aw+--,, and 91 =- fq for q = a (x - w) u { x d ~ , (where the xi input represents 91's
input from the subnetwork over W).

We represent a decomposition of f as a three-tuple (ms, a, W). Lemma 5 states that if W
indeed contains exactly the variables that are descendants of some hidden unit, then every
example b in our sample M will satisfy

f(b) = f(bw-{zd~a,x,~-yp(b)). (2)

Note that by the definition of q this is equivalent to the condition

f(b) = fq(b~,~--y~(b)).

We say a decomposition is valid for M if it satisfies condition (2). We say a decomposition
is non-trivial if W C X and either fWI > 1 or else xi (the only element of W) takes
on more than two values in M. Our learning approach is divide and conquer, where we
reduce the problem of finding a NPN consistent with f to that of finding NPNs consistent
with the "simpler" targets fp and fq, determined as above according to a valid non-trivial
decomposition. When we can break down the problem no further, we argue that a single
perceptron can fit the sample. The idea that leaming read-once formulas can be reduced
to finding partitions according to non-trivial subformulas, and then learning single node
formulas as a base case, is a common theme in read-once formula algorithms (Bshouty
et aL, 1992a and 1992b). (Typically, as is the case here, the main work of the algorithm is
to find the partitions.)

We have motivated the definition of a valid decomposition by considering the case where
W is the set of descendants of a hidden unit (and have thus implicitly shown that as long as
f has more than one perceptron, such decompositions exist). But such a choice of W is not

172 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

gl(X-W

/ i \
% /

W
J

Subtree rooted at g l

Figure 3. A partition of the variables X into W U (X - W). The set of variables W are the descendants of node
92- We may think of 91 and 92 as some nodes in our target net.

necessary for a decomposition to be valid, and we have no means to determine whether a
given valid decomposition has any architectural significance in f . The key fact is that from
any valid decomposition we shall be able to find a consistent NPN by forming a subnetwork
over the W variables, regardless of whether the resulting architecture agrees with f ' s .
Thus while the converse of Lemma 5 does not hold, it almost holds, in the sense that if a
decomposition is valid on M then there is a NPN that agrees with f on M, in which the
W variables appear in a subnetwork computing fp. (This potential use of decompositions
that are not partitions of X according to subformula of f is a key difference from other
read-once formula algorithms.)

Generating a valid decomposition is the subject of the next section. Here we present the
logic for the divide and conquer approach by which we build the network given decom-
positions. Lemma 6 below proves that this is correct. Besides the variable set X and the
sample M, this routine also uses a membership oracle for f .

LEMMA 6. Suppose f is a NPN over X and M is a set of examples classified according
to f . Suppose there is a polynomial time algorithm that produces a set of decompositions,
one of which is valid and non-trivial (provided a valid non-trivial decomposition for M
exists). Then there is a polynomial time algorithm to find a NPN consistent with f on M.

Proof: We prove that Find-Consistent-NPN (figure 4) is such a routine. This is mostly
a consequence of previous observations, with a few additional points. First note that valid
non-trivial decompositions can fail to exist only in the case where f has a single computation
unit, so by assumption we fail to find one only when linear programming can indeed produce
a consistent hypothesis.

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 173

Find- Consistent-NPN(X, M)

1. Apply the reductions of Section 4 to find justifying assignments for each variable, normalize
the sample, and reduce the problem to the case where f is monotone.

2, Invoke the next section's routine Find-Decomposition to generate a valid non-trivial decompo-
sition (xi, a, W). If none is found, train a single perceptron to fit M using linear programming,
and return.

3. Invoke Find-Consistent-NPN with the following inputs

® Variable set W.

• The sample obtained by M by taking each example b E M and deleting the variable
settings for X - W.

® A (simulated) membership query oracle for the projection fp where p is the partial
assignment aw~. .

Let hi be the NPN returned.

4. Invoke Find-Consistent-NPN with the following inputs

• Variable set (X - W) W (x d.

® The sample obtained by M by taking each example b E M and deleting the variable
settings for X - {xi} and resetting xi to fp(b) (either 0 or 1).

° A (simulated) membership query oracle for the projection fq where q is the partial
assignment a(x_w)o{~d~,.

Let h2 be the NPN returned,

5. Return the hypothesis h obtained by substituting hi for the xi input to h2.

Figure 4. Routine Find-Consistent-NPN.

Assume that the two recursive calls produce NPNs hi over W and h2 over (X - W) tA {x i}
that are consistent with fp and fq on their respective samples. By construction, our final
hypothesis will be a NPN h over X, such that for any b E M

h(b) = h2(bx -hl(b))

= h2(bx~-fp(b))

= /q(bx, -Spib))
=

= f(b).

(The second equality comes from the correctness of hi , the third from the correctness
of h2, the fourth from the definition of q, and the fifth from the definition of a valid
of decomposition.)

Note that both fp and fq are projections of f and hence are realizable as NPNs for any
choice of variables W (recall that the class of NPNs is projection closed). Hence it does
not matter if the set W does not include the variables from some subnetwork of f , as long
as the decomposition is valid. The recursive calls are indeed valid NPN learning problems,
and we can prove correctness by induction. The induction is over the sum of the number

174 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

of variables in X plus the number of non-boolean variables in X. Since the decomposition
is non-trivial, W always contains fewer variables than X (and no additional non-boolean
variables). The only case in which (X - W) t2 {xi} contains as many variables as X is
when xi is non-boolean in M, but then xi becomes boolean for the recursion (taking on the
value of fp), so the number of non-boolean variables decreases.

To bound the number of recursive calls, first note that we can only recurse n times for
a decomposition with w = IW] = 1. This is because such a decomposition is used only
when the single variable xi in W is non-boolean, and each non-boolean input variable can
be separated off in this manner only once (this decomposition corresponds to creating a
unary perceptron whose only input is xi, and hence we are in effect replacing the non-
boolean x~ by the boolean output of this gate). The number of times we can recurse using
a non-trivial decomposition in which w = IWI > I is bounded by T(n), as specified by
the following recurrence (i.e. we break a problem on n variables into separate problems on
w and n - w + 1 variables):

T(n) -- 1 + max (T (n - w + l) + T (w))
l < w < n

T(2) = 0.

It is easily verified that T(n) = n - 2. Thus this recursive processing can result in at most
2n - 2 invocations of Find-Consistent-NPN (and of that quantity over half are for a case
where the target is a simple threshold of a single non-boolema variable). •

6.2. Finding valid decompositions

In this subsection we solve our main technical problem of finding valid decompositions.
The decompositions we look for are ones obtained by starting with the most influential
input variable xi for some bottom level unit, and then calculating the set W of siblings
of xi (actually the techniques do not require that xi's parent be bottom level, but it makes
the arguments slightly cleaner). Of course we do not know in advance whether variable
x~ is the most influential input to its parent. But it suffices to try our techniques for each
possible xi in succession, noting that when we get to a "good" xi we shall indeed generate
a valid non-trivial decomposition. It is conceivable that a "bad" x~ will still somehow let
us generate a valid non-trivial decomposition, but that presents no difficulty since any such
decomposition works for our divide and conquer approach. (Recall that with membership
queries we can easily verify whether a proposed decomposition is valid.)

Suppose for now (and most of the remainder of the section) that we have prior knowledge
that xi is the most influential input to a bottom level unit. Let g(xi, Zl , . . •, zr) be the linear
threshold function computed at xi's parent. Let us define the following two conditions
(expressing whether the single most influential input has enough power to overrule the
aggregation of all other inputs):

g (~ , o , . . . , o) = 0 (3)

g (O , 1 , . . . , 1) = 1. (4)

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 175

Find-Decomposition(X, M)

1. Repeat for each xi E X (until a valid non-trivial decomposition is found).

a. Let (xi, a, W) be 'the decomposition returned by invoking Find-Decomp-l(X,M,x~). If
(zl, a, W) is valid and non-trivial, return this decomposition

b. Let (xi, a, W) be the decomposition returned by invoking Find-Deeomp-2(X,M,x~). If
(xi, a, W) is valid and non-trivial, return this decomposition

2. Return "failure" (the target NPN has no valid non-trivial decompositions).

Figure 5. Subroutine Find-Decomposition.

We use two different routines that find a valid decomposition: One is for the case where
both conditions (3) and (4) hold (which is shown to suffice for a boolean x 0, and the other
for the case where one (or both) of the conditions is false. Those routines (Find-Decomp-1
and Find-Decomp-2 respectively) are described in subsequent sections. Their correctness
will suffice to show that we can generate a valid non-trivial decomposit ion by the routine
Find-Decomposition shown in figure 5.

Before presenting the two routines to find decompositions, we prove the following lemma
that gives a criterion useful for deciding whether a variable xj is a sibling of xi.

LEMMA 7. Suppose f is a NPN over X in which variables xi and xj are siblings and in
which xi is at least as influential an input to their parent as is xj. If p is a partial assignment
that assigns values to X - {xi, x j } such that fp depends on xj for values of xi and xj in
[0, 1], then fp must also depend on x i for values of xi and xj in that range.

Proof : Since fp depends on xj, there is some value x (°) E [0, 1] for xi on which

f(Pzi~z(o),xj~o) = 0

f (px~x(o) ,x~_l) = 1

For fp not to depend on xi it must be true then that

f (p x ~ - l , x ~ o) = 0 (5)

f(pz~-O,xj~-l) = 1 (6)

But this leads to a contradiction, since the fact that xi is at least as influential as xj implies
that px~_l,zs+_o has at least as high a weighted sum of inputs to x i ' s parent as does
px~,--0,xj ~ 1. Since the assignments agree elsewhere, monotonicity yields the contradiction
that condition (5) cannot hold unless condition (6) is false. []

6.2.1. The boolean case

In this section we show how to find a decomposit ion in the case where xi (the most influential
input to a bot tom level unit) is boolean. This technique will also work for a non-boolean
xi whose parent computes a function 9 satisfying both conditions (3) and (4) listed above.

176 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

OR-Sibling- Test(xi, x j, X, p)

1. Repeat the following for each xk C X - {xi,xj},

a. Let p~ be Pzk~0-
b. If fp, also computes the function "(xi = 1) OR (xj = 1)" on {0, 1} x {0, 1}, then reset p

to pq
c. Otherwise if fp, computes the function "xj = 1", return "Not siblings".

2. Return "Are siblings".

Figure 6. Subroutine OR-Sibling-Test.

First we present a key subroutine, OR-Sibling-Test. This subroutine takes as input a
projection p that depends on the two variables xi and xj and that computes "(x~ = 1) OR
(xj = 1)" when evaluated on the four input settings from {0, 1} × {0, 1}. The technique
is to set other variables to 0 in p, one at a time, trying to make the projection depend on
just xj . This is not possible (by Lemma 7) if xi and xj are siblings and xi has the higher
weight. We shall show, however, that this is possible if xi and x j are not siblings and if
xi 's parent is a bottom level unit for which condition (3) holds. This gives us a means to
test whether another variable x j is a descendant of x~'s parent under the assumption that x~
is the most influential input. The remaining processing for this case will involve finding a
suitable projection p with which to invoke OR-Sibling-Test (figure 6).

LEMMA 8. Suppose f is a NP N over X and x~ is the most influential input to a bottom
level unit. Suppose x j E X and p is a partial assignment assigning values to X - { xi, x j }
such that on the domain {0, 1} × {0, 1}, fp computes the function "(x~ = 1) OR (xj = 1)."
Then if xi ' s parent computes a function 9(xi, Zl, . . . , z~) satisfying 9(1, 0, . . . , 0) = 0, the
routine OR-Sibling-Test(xi, x j , X , p) will return "Are siblings" i f and only i f x~ and x j are
siblings in f .

Proof." The routine returns "Not Siblings" only in a case where fp, depends on x j , but not
xi. By Lemma 7 this cannot occur unless xi and x j are indeed not siblings. Now suppose
xj is not a sibling of xi, and xi 's parent computes a function 9 of the indicated form. Each
change to a variable xk in the main loop, preserves the property that gp outputs the value
of xi (for x~ E {0, 1}). We cannot set all the siblings of xi to 0 in p, since by assumption
we would then have gp = O. So on some iteration we must have some sibling xk that we
cannot set to 0 in p, meaning that gp, = O. In this case fp, will compute "xj = 1", and we
shall correctly return "Not Siblings". •

We will also make use of a subroutine AND-Sibling-Test that is the dual of the previous
routine, obtained by changing "OR" to "AND" and "Px~.--0" to "Pxk,--l". This subroutine
will take a projection equivalent to "(x~ = 1) AND (xj = 1)" and, given the same
conditions as Lemma 8 excepting that 9 satisfies condition (4) rather than (3), will return
"Are Siblings" if and only if x 5 is a sibling of x~ in f .

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 177

Find-Decomp- I(X, M, xi)

1. Initialize W to {xi}.

2. For each variable xj E X - {xi},

a. Pick a justifying assignment a C M for xj (i.e. f(a~j~l) ~: f(axj~o)).
b. Evaluate f,,~,.xj-, on the four settings of x~,zj from {0, 1} x {0, 1}.

c. If on this domain, that projection is equivalent to "(:ci = 1) OR (xj = 1)", invoke

OR-Sibling-Test(xi, x j, X, a~i,zj ~*).

Add xj to W if that subroutine returns "Are siblings".

d. Otherwise, if the projection is equivalent to "(xi = 1) AND (xj = 1)", invoke

AND-Sibling- Test(xi, x j, X, a~,~j ~.).

Add xj to W if that subroutine returns "Are siblings".

3. Pick an a C M that is a justifying assignment for xi, and return the decomposition (xl, a, W).

Figure 7. Subroutine Find-Decomp-1.

Before presenting our routine to find a decomposit ion when conditions (3) and (4) both

hold, we argue that this assumption is (almost) without loss of generality for a boolean
x~. Suppose x~ is the most influential input to g(x~, z l , . . . , zT). We ignore without loss
of generality the possibil i ty that r = 0. In that case the unary function 9 (if non-constant)
could compute just the identity function on its boolean input, and we may assume there are
no such useless units in f . I f 9 fails condition (3) (i.e. g(1, 0 , . . . , 0) = 1), then it is true
from monotonicity that 9 is equivalent to

(xi = 1) O R g (0 , z l , . . . , z T) .

If r > 1, then this means f can be expressed with more hidden units by splitting g in this
manner. If we assume (without loss of generality) that f is expressed so that there are
as may hidden units as possible, it follows that condition (3) must be true for a boolean
variable x~ (unless its parent has only two inputs, i.e. r = 1). A similar argument shows
that condition (4) must also hold for boolean variables (if r > 1). We can handle the r = 1
case by simply testing all pairs of variables to see if they can form (along with a justifying
assignment for one of them) a valid non-trivial decomposition.

The routine Find-Decomp-1 (figure 7) will find a valid decomposit ion if both conditions (3)
and (4) hold. This, along with a test of each pair of variables to cover the r = 1 case,
is sufficient to find a valid non-trivial decomposit ion if xi is boolean (in fact we don' t
include these tests of pairs of variables in our routine, since the case where condition (3)
or condition (4) fails is covered in the next section by the processing necessary for non-
boolean variables).

L EMMA 9. Suppose f is a N P N over X and M is a sample o f examples classified according
to f . Suppose that xi is the most influential variable connected to some bottom level unit.

178 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

Further suppose that the following two statements hold for the linear threshold function
9 (xi, z l , . . . , z~) computed at x i ' s parent:

g(1 ,0 ,0) = 0

g (0 , < . . . , i) = I.

Then (i f f has more than one computation unit) Find-Decomp-l (X , M , xi) will return a
valid non-trivial decomposition for M .

Proof: We shall show that W is set to exactly those variables that are children of xi 's
parent. The claim then follows from Lemma 5 as long as f has more than one perceptron
(to guarantee non-triviality).

Suppose x j is a sibling of xi. It follows from Lemma 7 that fa~, ~j_ . must depend on
both xi and x j . Since we consider only the values 0 and 1 for each variable, the only two
possible functions are AND and OR. Thus we call either OR-Sibling-Test or AND-Sibling-
Test. The conditions on 9 and x~ guarantee that in either case we shall add xj to W if and
only if it is a sibling of xi. •

6.2.2. The non-boolean case

Suppose the most influential input, xi, to some bottom level unit is non-boolean. In this
case our previous routine Find-Decomp-1 will still work if both conditions (3) and (4) hold,
but we can no longer ignore the possibility that one of the two does not.

In this section we present a second routine (Find-Decomp-2 in figure 8) that will find a
valid decomposition in such cases. The routine incrementally builds a set W of proposed
siblings for xi. This set starts simply as W -- {xi}, and is augmented only by variables
guaranteed to be x~'s siblings (given our assumptions on 9 and that xi is the most influential
input to a bottom level unit). If W grows to contain all x~'s siblings, then of course the
decomposition (x~, a, W) will be valid (for a a justifying assignment for x0. If for some
partial W the decomposition is not valid, it is because some b C M fails criterion (2). We
show how to manipulate this b (along with a) to find a new sibling of xi. Repeating this
will eventually lead us to a valid decomposition.

The following lemma gives us a test useful to guarantee that a new variable x j is indeed
a sibling of xi.

LEMMA 10. Suppose f is a NPN over X , and xi C X is a variable that is the most
influential input to a bottom level unit. Suppose W C X includes only x~ and siblings o]
xi. Let ql and q2 be two partial assignments that assign values to X - W and differ only
on the value they assign to some single variable x j E X - W . I f neither fql nor fq2 is
constant and i f fql ~ fq2, then x j is a sibling of xi in f .

Proof: Let 9 be the weighted threshold function computed at xi 's parent. Since fq~ and
fq2 depend only on inputs to 9, it follows (from Lemma 4) that fq~ -- gql and fq2 = ffqz.
Hence 9ql ~ 9q2, which is possible only if x j is an input to 9. •

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 179

Find-Decomp- 2(X, M, xi)

1. Initialize W to {xi}.

2. Let a C M be a justifying assignment for xi (i.e. f (ax~l) ¢ f (a ~ o)) .

3. Repeat the following until either (xi, a, W) is a valid decomposition for M, or until W stabi-
lizes.

a. Let b E M be an assignment for which the decomposition is not valid (i.e. for p = aw~,,

f(b) ¢ f(bw_~,} :,(b))-)

b. Define q = bw~.. Let c be whichever of b or bw_{~ d f,(b) has fp(c) ¢ fq(c) (one
must).

c. Repeat for each variable xj C X - W that p and q assign differently (i.e. pj 7£ qj).

i. Let pJ = p ~ q j . If fp, is non-constant (as determined by checking whether it
evaluates to 1 on the all l 's setting and 0 on the all 0's setting),

A. If fp,(c) ¢ fp(c), add xj to W and go back to the start of the step 3 loop.
B. Otherwise (fp,(c) = fp(c)), reset p to p' and repeat step 3c.

ii. Else, let q~ = qzj~p~- If fq, is non-constant,

A. If fq,(e) # fq(c), add xj to W and go back to the start of the step 3 loop.
B. Otherwise (fq,(c) = fq(c)), reset q to q' and repeat step 3c.

4. Return (xl, a, W).

Figure 8. Subroutine Find-Decomp-2.

N o w we p re sen t the pa r t i t ion ing rout ine , fo l lowed by a p r o o f its cor rec tness . T h e bas ic

idea is tha t i f our d e c o m p o s i t i o n (xi, a, W) is no t val id on an example b, then it mus t be

the case tha t fp and fq (where p = aw+--, and q = bw,--,) are d i f fe rent n o n - c o n s t a n t

pro jec t ions . W e try to m o v e p and q towards each o ther by c h a n g i n g var iab les on w h i c h

they d i sagree (whi le p r e se rv ing fp ~ fq), and argue that w h e n we get s tuck we can apply

L e m m a 10 to add a new var iab le to W . See f igure 8.

LEMMA 11. Suppose f is a N P N over X and M is a sample of examples classified
according to f . Suppose non-boolean variable xi is the most influential input connected
to some bottom level unit. Further suppose the linear threshold function 9(xi , z l , . . . , z~)
computed at x i ' s parent satisfies at least one of the following two conditions:

9 (1 , 0 , . . . , 0) = 1

9 (0 , 1 , . . . , 1) = 0.

Then Find-Decomp-2(X, M , x~) will return a valid non-trivial decomposition for M .

P r o o f : W h e n e v e r our d e c o m p o s i t i o n (x i , a, W) is no t va l id for M it is because (by

def in i t ion) M con ta ins an exam pl e b as se lec ted at s tep 3a. Le t b I = bw_{x~}~a,x¢._fp(b)
for this b. S ince b and b I dif fer on ly on var iab les in W , i f fo l lows tha t for q = b w . - . ,

fq(b) = f (b) ¢ f (b ') = fq(b').

180 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

However by definition o fp as aw.--, where a is a justifying assignment for a it follows that

fp(b') = f (p/b ') = f(aw.--b,) = f(a~,~fp(b)) = fp(b).

Thus as claimed at step 3b, fq and fp must disagree on either b or b ~ (henceforth called c).
We already know that fp is non-constant, since p is obtained from a justifying assignment

for xi E W. As observed above fq(b) 7£ fq(b'), implying that fq is also non-constant.
Note that these properties (along with fq(e) 7 £ fp(e)) am preserved by the changes to p and
q during the step 3c loop.

Thus it is easy to prove by induction that the set W includes only x~ and siblings of xi.
This is true initially for W = {xi}, and each time we add a variable xj to W within step 3c
the condition of Lemma 10 implies that xj must indeed be a sibling of x~ (we have observed
that both fp and fq are non-constant). The decomposition (xi, a, W) will be valid if W
contains all of xi's siblings, so the remaining point we must prove is that on each iteration
of step 3 we shall indeed add a new sibling to W.

Consider the processing of that step 3c loop. The fact that fp (c) ¢ fq (c) implies that p
and q must always disagree on at least one sibling of x~ (since p and q leave unassigned
only inputs to g, it would be a contradiction for them to induce the same projection on that
function). We shall prove that each time the xj we consider in the loop is indeed a sibling of
x~, we either change p and q to agree on the variable or (as hoped) we add xj to W. Since
we cannot do the former for every such xj while preserving fp ~ fq, we must eventually
do the latter for one.

To prove this final claim, it is enough to show that the stated restriction on 9 implies
that at least one of the two projections fp, and fq, considered in the loop must be non-
constant, assuming xj is a sibling of x~. Suppose, without loss of generality, that on
entering the loop pj > qj. Then if fp, is constant (recall p~ = Px~ ~qj) while fp was not,
monotonicity implies fp, =--- O. Similarly if fq, is constant, fq, ---- 1. Neither p' nor q~ assigns
a value to xi, so fp, = 0 is possible only if 9(1, 0 , . . . , 0) = 0, and fq, -= 1 is possible
only if 9(0, 1 , . . . , 1) = 1. It contradicts the lemma for both these statements to hold.

[]

7. Main theorem and analysis

In this section we put together the pieces of our algorithm, along with some straightforward
analysis, to prove the following main theorem. First, however, we must somehow address
the computational complexity issues of bit precision in our examples. The algorithm we
have presented performs essentially just symbolic manipulations, and a unit cost model
for manipulating numbers seems the most natural. But the linear programming subroutine
will take time proportional to the number of bits in the problem statement, and hence an
adversary can blow up the running time by specifying a probability distribution in which
the examples are clustered very close to the separating half-plane. To avoid this we adopt
essentially the approach of Baum (1991), and allow our algorithm time proportional to the
number of bits of precision s appearing in our random examples. The number of bits in
the linear programming problems will then be bounded by the product of s, n, and the
sample size.

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 181

THEOREM 1. The class of nonoverlapping perceptron networks over n inputs is PAC
learnable using examples and membership queries in time polynomial in n and the number
of bits in the examples. The algorithm uses

(4 2 104nlog(2en)+ 32nloglog (4n) log ~)
r e = m a x ~ l o g ~ , e

random examples, O(n2m) membership queries, and runs in time O(n4'5sm) (where s is
the maximum number of bits of precision specified for the examples in the random sample).

Proof: By Corollary 1 it suffices to output a NPN consistent with a sample M of size
m to achieve PAC learning. The algorithm is to draw such a sample and invoke Find-
Consistent-NPN(X, M). By Lemma 6 this routine will output such a NPN, provided that
Find-Decomposition finds a valid non-trivial decomposition whenever f contains more than
one computation unit. Since we can check whether a given decomposition is valid and non-
trivial using membership queries, the correctness of this routine follows from Lemmas 9
and 11.

Now we analyze the running time for an n variable NPN on a sample of size m. A single
invocation of OR-Sibling-Test uses O(n) time and queries. Thus an invocation of Find-
Decomp-I takes O(n 2) time and queries. A single invocation of routine Find-Decomp-2
on n variables takes O(nm + n 2) time and membership queries. We argued previously that
there are only O(n) recursive calls to Find-Consistent-NPN. We note that we can conserve
processing by not repeating similar calls to Find-Decomp-1 and Find-Deeomp-2 in deeper
recursions. As we mentioned previously, those routines can be shown to succeed as long
as xi is the most influential input to its parent, regardless of whether that parent is a bottom
level unit. Thus to find all the necessary decompositions in deeper levels of recursion we
need only run the partitioning routine on the "new" variable we have introduced. Thus the
total cost in partitioning can be reduced to O (n 2 m + n a) due to real variables, and O (n a) for
boolean variables (or a factor n more for the routines as written without the optimization).

The cost associated with the recursion itself and with testing whether decompositions
are valid is O(nm) total. The preliminary processing (eliminating irrelevant variables,
reducing to the monotone case, etc.) is O(n2m). The final stage of the algorithm is to run
linear programming on various partitions of the variables. The total cost of this is at most
O(na'5L), where L is the number of bits in the instance of the linear programming problem
(Karmarkar, 1984), which is O(snm). []

It is interesting to note that the cost of linear programming dominates the running time.

8. Conclusion

This study was aimed at finding whether or not neural nets with no overlap between the
receptive fields of their nodes are somewhat easier to learn. The answer to this question
depends on the resources available to the learner. If only examples are available, the answer
is no (based on cryptographic assumptions).

182 T.R. HANCOCK, M. GOLEA AND M. MARCHAND

Assuming that membership queries are allowed, we presented an algorithm that PAC
learns any nonoverlapping perceptron network. The algorithm works by breaking the
learning problem down to its elementary components: learning independent perceptrons.

The queries used by the algorithm are very simple and amount to asking what variable(s) is
causing a given example to be positive (negative). To our knowledge, it is the only known
result for leaming perceptron networks where an algorithm is able to identify both the
architecture and the weight values necessary to solve the learning problem. The general-
ization of the algorithm to nonoverlapping perceptron networks with more than one output
is straightforward.

A number of problems remain open. One important problem is whether or not nonover-
lapping perceptron networks are learnable from examples only under the uniform distri-
bution. By analogy, Schapire (1991) has shown that some classes of read-once formulas
are learnable under those conditions, and we have preliminary results for subclasses of
NPN's (Golea, Marchand, and Hancock, 1992). Learning general (overlapping) percep-
tron networks on the uniform distribution remains intractable, given standard cryptographic
assumptions (Kharitonov, 1993).

Acknowledgments

This research took place while Tom Hancock was a graduate student at Harvard University,
supported by ONR grant N00014-85-K-0445 and NSF grant NSF-CCR-89-02500. Mostefa
Golea and Mario Marchand are supported by NSERC grant OGP-0122405.

We thank Sleiman Matar, Les Valiant, and the anonymous referees for their helpful
comments.

Notes

1. The Blum-Rivest and Judd results show intractability assuming PCNP, while the representation independent
results rely on stronger assumptions from cryptography, such as the difficulty of factoring.

2. We omit the description of this measure theoretic condition, which is easily satisfied by the class we consider.

References

Angluin, D., Hellerstein, L., and Karpinski, M. (1993). Learning read-once formulas with queries. Journal of the
Association for Computing Machinery, 40, 185-210=
Angluin, D. and Kharitonov, M. (1991). When won't membership queries help? Proceedings of the Twenty Third
AnnualACMSymposium on Theory of Computing (pp. A.~A. 454). New York: ACM Press.
B arkai, E., Hansel, D., and Kanter, I. (1990). Statistical mechanics of multilayer neural networks. Physical Review
Letters, 65(18), 2312-2315.
Barkai, E. and Kanter, I. (1991). Storage capacity of a multilayer network with binary weights. Europhysics
Letters, 14(2), 107-112.
Baum, E.B. (1990a). On learning a union of halfspaces. Journal of Complexity, 6, 67-101.
Baum, E.B. (1990b). A polynomial time algorithm that learns two hidden unit nets. Neural Computation, 2,
510-522.

LEARNING NONOVERLAPPING PERCEPTRON NETWORKS 183

Baum, E.B. (1991). Neural net algorithms that learn in polynomial time from examples and queries. IEEE
Transactions on Neural Networks, 2, 5-19.

Baum, E.B. and Haussler, D. (1989). What size net gives valid generalization. Neural Computation, 1,151-160.

Blum, A. and Rivest, R. (1988). Training a 3-node neural network is NP-complete. Proceedings of the 1988
Workshop on Computational Learning Theory (pp. 9-18). San Mateo, CA: Morgan Kaufman.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1989). Learnability and the Vapnik-Chervonenkis
dimension, newblock Journal of the Association for Computing Machinery, 36(4), 929-965.

Bshouty, N.H., Hancock, T.R., and Hellerstein, L. (1992a). Learning arithmetic read-once formulas. Proceedings
of the 24th Annual ACM Symposium on the Theory of Computing (pp. 370-381). New York: ACM Press.

Bshouty, N.H., Hancock, T.R., and Hellerstein, L. (1992b). Learning boolean read-once formulas with arbitrary
symmetric and constant fan-in gates. Proceedings of the Fifth Annual ACM Workshop on Computational Learning
Theory (pp. 1-15). New York: ACM Press.

Goldman, S., Kearns, M., and Schapire, R. (1990). Exact identification of circuits using fixed points of amplification
functions. Proceedings of the 31st Symposium on Foundations of Computer Science. Los Alamitos, CA: IEEE
Computer Society Press. To appear, SlAM Journal of Computation.

Golea, M., Marchand, M., and Hancock, T.R. (1992). On Learning #-Perceptron Networks with Binary Weights.
tn S.J., Hanson; J., Cowan and C.L., Giles, (Eds), Neural Information Processing Systems 5. San Mateo, CA:
Morgan Kaufman.

Hancock, T.R. (1991). Learning 2# DNF formulas and k# decision trees. Proceedings of the Fourth Annual
Workshop on Computational Learning Theory (pp. 199-209). San Mateo, CA: Morgan Kaufman.

Judd, S. (1988). On the complexity of loading shallow neural networks. Journal of Complexity, 4, 177-192.

Karmarkar, N. (1984). A new polynomial time algorithm for linear programming Combinatorica, 4, 373-395.

Kearns, M., Li, M., Pitt, L., and Valiant, L. (1987). On the learnability of boolean formulae. Proceedings of the
Ninth Annual ACM Symposium on Theory of Computing. New York: ACM Press.

Kearns, M. and Valiant, L. (1989). Cryptographic limitations on learning boolean formulae and finite automata.
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing (pp. 433--444). New York:
ACM Press.

Kharitonov, M. (1993). When won't membership queries help? Proceedings of the Twenty Fifth Annual ACM
Symposium on Theory of Computing. New York: ACM Press.

Lin, J.H. and Vitter, J.S. (1991). Complexity results on learning by neural nets. Machine Learning, 6, 211-230.

Pagallo, G. and Haussler, D. (1989). A greedy method for learning #DNF functions under the uniform distribution
(Technical Report UCSC-CRL-89-12). Santa Cruz, CA: Deptartment of Computer and Information Science,
University of California at Santa Cruz.

Schapire, R.E. (1991). Learning probabilistic read-once formulas on product distributions. Proceedings of the
Fourth Annual Workshop on Computational Learning Theory (pp. 184-198). San Mateo, CA: Morgan Kaufman.

Valiant, L.G, (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.

Received November 9, 1991
Final Manuscript June 16, 1993

