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Abstract. Predicting the fold, or approximate 3D structure, of a protein from its amino acid sequence is an 
important problem in biology. The homology modeling approach uses a protein database to identify fold-class 
relationships by sequence similarity. The main limitation of this method is that some proteins with similar 
structures appear to have very different sequences, which we call the "hidden-homology problem." As in other 
real-world domains for machine learning, this difficulty may be caused by a low-level representation. Learning 
in such domains can be improved by using domain knowledge to search for representations that better match 
the inductive bias of a preferred algorithm. In this domain, knowledge of amino acid properties can be used to 
construct higher-level representations of protein sequences. In one experiment using a 179-protein data set, the 
accuracy of fold-class prediction was increased from 77.7% to 81.0%. The search results are analyzed to refine 
the grouping of small residues suggested by Dayhoff. Finally, an extension to the representation incorporates 
sequential context directly into the representation, which can express finer relationships among the amino acids. 
The methods developed in this domain are generalized into a framework that suggests several systematic roles 
for domain knowledge in machine learning. Knowledge may define both a space of alternative representations, 
as well as a strategy for searching this space. The search results may be summarized to extract feedback for 
revising the domain knowledge. 

Keywords: domain knowledge, change of representation, theory revision, protein structure prediction, homol- 
ogy modeling, amino acid properties 

1. I n t r o d u c t i o n  

Studies  of  l ea rn ing  m e t h o d s  appl ied  to r ea l -wor ld  d o m a i n s  have  con t r ibu ted  a grea t  deal  

to the  field of  m a c h i n e  learn ing .  In this  paper,  we p resen t  a m a c h i n e  l ea rn ing  app roach  

to the  p r o b l e m  of  p ro te in  s t ructure  pred ic t ion .  The  resul t s  o f  this  in te r -d i sc ip l inary  

r e sea rch  con t r ibu te  d i rec t ly  to the  field o f  pro te in  science.  In addi t ion ,  we  will  d raw 

some  gene ra l i za t ions  for  m a c h i n e  learn ing ,  based  on the  t echn iques  we  deve loped  for  

this  domain .  

Pro te in  s t ructure  p red ic t ion  is an impor t an t  p r o b l e m  in biology.  Pro te ins  are encoded  

by  genet ic  s equences  in the  D N A  of  a cell. W h e n  a p ro te in  is syn thes i zed  in the  cell, 
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it folds into a complex, three-dimensional shape, or tertiary structure, which determines 
the biological function of the protein. In recent years there has been an increase in the 
rate at which the sequences of proteins are being determined (Watson, 1990). However, 
the structures of proteins are much harder to determine in a laboratory. To analyze 
the large volume of sequence data available, and to gain the deepest insights into the 
biological functions of various proteins, we need to develop new computational methods 
for predicting the structures of proteins from their sequences. 

One of the most successful approaches for global structure prediction to date has been to 
use homology modeling (Blundell et al., 1987). Homology modeling refers to the process 
of aligning the sequence of a protein whose structure is unknown to the sequence of a 
protein whose structure is known. If the quality of the sequence alignment (degree of 
match) is significantly high, then it may be assumed that the two proteins have similar 
structures. The use of homology modeling to predict the structure of a protein requires 
a protein database to provide sequences with which to compare. 

Protein structures fall into fairly distinct clusters of overall shape called fold classes 
(Pascarella & Argos, 1992). A database of protein structures can be thought of as a set 
of examples of known folds. Rather than actually returning the atomic coordinates for 
a matched protein as a structure approximation, it is sufficiently informative to identify 
the fold class of a protein (Subramaniam et al., 1992). 

Homology modeling is limited because some proteins that have the same fold do not 
have any apparent sequence similarity, which we call the "hidden-homology problem." 
Consequently, a set of proteins with similar structures may not constitute a sufficient rep- 
resentation of the fold. This results in under-utilization of protein databases because some 
potential fold relationships are not being recognized. Although it is unclear how many 
relationships among proteins are currently undetected, hidden homology may explain 
why there are so many sequences whose folds are unknown. 

In this paper, we treat fold-class prediction from protein sequences as a machine learn- 
ing problem. The use of homology modeling with a protein database can be thought of 
as a domain-specific learning method in which the database serves as a set of training 
examples. The hidden-homology problem causes poor learning performance in terms 
of accuracy. Our general goal is to use advanced machine techniques to improve the 
predictive accuracy in this domain. 

We suggest that protein fold-class prediction is a difficult domain for machine learning 
because the initial representation of protein sequences is "low-level." However, a consid- 
erable amount of knowledge is available regarding the physical and chemical properties 
of the constituents of protein sequences, called amino acids. While biophysicists are far 
from having a comprehensive theory of protein folding, they have acquired some general 
rules for the roles amino acids can play in determining protein structure (Dayhoff et al., 
1972; Richardson & Richardson, 1989). 

We take a systematic approach to improving the learning performance in this domain 
by applying this biophysical knowledge to change the representation of examples. We 
will show how various properties of amino acids can be expressed in a formalism based 
on partitions of the amino acids. Through the partition formalism, domain knowledge 
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can be used to suggest ways to re-represent protein sequences in terms of amino acid 
properties, rather than identities. 

A partition can capture many possible relationships among the amino acids based on 
various combinations of properties. Thus we propose a search framework for improving 
learning in this domain, in which the partitions define a search space. Each such partition 
may be evaluated by using it to re-represent a set of example sequences whose fold 
classifications are known, and then computing the effect on the accuracy of homology 
modeling within that set. The goal is to identify partitions that, when used to re-represent 
protein sequences, increase the accuracy of homology modeling. 

We present some results from a series of experiments using a particular set of example 
proteins to test the method for change of representation we have proposed in this domain. 
We show that this method can improve the accuracy of fold classification by discovering 
better representations for amino acid sequences. We also demonstrate how the search 
results can be summarized to extract refinements of the domain knowledge. 

Finally, we propose a major extension to the representation of amino acid sequences 
that takes sequential context into account. Biophysical knowledge suggests that there 
are multiple dimensions of similarity among the amino acids due to combinations of 
chemical and physical properties (Richardson & Richardson, 1989). While the initial 
partition formalism is limited in its ability to express multiple relationships, the roles an 
amino acid might be playing at a given site might be context-dependent (Overington et 
al., 1992). We present some initial results from incorporating properties of neighboring 
residues into the representation of each amino acid in a protein sequence to explore more 
subtle relationships among the amino acids suggested by our earlier results. 

The methods we develop to improve the accuracy of prediction in this domain can be 
generalized to improve machine learning in other difficult domains as well. Specifically, 
the framework we establish for searching for alternative representations can be applied to 
other real-world domains, especially where domain knowledge is available. This frame- 
work provides specific roles for knowledge to facilitate learning. Domain knowledge 
can define a space of alternative representations, and might be used to identify a search 
strategy for focusing on regions of the space that are likely to contain representations that 
improve predictive accuracy. The search can be guided by incremental improvements in 
the performance of the inductive algorithm as it is applied to a set of training example 
in various representations. 

One advantage of our search framework is that it not only specifies how knowledge 
may be incorporated into learning, but it also suggests how refinements of that knowledge 
might be extracted from the search results. The results produced by the search process 
can be analyzed to provide feedback for critiquing the initial knowledge based on utility. 
Thus this method for change of representation can also be seen as a semi-automated or 
interactive form of theory revision. In a real-world domain, such feedback can be as 
significant as gains in predictive accuracy. 
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Table 1. The 20 amino acids and their three-letter and one-letter symbols. 

alanine Ala A isoleucine Ile I arginine Arg R 
cysteine Cys C lysine Lys K serine Ser S 
aspartate Asp D leucine Leu L threonine Thr T 
glutamate Glu E methionine Met M valine Val V 
phenylalanine Phe F asparagine Asn N tryptophan Trp W 
glycine Gly G proline Pro P tyrosine Tyr Y 
histidine His H glutamine Gln Q 

2. Overview of Protein Structures 

Proteins are macromolecules produced by cells and used for a wide variety of biological 
functions (Stryer, 1988). These macromolecules are linear polymers of smaller com- 
pounds called amino acids or residues. There are 20 standard amino acids, each having 
a common part that contributes to the backbone of the protein, plus a unique chemical 
group called a side-chain. The names and common abbreviations of the amino acids are 
listed in Table 1 for convenience. Each protein consists of a unique sequence of amino 
acids and is typically 100 to 500 residues in length. 

There are several steps in the protein synthesis process (Stryer, 1988), the final stage 
of which is folding. Folding can take from milliseconds to several minutes, although the 
actual pathways are not well understood (Baldwin, 1989). Most proteins--at least soluble 
ones--fold into unique, globular (roughly spherical) shapes. White (1961) demonstrated 
that, after denaturation, proteins can re-fold into their original shapes in the absence of all 
other cellular components, which shows that the amino acid sequence alone is sufficient 
to determine the structure of a protein. 

Some of the forces that drive protein folding (see Dill, 1990) include enthalpies of non- 
covalent interactions (e.g. hydrogen bonding) and entropic effects related to solvation 
(e.g. the hydrophobic effect). Proteins do undergo shape changes due to thermal vibra- 
tions, as well as during substrate binding, but these dynamic effects span time and length 
scales that do not affect the global topology of proteins in their native state (McCammon 
& Harvey, 1987). 

The structure of a protein can be described at various levels of detail. The primary 
structure of a protein refers to its sequence of amino acids. Secondary structure is 
defined by the local conformations of each residue with respect to its neighbors (i.e. 
torsion angles for covalent bonds in the backbone, Schulz & Schirmer, 1979). Contiguous 
stretches of amino acids often form identifiable sub-structures called c~-helices and /3- 
sheets, connected by various kinds of loops and turns (Richardson, 1981). The global 
arrangement of these sub-structures is called the tertiary structure. Thus the globular 
shape into which a protein folds, which is precisely given by atomic coordinates, has an 
internal structure that is approximately specified by the path of the backbone. 

By studying the qualitative patterns among protein tertiary structures, Richardson 
(1981) identified a taxonomy of protein folds. Many of the proteins whose structures 
have been determined appear to cluster into groups that have the same overall shape, 
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defining fold classes (Pascarella & Argos, 1992). Proteins of a given fold often have sim- 
ilar functions and, where there is evidence that they are evolutionarily related, appear to 
have diverged from a common ancestor (Doolittle, 1981). However, other folds contain 
members that seem to be adapted for distinct purposes (Chothia, 1988), suggesting that 
they might have converged to one of a restricted set of allowable folds (Finkelstein & 
Ptitsyn, 1987). Based on the statistics of database growth, Chothia (1992) has estimated 
that only around 1000 folds are used in all biological systems, of which more than 100 
are already known. 

The amino acid sequences of proteins are now routinely determined by DNA sequenc- 
ing. However, the physical determination of protein tertiary structures is much more 
difficult. The two most common methods, X-ray crystallography and NMR spectroscopy, 
both require complex laboratory preparation, as well as computationally-intensive data 
analysis. As a consequence, tens of thousands of protein sequences are known; but the 
structures of only a few hundred proteins have been solved so far. 

Thus predictive methods are needed to compute the structure of a protein from its 
sequence. Several algorithms exist for predicting the local secondary structure of sites 
within a protein (Chou & Fasman, 1974; King & Sternberg, 1990; Qian & Sejnowski, 
1988). However, the results of these methods have generally not been assembled into 
global predictions of tertiary structure. Molecular dynamics simulations have been used 
to find atomic configurations of minimum energy (McCammon & Harvey, 1987). But a 
de novo simulation of folding is computationally intractable (Richards, 1992), so these 
methods are more often used for refining approximately-correct structures. In the next 
section, we discuss homology modeling as one of the most successful methods to date 
for predicting protein tertiary structure. 

3. Homology Modeling 

Homology modeling can be used to predict the structure of an unknown protein by 
aligning it with example proteins whose structures are known (Blundell et al., 1987). If 
the sequence of interest matches a known protein, it may be assumed to be in the same 
fold class, identifying its approximate structure. Thus, unlike molecular simulation of 
folding from first principles, homology modeling exploits databases of known structures, 
such as the Brookhaven Protein Databank (PDB, Bernstein et al., 1977), as examples of 
the complex relationship between protein sequence and structure. 

Because approximate structures are still highly informative of a protein's function, and 
can be further refined by energy minimization (Nell et al., 1992), homology modeling 
reduces the goal of structure prediction to the task of fold-class identification (Subrama- 
niam et al., 1992). This goal is much less complex than predicting atomic coordinates 
because there are many fewer degrees of freedom. Protein databases can be thought of as 
a set of examples for fold classes: the examples are described by amino acid sequences, 
and each sequence is labeled by its known fold class. 

The use of sequence alignment in homology modeling corresponds to an indexing 
mechanism for a protein database. A sequence whose structure is to be predicted is 
aligned with each example. If a significant match is found, its fold classification is 
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looked up and returned as the structure prediction for the query protein. Although this 
method cannot predict the structure of a protein for which there are no examples of the 
same fold in the database, the estimation of around 1000 total fold classes implies that 
protein databases should eventually converge upon a complete library (Chothia, 1992). 

3.1. Definitions of Sequence and Structure Similarity 

Sequence similarity is based on an alignment score. A sequence alignment establishes 
a correspondence between the amino acid residues in each sequence that preserves or- 
der but allows gaps. The gaps are assigned costs relative to the value of mismatches 
between residues (Gotoh, 1982; Fitch & Smith, 1983). Various algorithms exist to find 
an alignment of maximum score, which represents a globally optimal balance between 
the costs of amino acid mismatches and the costs of gaps (Needleman & Wunsch, 1970; 
Smith & Waterman, 1981). 

Alignment scores are relevant to protein tertiary structure prediction because they reflect 
evolutionary processes that cause protein structures to diverge. When two proteins evolve 
from a common ancestral gene, they accumulate independent mutations that distinguish 
their sequences. The most frequent kind of mutation is the replacement of one amino acid 
by another; insertions or deletions of amino acids can also occur (Stryer, 1988). The 
alignment score counts amino acid replacements through residue mismatch penalties, 
and it counts insertions and deletions through gap penalties. The accumulation of such 
differences in the amino acid sequences of two proteins contributes incrementally to the 
differences in their structures (Chothia & Lesk, 1986). 

A single alignment score by itself is not very informative because any two sequences 
can be aligned, generating some arbitrary score. For example, two sequences drawn 
randomly with replacement from an alphabet of 20 symbols could be expected to have 
around 5% similarity on average (without gaps). A common way of estimating the 
significance of a given alignment score is to compare it to a distribution of alignment 
scores between actual proteins with different structures (Doolittle, 1981). Proteins in 
different fold classes can have sequence alignment scores as high as 25% because of 
uneven frequencies of occurrence of the amino acids in biological systems (Sander & 
Schneider, 1991). If  the alignment of two sequences produces a score that is three or 
more standard deviations above this distribution, they can be assumed to belong to the 
same fold class (Lipman & Pearson, 1985). 

True structural similarity is formally measured by RMSD, the root mean square de- 
viation of the positions of corresponding backbone atoms in three-dimensional space 
(McLachlan, 1972). To compare the structures of two proteins, they must first be ro- 
tated relative to each other so that their internal structures overlap as well as possible. 
Then residues are assigned correspondences between the two structures, like a three- 
dimensional version of sequence alignment, and insertions, which often cause gaps in 
loop regions at the surfaces of a protein, are clipped out. Each amino acid in a protein 
has a reference point called the Ca atom; distances between these atoms in corresponding 
residues of the aligned structures are used to compute the RMSD. 
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Although it is more difficult to estimate the significance of a structural similarity score, 
observations of known protein structures suggest that two proteins with an RMSD value 
of less than around 3.0~t belong to the same fold class. Pascarella and Argos (1992) 
used such criteria to cluster 254 of the protein structures in the PDB into 83 distinct 
classes, including 38 folds with multiple examples. 

Chothia and Lesk (1986) have demonstrated that the measures of sequence and structure 
similarity are correlated. They found that RMSD fits an exponential function of the 
alignment score over a wide variety of proteins. This observation establishes the principle 
that proteins with similar amino acid sequences have similar structures, which is the basis 
for homology modeling. 

3.2. The Hidden-Homology Problem 

The primary limitation of homology modeling is that, while proteins with similar se- 
quences always have similar structures, the converse is not true. Proteins with similar 
structures do not always have significantly high alignment scores. For example, mande- 
late racemase and muconate lactonizing enzyme have only 26% amino acid identity in 
their sequences, which was not significant enough to indicate any relationship a priori. 

But when their structures were solved, they were observed to have an RMSD of only 
1.3_~, and both belong to the/3-barrel fold class (Neidhart et al., 1990). 

We call this limitation the "hidden-homology problem." Hidden homology can cause 
some fold relationships to not be detected during homology modeling with a database. 
A particular protein might indeed belong to a known fold class, but its alignment to all 
examples could be too low to signal a match. Figure 1 illustrates the effect that hidden 
homology can have on the use of homology modeling for fold-class prediction. The 
consequence of this limitation of homology modeling is that protein databases are likely 
being under-utilized. 

Although it is unclear how pervasive this problem is, there are many sequences whose 
structures remain unknown. Hidden homology implies that these proteins cannot reliably 
be excluded from known folds just because sequence similarity with known examples 
is low. Doolittle (1986) has called sequence alignment scores less than around 25% 
the "twilight zone" because such scores can neither be used to include nor exclude a 
sequence from a given fold class. 

A variety of approaches have been taken to extend homology modeling to cases where 
structurally similar proteins have low sequence similarity. One approach has been to 
use partial match scores in alignments to reward mismatches that are more commonly 
observed as substitutions between related proteins (Schwartz & Dayhoff, 1978). Another 
approach has been to thread the sequence of the unknown protein into the structure of 
the known protein and evaluate the fit by various criteria (Jones et al., 1992). Multi- 
ple examples of a fold class may be used to construct a statistical profile with which 
alignments can be made (Gribskov et al., 1988). Finally, symbolic approaches such as 
ARIADNE (Lathrop et al., 1987) and PIMA (Smith & Smith, 1990) attempt to derive a 
consensus pattern from multiple sequences. 
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space of proteins space of fold- 
(amino acid sequences) classifications 

(symbols) 

@@ml ..... II 

known fold classification 

predicted fold classificatior 

fold relationship which coul6 
not be recognized 

Figure 1. The effect of the hidden-homology problem on fold-class prediction. Using homology modeling, 
the fold of one of the helix-bundle proteins is predicted to be the same as that for its nearest neighbor (dotted 
line). However, hidden homology causes a failure to recognize one of the members of the globin fold (wavy 
line). Although this protein belongs to the class, the relationship cannot be recognized because the protein's 
sequence is so different from the other examples of this fold, and is nearly equally as distant to members of 
other folds. 

Table 2. Components of an abstract model of machine learning, their in- 
stantiation for protein fold-class prediction, and examples from this domain. 

Component  Instantiation Examples 

objects proteins 

descriptions amino acid sequences 
classifications folds 

inductive algorithm nearest-neighbor 

human alpha hemoglobin, 
bovine serum albumin... 
Met-Ala-Glu-Leu-... 
helix-bundle, cytochrome, 
Ca-binding domain... 
homology modeling 

4. Protein Fold-Class  Predict ion as a Machine  Learning Problem 

Protein fold-class prediction can be treated as a machine learning problem (Subramaniam 
et al., 1992). Machine learning problems often consist of  a space of  objects described 
in some language, and a classification of those objects into subsets (Michalski, 1983). 
Typically the goal is to use an inductive algorithm to draw generalizations from a set of 
pre-classified training examples so that classification of  unseen test cases is more accurate 
than guessing. 

Table 2 shows how these abstract components of  machine learning are instantiated 
in the fold-class prediction domain. The objects in this domain are proteins, the space 
of  descriptions consists of  amino acid sequences, and fold classes divide the instance 
space into subsets. Homology modeling can be thought of  as the inductive algorithm 
for protein fold-class prediction, with the protein database acting as a set of training 
examples. Because examples are explicit ly saved for comparison during prediction tasks, 
homology modeling is a kind of nearest-neighbor, instance-based learning (Aha et al., 
1991). The sequence alignment score between pairs of instances serves as the distance 
metric in this space. 
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Table 3. Major exchange groups of amino acids, based on the pairwise substitution fre- 
quency data collected by Dayhoff et al. (1972), and the properties they identify. For the 
convenience of this paper, abbreviations of the properties are also given. 

amino acids property abbrev. 

MET, ILE,LEU,VAL large-and-hydrophobic hyp 
PHE,TYR,TRP aromatic aro 
LYS,HIS,ARG positive pos 
ALA,CYS,ASP, GLU,GLY, AS N,PRO,GLN,SER,THR small sml 

We suggest that protein fold-class prediction is difficult for machine learning specifi- 
cally because the initial representation in this domain is too low-level with respect to the 
algorithmic bias (Mitchell, 1980). The amino acid identities in protein sequences are too 
detailed, causing homology modeling to fail to recognize fold relationships. 

However, an important technique in machine learning is to change the representation to 
better match the algorithmic bias (Michalski, 1983; Utgoff, 1986). One specific method 
for change of representation is feature construction (Matheus, 1989). Feature construction 
cannot be applied directly to the protein structure-prediction domain because examples 
are not represented as fixed-length feature-vectors. The variable-length sequences do 
not allow features to be uniquely identified in terms of sequence elements. Instead, our 
approach is to uniformly change the set of symbols used in protein sequences to reflect 
amino acid properties. 

5. Change of Representation for Protein Fold-Class Prediction 

The identities of amino acids in a protein sequence are over-specific for fold-class pre- 
diction; evolutionarily-related proteins have the same fold, but differ in their primary 
sequences at various positions. However, it has been observed that amino acid differ- 
ences tend to fall into patterns according to certain physical and chemical properties. 

These patterns have been quantified by Dayhoff et al. (1972), who analyzed substitution 
frequencies between pairs of amino acids found at the same positions in evolutionarily- 
related proteins. The substitution frequencies revealed several prominent subsets of amino 
acids called exchange groups, listed in Table 3. The distribution of amino acids found 
at any given site among similar proteins typically falls within only one of the exchange 
groups. 

The exchange groups can be interpreted according to the notion that members within a 
group share a set of chemical and physical properties that are not common to members of 
other groups (see Table 3). These properties are relevant to protein structure prediction 
because they participate in the local smacture around each residue. For example, some 
residues have polar side-chains that can form hydrogen-bonds. Other residues are small, 
so they can pack into crowded pockets. 

Taylor (1986) proposed an extended list of eight properties--aliphatic, hydrophobic, 
aromatic, polar, charged, positive, small, and tiny--that define interesting subsets of 
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amino acids. Based on our knowledge of biophysics, any of these properties could po- 
tentially be playing a structural role at a given position in the three-dimensional structure. 
Richardson and Richardson (1989) have given detailed descriptions of the amino acids 
in terms of properties such as constraint on backbone flexibility, degrees of freedom in 
the side-chain, occurrence of particular chemical subgroups, and frequency with which 
these amino acids participate in or alter certain secondary structures. Factor analyses of 
163 properties of amino acids have demonstrated the primary importance of bulk and 
hydrophobicity (Kidera et al., 1985). 

The relationships among the amino acids, defined by their properties, have often been 
used in ad hoc ways to justify alignments of protein sequences in regions where there 
is little amino acid identity. The properties mentioned above have also been used to 
generalize a set of sequences that belong to the same fold class (Lathrop et al., 1987; 
Smith & Smith, 1990). However, these properties have rarely been used to systematically 
re-represent individual protein sequences to improve the accuracy of fold-class prediction. 

To formalize this domain knowledge in a way that can be applied to the represen- 
tation of protein sequences, we initially propose the construction of a partition of the 
20 amino acids. A set of mutually exclusive subsets suggested by Dayhoff's exchange 
groups is {{MILV}{HRK}{FWY}{ACDEGNPQST}}, which we call the "Dayhoff par- 
tition." This partition simultaneously expresses the properties listed in Table 3, and their 
abbreviations can be used as class names. 

A partition can be used to re-represent a protein sequence by transforming each amino 
acid in the sequence into its class name. For example, a sequence such as Met-Lys-Ala... 
would become hyp-pos-sml.., after the Dayhoff partition is applied. 

Such a re-representation can have a significant effect on homology modeling. If pairs 
of sequence are re-aligned after being transformed, many more local matches will occur, 
even between proteins with different structures. However, proteins that belong to the 
same fold class must have similar sequences of properties in order to fold into similar 
structures. Because their amino acids are constrained to fulfill similar roles, this new 
representation may produce an additional increase in local matching between proteins in 
the same fold class. 

Thus this method for re-representing protein sequences better matches the bias in the 
alignment algorithm and could facilitate the recognition of fold-class relationships. The 
Dayhoff partition seems be a good intermediate-level representation, exposing features 
relevant to protein structure (amino acid properties) while masking insignificant details 
(amino acid identities). 

However, there is some uncertainty in the background knowledge in this domain about 
which properties are most important. Dayhoff et al. (1972) remarked that classifications 
of some amino acids is difficult because it is unclear to which group they most belong. 
This phenomenon is caused by the fact that amino acids have multiple properties, defining 
orthogonal dimensions of similarity. For example, threonine is like serine because they 
both contain a hydroxyl group, but it is like valine in shape. 

This uncertainty in domain knowledge suggests a whole space of possible representa- 
tions. The partition formalism can be used to express many alternative group definitions. 
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For example, if a given partition classifies threonine as a polar residue, then there exists 
a variant of this partition in which threonine occurs in the class containing valine. 

Because any of these partitions may be applied to transform a protein sequence, the 
set of all possible partitions of the 20 amino acids defines the space of representations 
that are alternatives to using amino acid identities. In the following section, we show 
how to search this space to find representations that improve the accuracy of fold-class 
prediction. 

However, the partition formalism is ultimately limited in expressive power; because 
groups of amino acids cannot overlap, a partition cannot capture the multiple dimensions 
of similarity. In fact, even Dayhoff's tables of pairwise substitution frequencies average 
together the effects of all the various roles amino acids can play. Domain knowledge 
suggests that these effects might be context-dependent, since the properties of an amino 
acid generally interact with neighboring residues to define the local environment. In sec- 
tion 6.3, we will show how this knowledge can be used to extend the partition formalism 
to incorporate context information directly into the representation. 

6. Experiments and Analysis 

In this section, we apply several search techniques to explore the space of representations 
constructed from partitions of amino acids. We take the Dayhoff partition as a starting 
node since domain knowledge suggested that it expresses relevant amino acid properties. 
First we compare this representation to the original amino acid identities, which can be 
thought of as a "null" partition with 20 singleton classes. 

To evaluate these two partitions, we used a data set Consisting of the 179 proteins 
shown in Table 4, classified into 35 folds by Pascarella and Argos (1992). The sequences 
themselves were taken from the Brookhaven Protein Databank (PDB, Bernstein et al., 
1977), and sub-sequences and/or chains were extracted where specific domains were 
required. 

The accuracy of homology modeling was estimated within this data set by computing 
alignment scores for each pair of sequences. For these experiments, we define the 
accuracy of homology modeling to be the frequency with which the sequence most 
similar to each sequence is in the same fold class. 

We implemented a space-efficient, quadratic-time sequence-alignment algorithm by 
Myers and Miller (1988) on a Connection Machine (CM-5) to do all 15,931 pairwise 
alignments within our data set in parallel. Based on the recommendations of Fitch and 
Smith (1983), we used the following affine gap penalties: +1 for match, 0 for mismatch, 
-3 to open a gap, and -0.1 to extend a gap by each extra amino acid. Informal testing 
revealed little sensitivity of our results to the specific values chosen for these parameters. 
Because alignment scores are proportional to length, each score was normalized by 
dividing it by the minimum of the lengths of the two sequences being aligned. 

The baseline accuracy of fold-class prediction by homology modeling within our data 
set when protein sequences were represented by their original amino acid identities was 
77.7%. However, when the sequences were transformed by the Dayhoff partition and 
the pairwise alignment scores were re-computed, the accuracy dropped to 56.4%. This 



162 T.R. IOERGER,  L.A. RENDELL AND S. SUBRAMANIAM 

Table 4. The data set used for the experiments in this paper. The fold classifications 
are taken from Pascarella and Argos (1992), and sequences are given by their PDB 
names (Bernstein et al., 1977). Optional chain and sequence limits are indicated in 
parentheses where domains were specified. 

fold sequences 

256B 
AC-PROT 

BARREL 
BINDING 
CARBONIC 
CA-BIND 
GCR 
CYTB 
CYTC 
CYT3 
DFR 
EGLIN 
FAD-NADH 
FCX 
GLOBIN 

HLA-A2 
IGB 

IL 
INHIBIT 
LTN 
LZM 
NBD 

PLIPASE 
KINASE 
PLASTO 
RDX 
REPRESSOR 
RHD 
SBT 
S-PROT 
TOX 
VIRUS 

VIRUS-PROT 
WGA 

XIA 

2ccy(A),256b(A) 
lcms(l-175),lcms(176-323),4ape(2-174),4ape(175-323), 
2apr(l-178),2apr(179-325),4pep(1-174),4pep(175-326) 
2taa(A), 1 wsy(A), 1 tim(A), 1 gox, 1 ypi(A), 1 fcb(A: 100-511 ) 
21iv,21bp,2gbp 
1 ca2,2cab 
3 cln,5 cpv,3icb,4tnc,5tnc 
2gcr(1-39),2gcr(40-86),2gcr(87-127),2gcr(128-173) 
1 fcb(A: 1-99),3b5c 
45 lc, lccr, lcyc,5cyt(R),3c2c, 155c(1-122) 
lcy3,2cdv 
3 d fr,4d fr(A);8dfr, 1 dfh(A) 
lcse(I),2ci2(I) 
1 phh,3 grs ( 18-161 ), 3grs( 186-294) 
3 fcx, 1 ubq 
4hhb(A),4hhb(B),2mhb(A),2mhb(B),l fdh(G),l mbd,lmbs, 
21hb, leca,21hl,lpmb(A),l mba 
3hla(A: 1-90),3hla(A:91-182) 
2fb4(L:l-109),2fb4(L: 110-214),2fb4(H:l- 118),2fb4(H:119-221), 
2fbj(L: 1 - 106),2fbj(L: 107-213),2fbj(H: 1-118),2fbj(H: 119-218), 
1 mcp(L: 1 - 113 ), 1 mcp(H: 1 - 122), 1 rei(A),2rhe,2hfl(L: 1-105), 
2hfl(H:l - 116),2hfl(H:l 17-213), I cd4,3hla(A:183-270), 
3hla(B: 1-99),4fab(L: 1-112),3hfm(L: 1-108),lmcw(W) 
lilb(3:51),lilb(50:107),lilb(108-153) 
1 tgs(1),3sgb(I),2ovo, 1 ovo(A) 
3cna,21m(A:l- 108),21m(A: 109-181),21m(B: 1-47) 
31zm,21zt,21z2,1 lz 1,1 alc 
4mdh(A),21db, lldm,51dh, lldx, lllc,8adh,3gpd(R),lgpd(G), 
1 gpd 1 (O), 1 fx 1,4fxn,2sbt,3 adk, 8atc 
lpp2(R),lbp2,lp2p 
lpfk(A),3pfk 
2paz, 1 azu,2aza(A),7pcy 
4rxn, lrdg,6rxn 
lr69,2cro 
lrhd(l- 146),lrhd(152-293) 
1 cse(E), 1 sbt, 1 tex(X),2prk 
1 ton,2ptn,2trm,4cha(A),3est, 1 hne(E), 1 sgt,2sga,3sgb(E),2alp 
2abx(A), 1 nxb, I ctx 
4rhv(1),4rhv(2),4rhv(3),4sbv(A),2mev(1),2mev(2),2mev(3), 
2tbv(A),2stv,2plv(a),2plv(2),2plv(3), lr  1 a(1), 1 rla(2), lr 1 a(3) 
3hpv,2rsp(A) 
7wga(A: 1-43),7wga(A:44-86),Twga(A:87-129),7wga(A: 130-171), 
9wga(A: 1-43),9wga(A:44-86),9wga(A:87-129),9wga(A: 130-171) 
4xia(A),3xia 
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Table 5. During each iteration, our direct hill-climbing program generated and 
evaluated all possible perturbations of the current best partition, starting with the 
Dayhoff partition. The one that produced the greatest increase in accuracy was 
selected as the basis for the next iteration. After three iterations, no further im- 
provements were possible. This table shows the evolution of the partition. 

iteration accuracy partition 

(Dayhoff) 56.4 ( {MILV} {FYW} {HRK} {ACDEGNPQST} } 
1 72.1 { {MILV} {FYW) {HRK) {ADEGNPQST} {C} } 
2 77.1 { {MILV} {FYW} {HRK) {ADEGNPST} {C} {Q} } 
3 77.7 { {M1LV} {FYW} {HR]- {ADEGNPST} {C} {QK} ~} 

result is-somewhat surprising in light of the intuitive relevance of Dayhoff ' s  amino acid 
groupings to protein structure. 

Some of the classifications of  amino acids in this particular partition are questionable, 
however. Another partition may group amino acids together in a better way. Other nodes 
in this space may be constructed by swapping an amino acid from one class to another. 
When two partitions differ only in the class membership of a single amino acid, we 
define this as a perturbation. 

To search for partitions that increase the predictive accuracy when applied as a repre- 
sentation, we implemented a program to hill-climb through this space (Winston, 1984), 
starting from the Dayhoff  partition (see Table 5). Given that each of the 20 amino acids 
can be swapped from its initial class to one of three others, or possibly to a new unique 
class, there are 80 perturbations of  the Dayhoff  partition. Our program generated each of 
these variant partitions and evaluated them by their effects on the accuracy of fold-class 
prediction. The best change in representation was found to be the one in which cysteine 
was split out of the small class into its own singleton class. This revision increased ac- 
curacy from 56.4% to 72.1%. The uniqueness of  cysteine was also observed by Dayhoff  
et al. (i972), and makes biophysical sense because it is the only amino acid that can 
form disulfide bridges (Richardson & Richardson, 1989). 

In the next iteration of hill-climbing, our program split glutamine out of the small class 
into its own class, increasing the accuracy to 77.1%. This result is rather unexpected 
because glutamine shares properties with several other members  of  the small group. 
Specifically, glutamine contains a polar amide group like asparagine, and is roughly 
the same shape as glutamate. The uniqueness of glutamine might be explained by its 
particularly flexible and polar side-chain (Richardson & Richardson, 1989). 

The third hill-climbing step our program took was to split lysine out of  the positive 
class into the new class containing glutamine, which brought the accuracy back up to 
the baseline for using amino acid identities: 77.7%. The partial similarity between the 
hydrophobic methylene groups in lysine and glutamine supports the above explanation, 
despite their differences in size and absolute charge. After three iterations, hill-climbing 
halted because no perturbation of the final partition improved the accuracy. 
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Figure 2. Accuracy of fold-class prediction for different amounts of search, based on homology modeling 
within our 179-protein data set. Each data point is an average over 10 runs of 10-fold cross-validation; the 
standard errors were too small to be displayed (less than 1%). The starting representation (0 iterations) was the 
Dayhoff partition. For comparison, the line marked "amino acid identities" is the baseline accuracy achieved 
by using the original representation of the protein sequences. A data point was computed for 200 iterations, 
but is not shown here because it did not increase the accuracy over the 100-iteration score. 

6.1. Searching Through Partitions 

Since direct hill-climbing terminated after only three iterations, we devised a related 
search technique, implemented in a second program, to explore more nodes in the search 
space. At  each step, a random perturbation was generated by swapping some amino acid 
from its current class to another class, or to a new singleton class with 20% probability. 
I f  this perturbed partition increased accuracy at all, it was selected as the basis for the 
next iteration. This technique allows sub-optimal steps to be taken, which may help the 
search to avoid dead-end paths due to local maxima. 

Because of the randomness in the algorithm, the effectiveness of  this search had to 
be evaluated over multiple paths. Thus our second program averaged the improvement 
in accuracy resulting from a given number of iterations over 10 independent runs. In 
addition, 10-fold cross-validation was used to guard against overfitting. 

Figure 2 shows tile relationship between the number of iterations of  search and the 
accuracy of  fold-class prediction when the resulting partitions were used to transform 
example sequences into new representations. After 100 iterations, the program had 
improved the accuracy from 56.4% (for the Dayhoff  partition) to 74.8% (on average; the 
standard error for each data point was around 0.5%). The improvement leveled off at 
this point; even with 200 iterations of  search, the program did not reach a significantly 
higher accuracy on average (data not shown). 

Although this search did not surpass the baseline accuracy (77.7% for amino acid iden- 
tities) on average, the program did generate some individual partitions that were in fact 
better representations. The single best partition discovered was: {{MILV}{KRF}{APT} 
{CQN}{SW}{D}{E}{G}{H}{Y}}.  On the entire data set, the accuracy of fold-class 
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Table 6. The 11 best partitions after 100 iterations of search. 

accuracy partition 

81.0 
80.5 
79.9 
79.9 
79.9 
79.3 
79.3 
79.3 
79.3 
79.3 
79.3 

{ {MILV} (Y} {KRF} {APT} {CQN} {SW} (D} {E} {G} {H} } 
{ {MILV} {FWY} {HS} {AT} {EQ} {N} {O} {K} {CP} {R} {D} } 
{ {MILV} {FWY} {HKP} {DNST} {A} {E} {GQ} {C} {R} } 
{ {MILVW} {CF} {KQRY} {HNST} {P} {E} {AG} {D} } 
{ {MILV} {FWY} {KQR} {ADNST} {P} {C} {EG} {H} } 
{ {MILV} {NWY} {HR} {AKS} {DEQ} {G} {C} {F} {T} {P} } 
{ {MILV} {FWY} {HKPR} {EST} {GN} {C} {A} {D} {Q} } 
{ {MILVW} {Y} {AHKR} {DNST} {E} {G} {F} {P} {C} {Q} } 
{ {MILV} {FWY} {HI(R} {ADNQST} {P} {G} {E} {C} } 
{ {MILV} {FY} {HKQR} {AENPST} {D} {G} {C} {W} } 
{ {MIL} {FWY} {DKR} {AEST} {H} {G} {C} {N} {q} {P} {V} } 

prediction resulting from using this partition of amino acids as a representation in protein 
sequences during homology modeling was 81.0%. 

This partition is interesting because it satisfies some generally accepted rules of protein 
structure, but breaks others. The hydrophobic class remains intact. Glutamine and 
asparagine, which are in the same class, both have amide groups. And alanine, proline, 
and threonine are all relatively hydrophobic. However, the aromatic class is split up and 
the positive class includes phenylalanine. Because this partition is so much better for 
homology modeling than the Dayhoff partition, the meanings of these novel relationships 
need to be explored. 

6.2. Analyzing Search Results 

At the end of 10 runs of 10-fold cross-validation, the search had produced 100 indepen- 
dently improved partitions. When used to re-represent protein sequences, these partitions 
produced fold-class prediction accuracies ranging from 72.1% to 81.0% (measured over 
the whole data set). Table 6 shows the 11 best partitions, all of which had accuracies 
greater than 79.0%. Several patterns emerge. The hydrophobic residues appear to be 
relatively stable as a class, whereas the small class is significantly fractured. Glutamine 
appears with lysine'in three of the 11 partitions, which is consistent with the results of 
hill-climbing discussed above. 

By examining the patterns of amino acid relationships in all 100 improved partitions, 
we were able to extract refinements of the initial domain knowledge. The first step in 
analyzing this data was to compute the frequencies with which each pair of residues was 
found in the same class. As expected, hydrophobic residues were found to be in the 
same class most often; each of the six pairs within this set of four residues was found 
to occur in the same class in at least 88 of the 100 partitions. Similarly, the positive and 
aromatic groups were clearly defined by the pairwise frequencies of members of these 
groups to be found together in the 100 partitions, while other amino acids tended not to 
associate with them. 
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The class of small residues was least well-defined. Interestingly, six of the original ten 
residues formed a fairly clear subgroup consisting of alanine, aspartate, serine, glutamate, 
asparagine, and threonine. Thirteen of the fifteen pairs within this subgroup were found 
to be associated in the partitions more frequently (at least 40% of the time) than any 
pair formed by a group member and a non-group member. Thus we take this subset of 
amino acids as the core definition of the small group: {ADENST}. 

Our second step in analyzing this data was to compute the frequency with which 
specific amino acids associated with the original amino acid groups. Since the classes in 
the Dayhoff partition (see Table 3) might have been altered due to perturbations during 
search, we identified representatives of these groups of residues by classes that contained 
a majority of them. For example, a class such as {KRF} is a surrogate positive group 
because it contains two of the three original positive residues from {HRK}. Any class 
that contained four or more of the six core small residues was considered to represent 
the small class. 

Given this method for identifying representatives of the original Dayhoff groups in 
arbitrary partitions, we collected the frequencies with which each amino acid was found 
in each of these groups among the 100 perturbed partitions (see Figure 3). Occasionally 
an amino acid occurred in a group that did not appear to represent any of the original 
classes. A significant number of these cases were accounted for by amino acids in their 
own singleton classes. Thus the histograms also show scores for both unique classes and 
unanalyzable cases. 

These histograms can be interpreted as preferences for the amino acids to express 
certain properties, and can thus be considered as refinements of the initial knowledge. 
For example, the strong hydrophobicity of methionine, leucine, valine, and isoleucine 
is apparent. Although not all researchers include methionine in the hydrophobic group 
because it has a polar sulfer atom (Taylor, 1986), these results show that, for the purposes 
of homology modeling, methionine definitely belongs in this group. Similarly, some 
researchers include histidine in the aromatic group (Taylor, 1986). However, this data 
shows no preference for histidine to associate with the aromatic group. 

Subtle patterns emerge in comparisons of the histograms between similar amino acids. 
For example, the greater hydrophobicity of threonine over serine is evident. And of the 
aromatic residues, tryptophan is most hydrophobic, while tyrosine is least hydrophobic. 

Perhaps the most. interesting aspect of these histograms is the propensity of cysteine, 
glycine, proline, and glutamine to split out of the class of small residues into their own 
singleton classes. There are clear reasons why three of these four residues should be 
considered unique. Cysteine can form disulfide bonds, glycine allows extra flexibility 
in the protein backbone, and proline restricts the backbone torsion angles (Richardson 
& Richardson, 1989). However, glutamine seems to share many properties with other 
residues in the small class, and, as in the hill-climbing experiment above, its uniqueness 
is unexpected. 

Overall, our results generally follow the patterns of amino acid relationships expressed 
in the original Dayhoff partition, except for the refinement of the small class of residues. 
The fact that four unique residues were split out of this group de-emphasizes the signif- 
icance of smallness as a property for homology modeling. The most general partition 
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Figure 3. Histograms of the group preferences for each of the amino acids, summarizing the frequencies 
of association between each amino acid and representatives of the Dayhoff groups among the 100 perturbed 
partitions. The column letters represent amino acid groups: H=hydrophobic, A=aromatic, P=positive, S=small, 
U=unique, and ?=unanalyzable. 
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suggested by these analyses is {{MILV}{HRK}{FWY}{ADENST}{C}{G}{P}{Q}}, 
and its accuracy is computed to be 77.1%, which is just below the baseline accuracy for 
using amino acid identities (77.7%). 

Thus our method for using domain knowledge to construct and search a space of 
alternative representations has not only improved the accuracy of fold-class prediction 
(from 77.7% to 81.0% on our data set), but analysis of the search results has suggested 
an important revision of the domain knowledge. Future work will include searching for 
refinements of other amino acid groups, further exploration of the best partitions (e.g. 
those in Table 6), and an analysis of the sensitivity of these results to the particular data 
set we used for these experiments. 

6.3. Context-Dependence of Amino Acid Relationships 

While partitions can capture many variations of amino acid groupings, they are funda- 
mentally limited in expressive power. Because groups of amino acids cannot overlap, a 
commitment must be made as to the group membership for each amino acid, Thus this 
formalism cannot exploit the multiple dimensions of similarity among the amino acids 
which arise from their variety of properties. This is another possible explanation for why 
the Search procedure introduced in Section 6.2 did not surpass the baseline accuracy on 
average (see Figure 2). 

However, domain knowledge suggests that the various roles an amino acid can play 
might be context-dependent. Because an amino acid usually participates in determining 
the local structure by interacting with nearby residues, the property that is playing a 
structural role at a given site might be related to the properties of neighboring amino 
acids (Overington et al., 1992). 

We propose that, by extending the representation of amino acid sequences to take 
sequential context into account, the expressive power can be increased to capture finer 
relationships among the amino acids. We can construct new sequence elements by taking 
the cross-product of the central amino acid at each site with the properties of the amino 
acids surrounding it. This transforms each amino acid symbol in the sequence into a 
specialized case that depends on its context. 

An example of this method of re-representing protein sequences is to include the 
hydropathicity of tl~e two closest neighbors for each amino acid. Thus an alanine in the 
context of a particular site in a particular sequence, can really be one of four distinct cases: 
alanine surrounded by two hydrophobic residues, alanine surrounded by two hydrophilic 
residues, alanine with a hydrophobic N-terminal neighbor and a hydrophilic C-terminal 
neighbor, and alanine with a hydrophilic N-terminal neighbor and a hydrophobic C- 
terminal neighbor. 

For brevity, we use an extended set of sequence symbols, such as (i ala i), (o ala o), 
(o ala i), and (i ala o), where 'i' stands for hydrophilic and %' stands for hydrophobic. 
These symbols replace single amino acids in a protein sequence. For example, the 
sequence ...His Lys Ala Leu Arg... would become ...(? his i) (i lys o) (i ala o) (o leu i) 
(o arg ?) .... We take the following amino acids to be hydrophobic for our experiments: 
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{MILVAFGP}, and we assume that terminal residues are adjacent to one extra hydrophilic 
residue. 

Because each sequence initially gets transformed from an alphabet of 20 amino acids to 
an alphabet of 80 context-based symbols, the elements of the partitions must be multiplied 
into this many cases as well. For example, if one of the classes in a partition is {MILV}, 
the corresponding class in the extended partition would be {(o met o) (i met i) (o met 
i) (i met o) (o ile o) /i ile i) (o ile i) (i ile o) (o leu o) (i leu i) (o leu i) (i leu o) (o 
val o} (i val i) (o val i) (i val o)}. 

The advantage of this representational extension is that amino acids in different contexts 
can be swapped independently into different classes. So if threonine acts like valine in 
a hydrophobic context, but otherwise tends to exchange with serine, then (o thr o) can 
be placed in the class with the symbols for valine, while the other three cases can be 
grouped with the symbols for serine. Thus the expressive power has been increased to 
capture more subtle relationships among the amino acids. 

To explore the utility of our proposed extension to the representation of amino acid 
sequences, we first formed the context-based extension of the revised Dayhoff partition 
(with the four unique residues split out of the small class; accuracy still 77.1%). Then we 
wrote a program to construct a restricted set of perturbations of this partition by allowing 
any combination of the context-dependent cases for a particular residue to distribute 
among a set o f  alternative classes. 

We used this program to test the context-dependence of the role of glycine, which the 
histograms in Figure 3 suggest is both small and unique. The program generated 16 
partitions based on whether each of the four extended symbols for glycine was placed 
in the small class or the unique class for glycine. By evaluating each of these partitions, 
our program found the best representation for homology modeling to be when only (i 
gly o} was grouped with the small residues. This increased the accuracy by more than 
one percentage point to 78.2%. 

Similarly, we used this search procedure to explore the context-dependence of the rela- 
tionship between glutamine and lysine. Our direct hill-climbing procedure (see Table 5) 
placed glutamine in its own class, and then swapped lysine into this class, suggesting that 
they often play a common role in protein structures. We used our context-based search 
program to construct the 16 variant partitions in which the symbols for glutamine were 
distributed independently between the positive class and the unique class for glutamine. 
Our program found that the best grouping was to place (i gln o} and (i gln i) with 
the symbols for lysine in the positive class, increasing accuracy to 79.3% (an improve- 
ment of more than 2% over the accuracy for the revised Dayhoff partition). This result 
suggests that glutamine behaves like a positive residue when its N-terminal neighbor is 
hydrophilic. 

These initial results are promising because they demonstrate that significant improve- 
ments in accuracy can be achieved with the more expressive representation. Because 
contextual information is incorporated directly into the representation of sites in a pro- 
tein, this extended representation can capture multiple dimensions of similarity among 
the amino acids. 
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Figure 4. An abstract framework for searching for representations to improve machine learning performance. 
At the lowest level is a performance element which is doing induction in the domain. At the highest level, 
knowledge suggests a space of alternative representations. At the intermediate level, search in conducted 
through this space. Representations are evaluated by transforming a database of training examples and es- 
timating the accuracy of prediction..Finally, the results of the search can be used as feedback to refine the 
high-level domain knowledge. 

However, the best context-based partition that combined the two above results, placing 
(i gly o) in the small class and <i gin o> and (i gin i) in the positive class, only produced 
an accuracy of 77.1%. The lack of  additivity suggests that there are more complex 
interactions in this extended space of  representations, which might necessitate a more 
sophisticated search strategy. Future work will include the of use a genetic algorithm to 
search several paths in parallel (Holland, 1975). 

7. Discussion 

In this paper, we have presented a specific method for improving protein fold-class 
prediction by re-representing protein sequences in terms of amino acid properties. A 
generalization of this technique can be applied to improve machine learning in other 
difficult, real-world domains. In this section, we propose an abstract framework for using 
domain knowledge to search for representations that improve learning performance. 

Our framework has several components, depicted in Figure 4. At the lowest level is 
standard induction. 'We assume the domain has been sufficiently formalized to identify 
objects to be classified (Michalski, 1983). The language for describing training examples 
constitutes the initial representation of  objects. Furthermore, we assume there is an 
established technique for making predictions, whether it is a domain-specific method or 
some standard learning algorithm that achieves the best accuracy in the domain to date. 

The highest level of  our framework consists of domain knowledge. The knowledge 
does not have to be encoded in any particular form, such as a Horn-clause theory. How- 
ever, the knowledge must be applicable to the representation. Our framework requires 
domain knowledge to suggest ways in which the representation of examples can be ex- 
tended. The closure of  all potentially relevant extensions to the representation defines a 
space of  alternatives to the initial language for describing examples. 
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The middle level of our framework mediates between the domain knowledge and 
induction. This level consists of a search engine for exploring the space of alternative 
representations suggested by the domain knowledge. Domain knowledge is also needed 
to select a search strategy. For example, the relative uncertainties of pieces of knowledge 
used to construct the search space can suggest which regions are most likely to contain 
an improved representation, and hence should be searched first. 

After the search strategy selects a particular representation as a node in the search 
space, it is evaluated using the inductive component. The representation is applied to a 
set of training examples, and the accuracy of prediction is estimated by cross-validation 
using the re-represented database. 

This search framework abstracts our approach to improving protein fold-class predic- 
tion. At the lowest level, homology modeling represents the inductive algorithm. At the 
highest level, domain knowledge suggests that partitions of amino acids :might capture 
relationships among the amino acids that are relevant to protein structure prediction. 
The set of partitions defines a space of alternative representations to be searched, and 
several versions of hill-climbing were tried in our experiments. When a partition was 
constructed during search, it was applied to re-represent a set of example sequences, and 
the partition was evaluated according to the resulting accuracy of homology modeling. 

This framework can also be applied to other difficult, real-world domains, provided 
that knowledge be can expressed in a form that is relevant to representation. Back- 
ground knowledge often suggests patterns to look for, intermediate concepts that might 
be useful, or potential interactions among features. Despite the typical uncertainty in 
this knowledge, it can often be expressed via an extension of the representation. F o r  
example, membership in an intermediate concept can be computed for each example, and 
this value can be appended to their descriptions. Similarly, if two features are suspected 
to interact in a particular way, then a third feature that combines them can be computed 
and used to extend the description for each example (Matheus, 1989). 

The importance of this framework is that it reveals several systematic roles for knowl- 
edge to play in machine learning. Many real-world domains, such as weather prediction 
(Packard, 1989), speech production (Sejnowski & Rosenberg, 1987), and financial valu- 
ation (Ragavan et al., 1993), are said to be difficult because the best known algorithms 
can only achieve a limited accuracy. In some cases, even small improvements in accu- 
racy over competitive methods can provide significant advantages. For this reason, it is 
crucial to exploit any background knowledge, which often exists in real-world domains. 

However, there is no comprehensive theory of the interaction between knowledge and 
learning. Presumably, knowledge could be used to construct an induction algorithm with 
a domain-specific bias (Mitchell, 1980), although this is hard to do in practice. One 
approach to incorporating knowledge into learning has been to use an explicit domain 
theory to guide the generalization of examples by explanation (DeJong & Mooney, 1986). 

In our framework, knowledge is first used to define a space of alternative represen- 
tations, and then to select a strategy for searching this space. The representation of 
examples in a domain has a strong effect on the performance of a learning algorithm 
(Rendell & Seshu, 1990). Representation interacts with the algorithmic bias to determine 
which generalizations are drawn from a set of training examples (Mitchell, 1980). A 
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pervasive algorithmic bias, such as the propensity of similarity-based learning (SBL) 
algorithms to focus on contiguous regions of instance space (Rendell & Ragavan, 1993), 
can cause the representation in a domain to appear to be "low-level" in general. Ou~ 
framework extends the utility of existing learning algorithms in difficult domains by 
adapting the representation to the inductive bias. 

Several previous methods have used change of representation to improve machine 
learning performance. Michalski (1983) introduced constructive induction operators to 
change the representation of logical descriptions in INDUCE. Utgoff (1986) implemented 
another method in STABB, calling this general approach dynamic bias. And feature 
construction has always be seen as a way of extending the representation in a feature- 
vector-based domain (Matheus, 1989). Our framework unifies these approaches in terms 
of their search for alternative representations to improve the performance of an underlying 
inductive algorithm. 

An important aspect of our approach is the use of a database of training examples 
to evaluate and compare representations. Chrisman (1989) and Cohen (1990) proposed 
formal frameworks for improving learning by change of representation, but they were 
both based on an exact-learning model. Our framework exploits incremental increases 
in accuracy to guide the search process. In fact, our approach can be thought of as 
"tuning" the representation to the bias of the preferred algorithm, which is equivalent to 
bias optimization (Tcheng et al., 1989). This use of examples is similar to the perfor- 
mance evaluations of several widely used amino acid similarity matrices by Henikoff and 
Henikoff (1993), although they did not search beyond the initial Set of matrices being 
compared. 

One advantage of our search framework is that it also suggests a reverse interaction 
between knowledge and learning. While knowledge is input to the search engine to 
define the space and strategy, refinements of the knowledge might also be extracted from 
the search results. In the protein fold-class domain, we showed how a set of improved 
partitions can be summarized to detect patterns of change from the initial representation, 
and this analysis was used to refine the Dayhoff partition. 

In general, the search results can provide feedback on the knowledge by evaluating its 
utility for learning. If a particular region in the space of alternative representations is 
recommended for search by some piece of knowledge, but a brief exploration of those 
representations does not produce any improvements in accuracy, then the certainty in that 
piece of knowledge might be decreased. This feedback can be used by an expert to revise 
the domain knowledge, specifically guided by the constraints of the prediction task itself. 
This approach based on the connection between knowledge and representation contrasts 
with automated systems for theory revision, such as KBANN (Towell et al., 1990), which 
typically assume that the knowledge can be used to explain the classification of examples 
directly. 

8. Conclusion 

We have presented a method for improving protein fold-class prediction based on re- 
representing protein sequences in terms of amino acid properties. Experimental results 
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showed that, not only can this method increase the accuracy of  predicting protein struc- 

tures, but it can also be used to refine biophysical  knowledge of the various roles amino 
acids can play in determining protein structure. Specifically, on one data set, accu- 
racy was improved from 77.7% to 81.0%, and analysis suggested that cysteine, glycine, 
proline, and glutamine should be split out of the group of small amino acids. 

We then generalized our domain-specific method to an abstract framework in which 
machine learning performance is improved by searching for better representations. Rep- 
resentations are evaluated for comparison by transforming a set of training examples,  
applying a selected induction algorithm, and estimating predictive accuracy. The frame- 
work provides systematic roles for using domain knowledge to improve learning in 
difficult, real-world domains: knowledge is used to define a space of alternative repre- 
sentations and to select a strategy for searching that space. This framework also suggests 
that refinements of  the knowledge may be extracted by summarizing the results of the 
search. 
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