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Abstract. A memory-based learning system is an extended memory management system that decomposes the 
input space either statically or dynamically into subregions for the purpose of storing and retrieving functional 
information. The main generalization techniques employed by memory-based learning systems are the nearest- 
neighbor search, space decomposition techniques, and clustering. Research on memory-based learning is still 
in its early stage. In particular, there are very few rigorous theoretical results regarding memory requirement, 
sample size, expected performance, and computational complexity. In this paper, we propose a model for 
memory-based learning and use it to analyze several methods-- e-covering, hashing, clustering, tree-structured 
clustering, and receptive-fields--for learning smooth functions. The sample size and system complexity are 
derived for each method. Our model is built upon the generalized PAC learning model of Hanssler (Haussler, 
1989) and is closely related to the method of vector quantization in data compression. Our main result is 
that we can build memory-based learning systems using new clustering algorithms (Lin & Vitter, 1992a) to 
PAC-learn in polynomial time using only polynomial storage in typical situations. 
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1. Motivation 

In this paper, we introduce a model for memory-based learning and consider the problem 
of learning smooth functions by memory-based learning systems. A 
memory-based learning system is an extended memory management system that de- 
composes the input space either statically or dynamically into subregions for the purpose 
of storing and retrieving functional information for some smooth function. The main 
generalization techniques employed by memory-based learning system are the nearest- 
neighbor search, 1 space decomposition techniques, and clustering. Although memory- 
based learning systems are not as powerful as neural net models in general, the training 
problem for memory-based learning systems may be computationally more tractable. An 
example memory-based learning system is shown in Figure 1. The "encoder" "y maps 
an input from the input space X into a set of addresses and the "decoder"/3 maps the 
set of activated memory locations into an output in the output space Y. The look-up 
table for memory-based learning systems can be organized as hash tables, trees, or full- 
search tables. The formal definitions of memory-based learning systems will be given in 
Section 2. 

* This research was done while the authors were at Brown University. 
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Figure 1. An example memory-based learning system. The encoder 3' maps an input from the input space X 
into a set of addresses and the decoder/3 maps the set of activated memory locations into an output in the 
output space Y. 

The motivation for our model is as follows: In the human motor system, most of 
the computations done are entirely subconscious. The detailed computations of what 
each muscle must do in order to coordinate with other muscles so as to produce the 
desired movement are left to low-level, subconscious computing centers. Considering 
the complexity of the type of manipulation tasks routinely performed by biological or- 
ganisms, it seems that the approach of controlling robotic manipulator systems by a 
mathematical formalism such as trigonometric equations is inadequate to produce truly 
sophisticated motor behavior. To remedy this situation, Albus (1975a, 1975b, 1981) pro- 
posed a memory-driven, table-reference motor control system called Cerebellar Model 
Articulation Controller (CMAC). The fact that for n input variables with R distinguish- 
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able levels there are R ~ possible inputs may be sufficient to discourage this line of 
research. However, Albus observed that for any physical manipulator system, the num- 
ber of different inputs that are likely to be encountered (and thus the size of memory 
that is actually needed) is much smaller than R ~. He also noticed for similar motor be- 
haviors (for example, swinging a bat or a golf club) that the required muscle movements 
are similar. Albus outlined a memory management technique to take advantage of these 
two properties and make the memory-based approach to learning control functions more 
practical. 

In the CMAC system, each input x from an input space X is assigned by a mapping 3' 
to a set 3'(x) of locations in a memory V. Each location contains a vector in an output 
space Y'. The output f(x) is computed by summing the values (weights) at all of the 
memory locations assigned to x: 

f(x) = 

ic7(~) 

The mapping has the characteristic that similar inputs in the input space X map to 
overlapping sets of locations in the memory V, while dissimilar inputs map to distinct sets 
of locations in the memory V. The amount of overlap between two sets of locations in the 
memory V is related to the generalized Hamming distance between two corresponding 
inputs in X. This mapping is supposed to give automatic generalization (interpolation) 
between inputs in X:  that is, similar inputs produce similar outputs. 

Clearly, this scheme may require the size of memory V to be on the same order of 
magnitude as the total number of possible input vectors in X. In practice, this is hardly 
feasible. For this reason, the memory V is considered to be only a hypothetical memory; 
each location in V is mapped using a hash function h to a physical memory Z of practical 
size. The output f(x) is then computed by summing the values in the memory Z that 
are mapped to by the input x: 

f(x) = ~ '  Z[h(i)] 
icy(x) 

= z [ / ] ,  

ice'(x) 

where "71 = h o 3'. As a result of the random hashing from the hypothetical memory V 
to the physical memory Z,  the sets of memory locations mapped to by dissimilar inputs 
in input space X have a low, but nonzero, probability of overlapping; this can create an 
undesirable generalization between dissimilar inputs. 

The resulting system will produce an output f(x) c Y for any input x in the input 
space X. Since the number of locations in the real memory Z will typically be much 
smaller than the total number of possible inputs, it is unlikely that the weights in Z can 
be found such that the outputs of CMAC system are correct over the entire input space. 
On the other hand, it is unlikely that all possible inputs will be encountered in solving a 
particular control or classification problem. 

The standard CMAC model has been applied to the real-time control of robots with 
encouraging success (Miller, 1987; Miller, Glanz & Kraft, 1987). Dean and Wellman 
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(1991) have given a comprehensive coverage of the CMAC models and learning algo- 
rithms. 

Research on the CMAC model and its variants is still in its early stage. In particu- 
lar, there are very few rigorous theoretical results available. Many problems remained 
unanswered, among them the following: 

1. In the current experimental study, learning parameters are chosen on an ad hoc basis. 
The effects of the scale of resolution, the size of physical memory, and the size of 
the training database (examples) on system performance are largely unknown. 

2. Given a class F of functions and a tolerable relative error bound, what are the sample 
size and memory size required to approximate functions in 5c? 

3. Given a sample, what are the computational complexities of training? That is, how 
much time does it require to determine system parameters from the sample? 

In Section 2 we outline a theoretical framework for answering these problems. Our 
memory-based learning model is built upon the generalized PAC learning model of 
Haussler (Haussler, 1989) and is closely related to the method of vector quantization 
in data compression (Gersho, 1982; Gray, 1984; Riskin, 1990; Gersho & Gray, 1991). 
Section 3 introduces the notion of quantization number, which is intended to capture 
the optimal memory requirement of memory-based learning systems for a given error 
bound. The quantization number can be significantly smaller than the covering number in 
practice. In Section 4 we use our model to analyze several methods for learning smooth 
functions by nearest-neighbor systems. Our main result is that we can build memory- 
based learning systems using the new clustering algorithms (Lin & Vitter, 1992a) to 
PAC-learn in polynomial time using only polynomial storage in typical situations. We 
extend our analysis to tree-structured and higher-order memory-based learning system in 
Section 5 and 6, respectively. We conclude with some possible extensions to our model 
in Section 7. 

2. A memory-based learning model 

Let T be a complete and separable metric space with distance metric dT. We denote the 
metric space by (T, dr). Let 7-t(T) denote the space whose points are the compact subset 
of T. The diameter of a set A C 7-/(T), denoted as diam(A), is suptl,t2eT dT(tl, t2). 
The distance dT(t, A) from a point t to a set A E ~ ( T ) ,  is defined as infxcA dT(t, x). 
For any e > 0, an e-cover for A is a finite set L/ c_ T such that for all t C A there is 
a u  c Lt such that dT(t,u) <_ e. I f A h a s  a finite e-cover for every e > 0 then A i s  
totally bounded. Let A[(A, e, tiT) denote the size of the smallest e-cover for A. We refer 
to A/'( A, e, dT ) as the covering number. 

In this paper, we let X C ~k be the input space and Y C ~e be the output space 
and let dx and dy be the Euclidean metrics. In typical applications, X and Y are 
usually hypercubes or hyperrectangles. Let Mx = diam(X) and M y  = diam(Y). For 
a positive integer s, let Ns denote the set { 1 , . . . ,  s}. Let N~ be the collection of all 
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r-element subsets (r-subsets) of N~. Let H : { u l , . . . ,  u~} and B be a subset of H, 
then index(B) denotes the set of indices of  elements in B. 

2.1. Memory-based learning systems 

Definition. A generic memory based learning system G realizes a class of functions 
from the input space (X, dx) to the output space (Y, dr). Each function 9 realizable 
by G can be specified by a sequence of  memory contents Z = ( z l , . . . ,  z~), where s is 
a positive integer, and a pair of functions (7,/3); -y is the encoder, which is a mapping 
from X to 2 Ns and/3 is the decoder, which is a mapping from 2 Ns to Y. We can write g 
as the composition/3 o 7. We denote Z(i) = zi. 

We may regard N~ as the address (or neuronal) space and 2 Ns as the collection of sets 
of  activated addresses (or neurons). 

We will often study parameterized classes of  memory-based learning systems. Let 
C : G ---+ ~+  be a complexity function of memory-based learning systems, which maps 
a system 9 C G to a positive real number. The most straightforward complexity measure 
is the size of  memory, which we will use in this paper. However, for some applica- 
tions, other complexity measures may be more appropriate. For example, in real-time 
applications, we may be more concerned with the speed of encoding and decoding. In 
remote-control applications, the sensor/encoder and effector/decoder may not be at the 
same location, and the sensor has to send control signals (addresses) to the effector 
via communication channels. In such a scenario, communication complexity may be a 
more important issue. We let G~ denote the class of memory-based learning systems of 
complexity at most s, that is G~ = {g I C(9) <_ s}. 

We are interested in the following two types of memory-based learning systems: full- 
search systems and tree-structured systems. In a ful|-search system, each memory location 
corresponds to a region in the input space and contains a representative vector (key) and 
a functional value; the encoder maps an input to the memory locations corresponding to 
regions that include the input point. Examples of  full-search systems include Voronoi 
systems and receptive-field systems. 

Definition. The class G = Us>rGrs of (generalized) Voronoi systems of order r is defined 
as follows: Let / , / =  { u l , . . . ,  u~} and B be an r-subset of H, then Vor(B; r) denotes 
the Voronoi region of order r for B, i.e., Vor(B; r) consists of all x E X such that the 
r nearest neighbors of x is B. The encoder "y of a Voronoi system of order r and size s 
is a mapping from X to N~ and maps x E X to index(B) if and only if x E Vor(B; r). 
The decoder/3 is a mapping from N~ to Y and a function 9 E G is defined as 

g(x) --  7 

We shall refer to the first-order Voronoi systems simply as Voronoi systems. 
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Definition. The class g = Us>iGs of receptive-field systems is defined as follows: Let 
7~ = { R i , . . . , / { s }  be a collection of polyhedral sets (regions) such that UTz Ri = x .  
The encoder 7 maps an input x to the set 3'(x) of indices of regions that contain x. Note 
that the regions are allowed to be overlapped. The maximum degree of overlap is the 
order of the system. The decoder/3 is a mapping from N~ to I / a n d  a function 9 E g 
is defined as 

~e~(~) 

Notable examples of receptive-field systems include the CMAC model and Moody's 
multi-resolution hierarchies (Moody, 1989). 

In a tree-structured system, the encoder partitions the input space into a hierarchy 
of regions. An input is mapped to the memory location corresponding to the region 
represented by a leaf. The computational advantage of tree-structured systems over full- 
search systems in sequential models of computation is that the mapping from an input 
to a memory location can be done quickly by tree traversal. 

Definition. The class g : Us_>lGs of tree-structured systems is defined as follows: The 
encoder 3' of a tree-structured systems of size s partitions the input space into a hierarchy 
of regions specified by a tree with s nodes. Each internal node has a number of branches, 
each of which is associated with a key. Given an input, starting at the root node, the 
encoder compares the input with each key and follows the branch associated with the 
key nearest to the input; the search proceeds this way until a leaf is reached. The search 
path is output by the encoder as the address for that input. The decoder/3 takes a search 
path and outputs the value in the leaf. 

Examples of tree-structured systems include learning systems based upon quadtrees 
and k-d trees such as SAB-trees (Moore, 1989). 

2.2. The memory-based learning problem 

Informally, given a probability measure P over X × Y, the goal of learning in this model 
is to approximate P by a memory-based learning system 9 E g of reasonable complexity. 
The expected error of the hypothesis 9 with respect to P is denoted by 

e rp(9)  = E [dy(g(x) ,y)]  = fx×y dy(g(x),y) dP(x,y), 

where (x, y) is the random vector corresponding to P. The formal PAC memory-based 
learning model is defined below: 

Definition. A memory-based learning problem 13 is specified by a class ~ of memory- 
based learning systems and a class 7 ) of probability measures over X × Y, where X C ~R k 
and Y c_ 3:~ e. We say that/3 is learnable if for any 0 < 6 < 1/2 and 0 < e < 1/2 the 
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following holds: There exists a (possibly randomized) algorithm L such that if L is given 
as input a random sample sequence ~ = ((zi,  Yi)) of polynomial size m(½, 1 k, g), then 

with probability at least 1 - ~5, L will output a memory-based learning system L(~) E G 
that satisfies 

e r p ( L ( ~ ) )  _< eMy.  

I f  L runs in polynomial time, then we say that B is polynomial-time learnable. 

2.3. Smooth functions 

Without any restriction on the class 79 of probability measures over X x Y, learning 
is not likely to be feasible in terms of memory requirement, sample size, and com- 
putational complexity. In this paper, we restrict 79 to be generated by some smooth 
function f and some probability measure Px over X ,  that is, the sample point is of  the 
form (z, f(z)). Poggio and Girosi (1989, 1990) have given further justification for the 
smoothness assumption. 

Definition. A function f from X into Y is called a Lipschitz function if and only if for 
some K < oo we have 

dy( f (z) ,  f(z')) <_ Kdx(z ,  z'), 

for all :c, z '  E X.  Let II/]IL denote the smallest such K .  A class of functions F from X 
into Y is called Lipschitz functions if and only if for some K < oo we have 

sup IIfHL <- K.  
/cy:  

Let Ibfllc denote the smallest such K .  We call K the Lipschitz bound. 

The Lipschitz bound does not have to hold everywhere; it suffices for our purpose if it 
holds with probability one over the probability distribution P•. For example, the class 
of  piece-wise Lipschitz functions satisfies this relaxed condition. Haussler (1989) has 
relaxed the Lipschitz condition further: 

Definition. For each f ~ F and real e > 0, A(f, e, .) is the real-valued function on X 
defined by 

A(f, e, z) = sup{dy(f(z),  f(x') )}, 

where the supremum is taken over all z / C X for which dx(z , z ' )  <_ e. Let Px be a 
probability measure over X.  We say that the F is uniformly Lipschitz on the average 
with respect to Px if for all e > 0 and all f C f"  there exists some 0 < K < oo such 
that 

E [A(f, e/B2, x)] _< e. 

Let I l f l l~ x be the smallest such K .  For a class 79x of probability measures over X,  we 
define IIFIIr  ~x = sUppxcT~ x IIFJlL Px. 
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3. Voronoi encoders and quantization numbers 

The class ~ = Us>_lOs of Voronoi systems (nearest-neighbor systems) is defined as 
follows: We can specify each 9 E G~ by a set H = { u l , . . .  ,u~} of size s. Let Vor(uj) 
denote the Voronoi region for the point uj. The encoder 3' of 9 is a mapping from X 
to Ns  and maps z E X to j if and only if x E Vor(uj). Let Z = { Z l , . . .  , Zs} C Y .  
The decoder/3 of 9 is a mapping from N~ to Y defined by /3( j )  = zj. In other words, 
the system maps an input x to its nearest neighbor in H, and then outputs the value 
stored in the memory location corresponding to that point. 

We call the encoders of  Voronoi systems the Voronoi encoders. In the following, we 
introduce the notion of  quantization number, which characterizes the optimal size of  
Voronoi encoders for a given error bound. The quantization number can be substantially 
smaller than the covering number. 

Definition. Let Px be a probability measure over X and let x be the random vector 
corresponding to Px. For any e > O, the quantization number Qpx (X, e, dx) of Px is 
defined as the smallest integer s such that there exists a Voronoi encoder 7 of  size s that 
satisfies 

E [dx(x,u,y(x))] <_ e. 

For a class 7)x of probability measures over X,  we define 

Q~x(X,e,  d x ) =  sup QPx(X,e, dx). 
Px  E 7)x 

3.1. The pseudo-dimension of Voronoi encoders 

Building on the work of  Vapnik and Chervonenkis (Vapnik & Chervonenkis 1971; Vapnik 
1982), Pollard (Pollard, 1984; Pollard, 1990), Dudley (Dudley, 1984), and Devroye 
(Devroye, 1988), Haussler (1989) introduced the notion of  pseudo-dimension, which is 
a generalization of VC dimension. He first defined the notion of fullness of sets: 

Definition. For x E N, let sign(x) = 1 if x > 0; else sign(x ) = 0. For N = 
( x l , . . . , x k )  E ~'~, let sign(~) = (sign(xl), . . . ,sign(x~)) and for A C ~m let 
sign(A) = {sign(V) [ ~ c A}. For any A C ~ '~  and ~ E ~'~, let A + ~  = {~ + ~  t 

~ A}, that is, the translation of  A obtained by adding the vector N. We say that A is 
full if there exists 5 C ~ '~ such that sign(A + ~ )  = {0, 1} m, that is, if there exists some 
translation of A that intersect all 2 m orthants of  ~m. 

For example, hyperplanes in ~rn are not full, since no hyperplanes in ~m can intersect 
all orthants of ~'~. The pseudo-dimension is defined as follows: 

Definition. Let 5 c be a class of functions from a set X into ~R. For any sequence 
~x  = ( x l , . . .  ,x,~) of points in X,  let JC(~x) = { ( f ( x l ) , . . .  ,f(x,,~)) : f E Y}. If  
F ( ~ x )  is full then we say that ~x is shattered by 9 c. The pseudo-dimension of  5 c, 
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denoted by d imp(U) ,  is the largest rn such that there exists a sequence of rn points 
in X that is shattered by ,7-. If arbitrarily long sequences are shattered, then d i m e ( U )  
is infinite. 

It is clear when ,7" is a class of {0, 1}-valued functions that the definition of the pseudo- 
dimension is the same as that of the VC dimension. Dudley and Haussler have shown 
the following useful property of pseudo-dimension: 

THEOREM 1 (Dudley, 1978) Let U be a k-dimensional vector space of functions from 
a set X to ~. Then d ime(U)  = k. 

THEOREM 2 (Haussler, 1989) Let U be a class of function from a set X into ~. Fix 
any nondecreasing (or nonincreasing) function h:  ~ - +  ~ and let 7{ = {ho f : f E U}. 
Then we have dirnp(7-/) _< d ime(U) .  

To derive the pseudo-dimension of Voronoi encoders, we use the following lemma 
attributed to Sauer (1972): 

LEMMA 1 [Sauer's Lemma] Let U be a class of funetions from S = {1, 2 , . . . ,  rn} into 
{0, 1} with IU[ > 1 and let d be the length of the longest sequence of points ~s from S 
such that U(~s)  = {0, 1} d. Then we have 

IuI _< (~rn/d) d, 

where e is the base of the natural logarithm. 

We now are ready to bound the pseudo-dimension of Voronoi encoders: 

LEMMA 2 Let Gs be the Voronoi system of size at most s and let dx  be the Euclidean 
metric. For each possible encoder "y of Gs, we define fir (x) = dx  (x, uT(x)) and let 
F~: X ~ [0, Mx] be the class of all such functions f7 (x). Then we have 

dimp(Ps)  _< 2(k + 1)slog(3s) = O(ks logs ) ,  

where k is the dimension of the input space. 

Proof: First consider s = 1. By the definition of the Euclidean metric, we can write 
(f7 (x)) 2 as a polynomial in k variables with 2k + 1 coefficients, where k is the dimension 
of the input space. By Theorems 1 and 2, we have d i m p ( r l )  _< 2k + 1. 

Now consider a general s. Let ~x be a sequence of rn points in X and let T be an 
arbitrary m-vector. Since each function fv (x)  E Fs can be constructed by combining 
functions from F1 using the minimum operation, that is, fir(x) = minucu d x ( x , u ) ,  
where I///I < s, we have 

Isig~(rs(~x)+T)l <_ I s ig~(r l (~x)  + ~)l ~ 

The last inequality follows from Sauer's Lemma. If rn = 2(k + 1)slog(3s),  then 
(ern/(2k + 1)) (2k+l)s < 2 m. Therefore, we have d imp( r~ )  < 2(k + 1)slog(3s) = 
O(ks log s). • 
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3.2. The uniform convergence of Voronoi encoders 

In this section, we bound the sample size for estimating the error of Voronoi encoders. 
In the following, let Egx (f)  1 m . • . = N Y]~i=l f ( x i )  be the empirical mean of the function f ,  
and let d~(r, t) = Ir - t l / ( u  + r + t) .  We need the following corollary from Haussler 
and Long (1990): 

COROLLARY 1 Let ~ be a family of functions from a set X into [0, Mx], where 
dimp(,T') = d for some 1 < d < oo. Let Px  be a probability measure on X.  As- 
sume u > 0 and 0 < o~ < 1. Let ~x be generated by m independent draws from X 
according to Px.  If the sample size is 

m > - 9 M x  ( 2dln 24MX ~ )  + In  , 

then we have 

P r { 3 f  E 5 c I d~,(E~x (f) ,  E(f) )  > a} < 5. 

Lemma 2 and Corollary 1 imply the following theorem: 

THEOREM 3 Let Fs be defined as in Lemma 2. Assume u > 0 and 0 < o~ < 1. Let Px  
be a probability measure on X and ~x be generated by m independent draws from X 
according to Px.  If the sample size is 

m _> 9MXce2u (2(2k + 1)s log(3s) In - -  
4) 

(c~v/..d) u -- in , 

then we have 

P r { 3 f  e Fs d~,(E~x(f ) ,E( f ) )  > c~} <_ 6. 

Proof: By Lemma 2, we have dimp(F~) < 2(k + 1)s log(3s). The rest of the proof 
follows by applying Corollary 1 with d = 2(k + 1)s log(3s). • 

4. Memory-efficient learning of smooth functions 

In this section, we investigate in detail three methods of learning smooth functions by 
Voronoi systems: e-covering, hashing, and clustering. Our results are summarized in 
Table 1. 

First, we introduce some notation: Let ~ = ( ( 2 ; 1 ,  Y l ) , . . . ,  ( X r n ,  Y r n ) )  be a random 
sample sequence of length m. We denote the sequence (x l , . . .  ,xm) by ~x- We denote 
the random vector corresponding to a probability measure P E "P by (x, y). We denote 
the average empirical distance from the z-components of the examples to/1/by 
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Table 1. Upper bounds on system size and sample size for six algorithms for learning smooth functions 
by Voronoi systems. The goal of learning for each learning algorithm L is to achieve with probability 
at least 1 - ~5 an error bound of e rp(L(~))  < eMy. In the table, k is the dimension of the input 

• ~ r  space, N is the covering number N ( X ,  4~- , dx), p << i is the fraction of nonempty Voronoi cells, 
• . * ~ M ' y  and s is the quannzaUon number QPx (X, ~R- ,  dx). 

Algorithm System size Sample size 

e-covefing(LE) N O ( N  l o g ~ )  

perfect hashing (LH1) O ( ~(pN) 2 ) O ( ~ -  l o g ~ - )  

universalhashing (LH2) O ( l p N )  O (~N- l o g ~  -~ ) 

coalesced hashing O(pN) O ( ~  l o g ~ - )  

optimal clustering (LC1) s 0 log s log - + - log 

approx, clustering(LC2) O ( s ( l ° g k ~ S + l ° g l ° g 6 ) ) e  O ( ? l ° g s ( l ° g ~ ~ )  2 + - l l ° g l ) e  

(u) = _l dx U). 
m i=1 

The discrete version of  the above problem is to restrict H to be a subset of ~x-  
The learning problem is specified as follows: We are given a class G of  Voronoi 

systems and a class :P of probability measures generated by a class 7)x of probability 
measures over X and a class 5 c of smooth functions from X to Y with IIFIIL px = K.  
Each sample point is of the form (x, f(z)) for some f E 5 c. Given 0 < (5, e < 1 and 
sample sequence ~ = {(Xl, Y l ) , . . . ,  (x,~, y,~)), the goal of learning is to construct a 
Voronoi system g ¢ G such that the size of 9 is as small as possible and the expected 
error rate satisfies 

e r p ( g )  ~_ eMy, 

with probability at least 1 - (5. 

4.1. Learning by e-covering 

The main idea of  e-covering is to cover the input space with small cells of radius e and 
assign each cell a constant value. The smoothness condition assures a small expected 
error for the resulting system. The algorithm essentially learns by brute force: 
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A l g o r i t h m  LE (learning by c-covering): 

1 Let H be an ~4-¢~--cover of size N, where N = A/'(X, eMr dx).  Let m = ~ -  In N • ~ R - ,  T 
be the sample size. 

2. For each u~ E H, if Vor(ui) f3 ~x ~ 0 then we choose an arbitrary yj such that 
xj E Vor(ui) (~ ~x and set Z(i)  = yj; otherwise, we set Z(i)  arbitrarily. 

THEOREM 4 With probability at least 1-5, the expected error for Algorithm LE satisfies 
erp(LE(~))  < eMy. 

Proof: For each Voronoi cell Vor(ui) satisfying Px(Vor(ui))  >_ 7~, we have 

( e 
Pr(Vor(u~)  N-~x = O) <_ 1 - ~ 

- N 

Therefore, with probability at least 1 - (5, all Voronoi cells with probability over ~ will 
be hit by some sample point. 

Let .4 be the event that the test sample falls in a Voronoi cell that was hit. Since the 
eMy diameter of each Voronoi cell is ~ and I l f l l~  X = K ,  we have 

eMy 
EL , , ,  l A1 < 

- 2 

Furthermore, the total probability measure of Voronoi cells with less than ~ probability 
- -  C is at most e/2, that is, P r (A)  _< 7" Therefore, we have 

erp(LE(~))  = E [dy(z~(x) ,y ) lA]  P r ( A ) +  M y P r ( A )  

< eM o_e ) eM¥ 
- 2 
< eMy. 

[ ]  

4.2. Learning by hashing 

Algorithm LE in the previous section covers the whole input space X with points. How- 
ever, most of the Voronoi cells formed by points in the e-cover/4 are likely to be empty. 
In this section we use hashing techniques to take advantage of this property. Below we 
outline three hashing-based algorithms: perfect hashing, universal hashing, and hashing 
with collision-resolution. These algorithms are motivated by Albus' CMAC motor con- 
trol system (Albus, 1975a; Albus, 1975a; Albus, 1981), where hashing techniques were 
used to reduce memory requirement. The CMAC model has been applied to real-world 
control problems with encouraging success (Miller, 1987; Miller, Glanz & Kraft, 1987). 
Our theoretical results in this section complement their experimental study. 



A THEORY FOR MEMORY-BASED LEARNING 155 

Let h be a hash function from N N  to NN, ,  where N = IN[ and N / is a positive 
integer. For each address 1 < i < N ~ we define h - l ( i )  to be the subset of  points in ~x  
that hash to memory location i, namely, {xj [ h('y(xj)) = i and xj E ~x}.  We let 
~-{N,N' be a class of universal hash functions (Carter & Wegman, 1979) from N N  to 
NN, .  

For the ease of exposition, we assume in the following that the portion p of nonempty 
Voronoi cells is known. This assumption can be removed 2 using the techniques of 
Haussler, Kearns, Littlestone, and Warmuth (1991). 

4.2.1. Perfect hashing 

The first algorithm uses uniform hash functions and resorts to large physical memory to 
assure perfect hashing with high probability. 3 

Algor i thm LH1 (learning by perfect hashing): 

1. L e t / / / b e  an ~4-~-v-ff -cover of  size N,  where N = N'(X,  ~a~-, dx),  and let 0 < p << 1 
be the fraction of  non-empty Voronoi cells. Let m = -~U-ln ~ be the sample size. 

2. Let N / = ~(pN) 2 be the size of physical memory Z and choose a uniform hash 
function h. 

3. For each address i, if h - l ( i )  is not empty then we choose an arbitrary 1 <_ j _< rn 
such that xj E h - l ( i )  and set Z(i) = yj; otherwise we set Z(i) arbitrarily. 

THEOREM 5 With probability at least 1 - 5, the expected error for Algorithm LH1 
satisfies erp(  LH1 (7)) < eMy. 

Proof :  Without any collision, by similar analysis as in the proof of Theorem 4, with 
probability at least 1 - 5/2, we have erp(LH1 (-~)) < eMy. 

By choosing physical memory size as N p = ~(pN) 2, we bound the probability that at 
least one hashing collision occurs by 

1 5 

Therefore, with probability at least 1 - (5, we have no collisions and erp(LH1 (7)) < 
eMg. • 

4.2.2. Universal hashing 

It is not necessary to avoid collisions completely. What we really need is a "good" hash 
function that incurs not too many collisions. The following algorithm uses universal 
hashing for finding a good hash function with high probability. 
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Algorithm LH2 (learning by universal hashing): 

1. Let/.4 be an ~4--~-cover of size N, where N = H ( X ,  ~ -~ - , dx ) ,  and let 0 < p << 1 
be the fraction of non-empty cells. Let rn = sp@ In 2p~'be the sample size and let 
N r = ~ p N  be the size of physical memory Z. 

2. Repeat the following procedure log4/3(2/~ ) times and choose the system with mini- 
mum empirical error: We choose a hash function h randomly from the class TtN,N, 
of universal hash functions and then call the subroutine H(~, h), which is given 
immediately below: 

Subroutine H: Given a sample sequence ~ and a hash function h, for each address i, 
i f  h - l ( i )  is not empty then we choose an arbitrary 1 _< j _< m such that z j  E h - i ( / )  

and set Z( i )  = yj; otherwise we set Z( i )  arbitrarily. 

THEOREM 6 With probability at least 1 - 6, the expected error for  Algorithm LH2 
satisfies erp(LH2(-~))  < eMy.  

Proof: For each Voronoi cell Vor(ui)  with P x ( V o r ( u i ) )  >_ S~-p-p-pW, we have 

P r ( V o r ( u ~ ) ~ x = ~ ) )  <- 1 -  e " 

6 < 
- 2pN" 

Therefore, using sample size m = SpN in 2p_~_, with probability at least 1 - 6 /2 ,  all 
Voronoi cells with probability over e/(8pN) will be hit by some sample point. By the 
property of universal hashing (Carter & Wegman, 1979), for each Voronoi cell hit, the 
probability that the cell is involved in some hash collision is at most p N / N  I = e/8. Let A 
be the event that the test sample falls in a Voronoi cell that was hit. Since ]ISCllL px = K ,  
we have 

E [dy(zh(.~(x)), y) IA] 

C 
_ . 

5eMy < 
8 ' 

where h is the random universal hash function. Furthermore, the total probability measure 
of Voronoi cells with less than ~ probability is at most e/8, that is, P r (A)  _< e/8. 
Therefore, we have 

E [erp(H(~,  h))] = E [dy(zh(.y(×)), y) [ A~Pr(A) + M y P r ( A )  

< 5 M (1 ) 
- s g + - g - -  

3eMy < 
4 ' 

where the expectation is taken over ~N,N '  and ~. 
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We say that a hash function h is "good" if the following inequality holds: 

e rp (H(~ ,  h)) < cMy. 

By Markov's inequality, at least one fourth of hash functions in ~}'~N,N' are good. There- 
fore, by calling subroutine H at least log4/3 (2/6) times, the probability that we do not 
get a good hash function is at most 6/2. Thus, with probability at least 1 - ~5, we have 
erp(LH2(~)) < eMy. • 

The physical memory size can be reduced to O(pN) while maintaining an O(1) worst- 
case access time by using collision-resolution techniques. This can be achieved, for 
example, by using coalesced hashing, which was analyzed in detail by Vitter and Chen 
(1987) and Siegel (1991). 

4.3. Learning by clustering 

Although hashing techniques take advantage of the sparseness of distributions, they do 
not take advantage of the skewness of distributions. We can exploit the skewness of 
distributions by using clustering (or median) algorithms. Given a positive integer s <_ m, 
the (continuous) s-median (or clustering) problem is to find a median set/.4 C_ X such 
that I/gl = s and the average empirical distortion ~ x  (H) is minimized. The discrete 
s-median problem is to restrict/.g to be a subset of ~x. 

The following lemma shows that the empirical distortion of the optimal solution of the 
discrete s-median problem is at most twice that of the optimal solution of the continuous 
s-median problem. 

LEMMA 3 Let hi* be the optimal solution of the continuous s-median problem and let Lt 
be the optimal solution of the corresponding discrete s-median problem. Then we have 

(u) < (u*). 

Proof: Let H* = { u l , . . .  ,us}. We can construct a s-median set V c ~x_that meets 
the bound by replacing each point ui E /,/* by its nearest neighbor vi in ( x .  By the 
definition of empirical distortions and by algebraic manipulations, we have 

(v) = _1 dx (xi, V) 
Tr~ 

i=1  

Trb 
i=1  xC Vor(u~ )n-~x 

< - -  
7n 

i=1  x~  Vor(udn~x 

dx (x, V) 

dx 
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The last inequality follows from the fact that dx(x ,  ]2) < dx(x ,  vi) for all vi E V. By 
the triangle inequality, we have 

m 
i=1 zC Vor(ul)n~x 

<- - -  E 2dx(x ,  ui) 
m 

i = 1  xE Vor(u~)fq~x 

= 2 d + x ( u * ) .  

Since L/ i s  the optimal solution of the discrete s-median problem, we have shown 

d~ (u) < d~ (v) < 2d~ (u*). 

For simplicity, we assume in the following that the quantization number s = QPx (X,  
,My dx)  is known. This assumption can be removed 4 using the techniques in Haussler, 
4 K  

Kearns, Littlestone, and Warmuth (1991). In the following, we also assume that the 
Lipschitz bound holds with probability one over the probability distribution P x  2 . 

4.3.1. Optimal clustering 

Ideally, we would like to use an algorithm for finding optimal clustering for learning: 

Algor i thm LC1 (learning by optima! clustering): 

1 1 log ~) be the sample size, where s is the quantization 1. Let m = gt(-~ logs log-~ + -g 

number QPx ( X ,  eMy dx).  --UR--, 

2. Find the optimal s-median set/4* such that d~x (b/*) is minimized. 

3. Construct an s-median set L / b y  replacing each point ui c / g *  by its nearest neigh- 
bor vi in ~x .  

4. For each vi c L/, set Z(i)  = f(vi) .  

THEOREM 7 With probability at least 1 - 5, the expected error for Algorithm LC1 
satisfies erp(  LC1 (~) ) < eMv. 

P r o o f :  In Theorem 3, we choose a -- 1/11 and let u = eMy / (2K) .  Thus, by choosing 
1 1 log ½), with probability at least 1 - 6, for all V C X sample size as f t ( ~  log s log ~ + 

of size s, we have 

e M v  J~  (v) < 6E [d~ (x, Y)] + _ _  
- 5 2 0 K '  
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and 

(y) eMy E [ d x ( x , V ) ] <  6 x + - - .  
- 5 20K 

Let H* be the optimal median set of size s with respect to Px, then we have 

eMy E[dx(x,L/)] < 6 ~ x  H ,  + - -  
- 5 20K 

"2- - - 

< 12~x(u*) + eMy 
- 5 20K 

12 6 E [ d x  x,H*)] + __-=-===-_ + - -  _<-g- cMy 

20K 

The second inequality follows from Lemma 3. Since H* is optimal, we 
E [dx(x,H*)] < ~Mv Therefore, _ _  ~ - .  

- 4----U + 2 0 K / +  2 0 7  
eMy < 

K 

The rest of the proof follows from the Lipschitz bound. 

have 

4.3.2• Approximate clustering 

Unfortunately, finding optimal clusters is N'P-hard even in Euclidean space (Kariv and 
Hakimi, 1979; Garey & Johnson, 1979; Papadimitriou, 1981; Megiddo, 1984). How- 
ever, as shown by Lin and Vitter (1992a), we have approximate clustering algorithms 
with provably good performance guarantees. We may use these approximate clustering 
algorithms for learning: 

Algorithm LC2 (learning by approximate clustering): 

1. Let m = f ~ ( k s  l o g s ( l o g  k s ) 2  + I l o g  1 )  be the sample size, where s is the quantiza- 
tionnumber~Qpx(X,C~_ dx)~. o 

. Apply the greedy (discrete) s-median algorithm of Lin and Vitter (1992a) with relative 
error bound on distortion as 1/8. (For convenience, the greedy s-median algorithm 
is given in the appendix.) Le t / . /be  the median set returned by the greedy s-median 
algorithm. 

3. For each zj  = ui E U we set Z(i) = yj. 

By Corollary 3 in the Appendix and Lemma 3, we have the following corollary: 
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COROLLARY 2 Let 11[ be the median set returned by the greedy s-median algorithm and 
let Lt* be the set of optimal s-medians. Then we have 

and 

9& 

lUl = O(slogm), 

Proof: Let ?d ~ be the optimal solution of the discrete s-median problem. By Corollary 3 
in the Appendix, the greedy algorithm outputs a median set b /o f  size less than 9s(ln m + 
1) such that 

1 d d~x(U) <_ (1 + ~) ~x(u'). 

By Lemma 3, we have 

9& 
d~x(/A ) < 2(1 + )d~x(/A*) < ~ ~x(b/*). 

THEOREM 8 With probability at least 1 - 6, the expected error for Algorithm LC2 
satisfies erp(  LC2(~) ) < eMy. 

Proof: We apply Theorem 3 with a = 1/11 and u = cMy / (2K) .  By using m = 
f~(~  log s(log -~)2 + i log ½) sample points, with probability at least 1 - 6, for all V C X 
of size at most lUl, we have 

eMy ~ x ( V )  < 6E[dx(x ,V)]  ÷ _ _  
- 5 2 0 K '  

and 

E [d~(×, V)] < 6d~ (V) ,M~ 
5 + 20~' 

Let b/* be the set of optimal s-medians. By Corollary 2 and by algebraic manipulations 
similar to the proof of Theorem 7, we have 

cMy 
E[dx(x ,b / ) ]  < T 

The rest of the proof follows from the Lipschitz bound. • 
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4.4. Summary 

We summarize the results of this section in Table 1. We remark that, in ~k,  the covering 
number is exponential in the dimensionality of  the input space. That is, we have N = 
Af(X,  ~4K, dx )  = O((¼)k). On the other hand, as explained in Section 1, the number of  
different inputs that are likely to be encountered for any physical manipulator system is 
much smaller than N.  Hence, in practice, it is reasonable to assume that the quantization 
number s = QPx (X,  ~ "J ~ 1 4K , a x j  is a low-degree polynomial in 2. In such typical cases, 
clustering algorithms reduce the dependency of memory size on dimensionality by an 
exponential factor. 

5. Tree-s t ruc tured  systems 

In a tree-structured system, the encoder partitions the input space into a hierarchy of 
regions. An input is mapped to the memory location corresponding to the region rep- 
resented by a leaf. As mentioned in Section 2, the computational advantage of tree- 
structured systems over full-search systems in sequential models of computation is that 
the mapping from an input to a memory location can be done quickly by tree traver- 
sal. Tree-structured systems also have a distinguished "successive approximation" and 
"'graceful degradation" character. By successive approximation, we mean that as the tree 
grows larger, the partition will be finer and hence incurs less distortion. By graceful 
degradation, we mean the capability to withstand partial damages to the tree. The full 
definition of tree-structured systems is given in Section 2.1. We call the encoders of  
tree-structured systems the tree-structured encoders. 

LEMMA 4 Let Gs be the tree-structured systems of size s and let dx  be the Euclidean 
metric. For each possible encoder 3' of Gs, we define f,~(x) = dx  (x, u~(~)) and let 
Ps : X ---+ [0, Mx] be the class of all such functions. Then we have d lmp(F~)  _< 
2 (k  + 1 ) ( s  - 1 ) l o g ( 3 ( s  - 1)) : o ( k s l o g  

Proof :  There are s - 1 branches in a tree of size s, in which each branch corresponds 
to a comparison. By derivation similar to the proof of  Lemma 2, we have d iml , (P~)  < 
2(k + 1)@ - 1) log(3(s  - 1)) = O(kslogs) .  II 

Lemma 4 and Corollary 1 imply the following result: 

THEOREM 9 Let Fs be defined as in Lemma 4. Assume u > 0 and 0 < o~ < 1. Let P x  
be a probability measure on X and ~x be generated by m independent draws from X 
according to Px .  If  the sample size is 

= fl ; V .  log log + log , 

then we have 

P r { 3 f  c F~ I d~ , (E~x( f ) ,E( f ) )  > a}  < 6. 
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in the following we outline an algorithm for building tree-structured systems: 

1. Construct a tree-structured encoder for the input space from the z-components of the 
sample. 

2. Estimate a functional value for each node of the tree by averaging the y-components 
of examples covered by the region represented by that node. 

The smoothness of the function to be learned assures that the resulting system has small 
expected error. The algorithm for building a tree-structured encoder is given by Lin 
and Vitter (1992a, 1992b). In addition to memory-based learning, the algorithm also 
has applications to regression, computer graphics, and lossy image compression (Lin & 
Vitter, 1992b). 

6. Higher-order systems 

In a higher-order memory-based learning system, an input can activate more than one 
memory location. Higher-order learning systems have the advantages of fault tolerance 
and possibly better generalization ability given a limited number of examples. By fault 
tolerance, we mean the capability to deal with memory failures or misclassification of 
sample points. 

In this section, we look at the r-nearest-neighbor systems and receptive-field systems 
based upon the combinations of first-order systems: 

The definition for the Voronoi systems of order r (r-nearest-neighbor systems) is given 
in Section 2.1. In this section we extend our analysis in Section 3 to the rth-order Voronoi 
Systems. We call the encoders of Voronoi systems of order r the Voronoi encoders of  
order r. 

LEMMA 5 Let Gr8 be the Voronoi systems of  order r and s&e s and let d x  be the 
Euclidean distance. For each possible encoder 7 of Grs, we define 

T 

1 E d x  (x, %(o (x)), fT(x)  = r 
i = 1  

where 7 (0 (x) maps an input z to its ith nearest neighbor in bl and let F~s : X ---+ [0, Mx]  
be the class of all such functions. Then we have dimp(F~) = O(krs  log r log s). 

Proof: By the definition of f.y(x), it is clear that the pseudo-dimension of F~ r is bounded 
by the pseudo-dimension of sums of r functions from Fs, which is defined as in Lemma 2. 
By derivation similar to the proof of Lemma 2, we have dimp(F~) = O(krs  log r log s). 

Lemma 5 and Corollary 1 imply the following: 

THEOREM 10 Let Frs be defined as in Lemma 5. Assume u > 0 and 0 < ce < 1. Let P x  
be a probability measure on X and ~ x  be generated by m independent draws from X 
according to Px.  I f  the sample size is 
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M x  ( M x  
ra = a -~u  krs  log r log s log (aff-a)u 

then we have 

P r { ~ f  E F~ I d~,(E-~x(f),E(f)) > a} < ~. 

In a receptive-field system, the regions may overlap. In the following, we propose to 
model the receptive-field systems as weighted sums of first-order Voronoi systems. 

Definition. Let Gs be the class of (first-order) Voronoi systems as defined in Section 3. 
The r-combinations G~ of Voronoi systems are defined as the weighted sums of r Voronoi 

7" 
systems. That is, G~ r = {~i=1  wig~ I g~ E Gs and 0 < w~ <_ My} .  

A receptive-field system as defined above can be arranged in a "multi-resolution" man- 
ner (Moody, 1989), that is, as a sum of r Voronoi systems of different sizes. The learning 
algorithm for such systems can start by approximating the function to be learned by the 
smallest (lowest-resolution) component system, and then approximating the errors by the 
second smallest component system, and so forth, until the largest (highest-resolution) 
component system is trained. 

7. Conclusions 

In this paper, we propose a model for memory-based learning and use it to analyze 
several methods for learning smooth functions by memory-based learning systems. Our 
model is closely related to the generalized PAC learning model of Haussler (1989) and the 
methods of vector quantization in data compression. Our main result is that we can build 
memory-based learning systems using new clustering algorithms (Lin & Vitter, 1992a) 
to PAC-learn in polynomial time using only polynomial storage in typical situations. 
We also extend our analysis to tree-structured and higher-order memory-based learning 
systems. 

The memory-based learning systems that we have examined in this paper approximate 
the functional value in each region by a constant. In practice, we might get better 
approximations by using more complicated basis functions. However, this usually makes 
the training problem harder; most work along this line has been mostly experimental 
in terms of computational complexity. Interested readers are referred to the work of 
Friedman (1988), Moody and Darken (1988), and Poggio and Girosi (1989, 1990). 

Our memory-based learning algorithms mainly take advantage of the skewness of 
distributions over the input space and assume the smoothness of functions over the input 
space. However, the degree of smoothness may vary widely from one region to the 
other (Dean & Wellman, 199t). In practice, after the initial clustering, we may estimate 
the degree of smoothness of each region and then merge or split regions according to 
their degrees of smoothness. From a theoretical viewpoint, we must develop models that 
adequately capture this property and are computationally tractable. 
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Appendix 
Approximate Clustering 

In this appendix, we adapt the greedy (discrete) s-median algorithm of Lin and Vitter 
(1992a) to do the clustering needed for Algorithm LC2 in Section 4.3.2. The discrete 
s-median problem is defined as follows: Let ~x = (xl , . . . ,  Xm) be a sequence of points 
in X and let s be a positive integer. The goal is to select a subset L/__ ~x  of s points 
such that the average distance (distortion) 

d~x (U) = __1 ~ dx  (x~, U). 
m 

i=1 

is minimized. 
The discrete s-median problem can be formulated as a 0-1 integer program of mini- 

mizing 
m m 

l ~ ~-~ dx(xi,xj)pi j (A .1 )  
73~ 

i=i j=i 

subject to 
m 

~ P i j  = 1, i = l , . . . , m ,  (A.2) 
j = l  

m 

qj < S, (A.3) 
j = l  

p~j < qj, i , j  = 1 , . . . , m ,  (A.4) 

p~j,qj E {0,1}, i , j = l , . . . , m ,  (A.5) 

where qj = 1 if and only if zj is chosen as a cluster center, and Pij = 1 if and only if 
qj = 1 and x~ is "assigned" to zj. 

The linear program relaxation of the above program is to allow qj and pij to take 
rational values between 0 and 1. Clearly, the optimal fractional solution (linear program 
solution) is a lower bound on the solutions of the discrete s-median problem. 

Our greedy algorithm for the s-median problem works as follows: 

1. Solve the linear program relaxation of the discrete s-median problem by linear pro- 
gramming techniques; denote the fractional solution by ~',~. 

m 2. For each i, compute/~i  = }-~j=l dx(xi, xj)~ij. 

3. Given a relative error bound c > 0, for each j such t h a t ~  > 0, construct a set Sj: 
A point xi is in Sj if and only if dx(xi,xj) <_ (1 + c)Di. 

4. Apply the greedy set cover algorithm (Johnson, 1974; Lovfisz, 1975; Chvfital, 1979): 
Choose the set which covers the most uncovered points. Repeat this process until all 
points are covered. Let U be the set of indices of sets chosen by the greedy heuristic. 
Output L / =  {xj}jcu as the median set. 
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T h e  l inear  p r o g r a m m i n g  p r o b l e m  can  be  so lved  in p rovab ly  p o l y n o m i a l  t ime  by  the  

e l l ipso id  a l g o r i t h m  (Khach iyan ,  1979) or by  the  in ter ior  po in t  m e t h o d  (Karmarkar ,  1984).  

T h e  s imp lex  m e t h o d  (Dantz ig ,  1951) works  very  eff ic ient ly  in  pract ice ,  a l t h o u g h  in the  

wor s t  case  its p e r f o r m a n c e  is no t  po lynomia l - t ime .  

T h e  resul t s  o f  L in  and  Vi t ter  (1992a)  yie ld  the  fo l lowing  appl ica t ion:  

COROLLARY 3 Given any c > O, the greedy algorithm outputs a median set H of size 
less than 

(1 + 1/c ) s ( lnm + i) 

such that 

d:x (u) _< (: + c)Jg, 

where D is the average distance of the optimal fractional solution for the discrete s- 
median problem. 
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Notes 

1. Nearest-neighbor rules and their asymptotic properties (for example, as compared to Bayes' rules) have 
been studied by the pattern recognition community for many years (Wilson, 1973; Cover, 1967; Duda & 
Hart, 1973). In contrast, our main focus in this paper is on functional approximation. 

2. One simple and efficient way of doing this is to start with some small fractional value p~ as the initial 
guess for p and double the value of p when the learning is not successful. This simulation (or reduction) 
preserves polynomial-time learnability. 

3. The perfect hashing techniques as surveyed by Ramakrishna and Awasthi (1991) assume a static set of 
keys, so we are not able to use these techniques for learning, which is dynamic in nature. However, when 
the learning is complete (the set of keys (addresses) is fixed), we can use perfect hashing techniques to 
reduce the size of physical memory. 

4. One simple and efficient way of doing this is to start with s = 1 and double the value of s when the 
learning is not successful. This simulation (or reduction) preserves polynomial-time leamability. 

References 

Albus, J. S. (1975a). Data storage in the cerebellar model articulation controller (CMAC). Journal of Dynamic 
Systems, Measurement, and Control, 228-233. 

Albus, J. S. (1975b). A new approach to manipulator control: The cerebellar model articulation controller 
(CMAC). Journal of Dynamic Systems, Measurement, and Control, 220-227. 

Albus, J. S. (1981). Brains, Behaviour, and Robotics. Byte Books, Peterborough, NH. 



166 J.-H. LIN AND J. S. VITTER 

Carter, J. L., & Wegman, M. N. (1979). Universal classes of hash functions. Journal of Computer System 
and Science, 18(2):143-154. 

Chv~ital, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 
4(3):233-235. 

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information 
Theory, 13:21-27. 

Dantzig, G. (1951). Programming of interdependent activities, II, mathematical models. In Activity Analysis 
of Production and Allocation, 19-32. John Wiley & Sons, Inc, New York. 

Dean, T. L., & Wellman, M. P. (1991). Planning and Control. Morgan Kaufmann Publishers. 
Devroye, L. (1988). Automatic pattern recognition: A study of the probability of error. IEEE Transactions 

on Pattern Recognition and Machine Intelligence, 10(4):530-543. 
Duda, R. M., & Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley. 
Dudley, R. M. (1978). Central limit theorems for empirical measures. Annals of Probability, 6(6):899-929. 
Dudley, R. M. (1984). A course on empirical processes. In Lecture Note in Mathematics 1097. Springer 

Verlag. 
Friedman, J. H. (1988). Multivariate Adaptive Regression Splines. Technical Report 102, Standford University, 

Lab for Computational Statistics. 
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A Guide to the Theory of .N'P- 

completeness. W. H. Freeman and Co., San Francisco, CA. 
Gersho, A. (1982). On the structure of vector quantizers. IEEE Transactions on Information Theory, 

28(2):157-166. 
Gersho, A., & Gray, R. M. (1991). Vector Quantization and Signal Compression. Kluwer Academic Press, 

Massachusetts. 
Gray, R. M. (1984). Vector quantization. IEEE ASSP Magazine, 4-29. 
Haussler, D. (1989). Generalizing the PAC model: Sample size bounds from metric dimension-based uniform 

convergence results. In Proceedings of the 30th Annual 1EEE Symposium on Foundations of Computer 
Science, 40-45. 

Hanssler, D., Keams, M., Littlestone, N., & Warmuth, M. K. (1991). Equivalence of models for polynomial 
learnability. Information and Computation, 95:129-161. 

Haussler, D., & Long, P (1990). A generalization of sauer's lemma. Ucsc-crl-90-15, Dept. of Computer 
Science, UCSC. 

Johnson, D. S. (1974). Approximation algorithms for combinatorial problems. Journal of Computer and 
System Sciences, 9:256-278. 

Kariv, O., & Hakimi, S. L. (1979). An algorithmic approach to network location problems. II: The p-medians. 
SlAM Journal on Applied Mathematics, 539-560. 

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4:373-395. 
Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Soviet Math. Doklady, 20:191-194. 
Lin, J.-H., & Vitter, J. S. (1992a). e-approximations with minimum packing constraint violation. In Proceedings 

of the 24th Annual ACM Symposium on Theory of Computing, 771-782, Victoria, BC, Canada. 
Lin, J.-H., & Vitter, J. S. (1992b). Nearly optimal vector quantization via linear programming. In Proceedings 

of the IEEE Data Compression Conference, 22-31, Snowbird, Utah. 
Lovfisz, L. (1975). On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383-390. 
Megiddo, N., & Supowit, K. J. (1984). On the complexity of some common geometric location problems. 

SIAM Journal on Computing, 13(1):182-196. 
Miller, W. T. (1987). Sensor-based control of robotic manipulators using a general learning algorithms. IEEE 

Journal of Robotics and Automation, 3(2): 157-165. 
Miller, W. T., Glanz, E H., & Kraft, L. G. (1987a). Application of a general learning algorithm to the control 

of robotic manipulators. International Journal of Robotics Research, 6(2):84-98. 
Moody, J. (1989). Fast learning in multi-resolution hierarchies. In Advances in Neural Information Processing 

Systems 1, 29-39. Morgan Kaufmann Publisher. 
Moody, J., & Darken, C. (1988). Learning with localized receptive fields. In Proceedings of the 1988 

Connectionist Models Summer School, 133-143. Morgan Kaufmann Publisher. 
Moore, A. W. (1989). Acquisition of Dynamic Control Knowledge for Robotic Manipulator. Manuscript. 
Papadimitriou, C. H. (1981). Worst-case and probabilistic analysis of a geometric location problem. SlAM 

Journal on Computing, 10:542-557. 



A THEORY FOR MEMORY-BASED LEARNING 167 

Poggio, T., & Girosi, E (1989). A theory of networks for approximation and learning. A. I. Memo No. 1140, 
MIT. Artificial Intelligence Laboratory, Boston, MA. 

Poggio, T., & Girosi, E (1990). Extensions of a theory of networks for approximation and learning: Dirnen- 
sionality reduction and clustering. A. I. Memo No. 1167, MIT. Artificial Intelligence Laboratory, Boston, 
MA. 

Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag New York Inc. 
Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference Series 

in Probability and Statistics Volume 2. 
Ramakrishna, M. V., & Awasthi, V. (1991). A Survey of Pe~'ect Hashing. Manuscript. 
Riskin, E. A. (1990). Variable Rate Vector Quantization o.f Images. Ph. D. Dissertation, Stanford University. 
Saner, N.(1972). On the density of families of sets. Journal of Combinatorial Theory (A), 13:145-147. 
Siegel, A. (1991). Coalesced Hashing is Computably Good. Manuscript. 
Vapn]k, V. N. (1982). Estimation of Dependences Based on Empirical Data. Springer Verlag, New York. 
Vapn~k, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events 

to their probabilities. Theory of Probability and its Applications, 264-280. 
Vitter, J. S., &Chen,  W.-C. (1987). Design and Analysis of Coalesced Hashing. Oxford University Press. 
Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. 1EEE Transactions 

on Systems, Man, and Cybernetics, 2(3):408-421. 

Received November 16, 1992 
Accepted December 14, 1993 

Final Manuscript April 5, 1994 


