
Machine Learning, 17, 143-167 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Theory for Memory-Based Learning*

JYH-HAN LIN jyh-hanAin @ pts.mot.com
Motorola Inc., Applied Research~Communications Lab., Paging Products Group, Boynton Beach, FL 33426

JEFFREY SCOTT VITTER
Department of Computer Science, Duke University, Durham, NC 27708

jsv@cs.duke.edu

Editor: Lisa Hellerstein

Abstract. A memory-based learning system is an extended memory management system that decomposes the
input space either statically or dynamically into subregions for the purpose of storing and retrieving functional
information. The main generalization techniques employed by memory-based learning systems are the nearest-
neighbor search, space decomposition techniques, and clustering. Research on memory-based learning is still
in its early stage. In particular, there are very few rigorous theoretical results regarding memory requirement,
sample size, expected performance, and computational complexity. In this paper, we propose a model for
memory-based learning and use it to analyze several methods-- e-covering, hashing, clustering, tree-structured
clustering, and receptive-fields--for learning smooth functions. The sample size and system complexity are
derived for each method. Our model is built upon the generalized PAC learning model of Hanssler (Haussler,
1989) and is closely related to the method of vector quantization in data compression. Our main result is
that we can build memory-based learning systems using new clustering algorithms (Lin & Vitter, 1992a) to
PAC-learn in polynomial time using only polynomial storage in typical situations.

Keywords: Memory-based learning, PAC learning, clustering, approximation, linear programming, relaxation,
covering, hashing

1. Motivation

In this paper, we introduce a model for memory-based learning and consider the problem
of learning smooth functions by memory-based learning systems. A
memory-based learning system is an extended memory management system that de-
composes the input space either statically or dynamically into subregions for the purpose
of storing and retrieving functional information for some smooth function. The main
generalization techniques employed by memory-based learning system are the nearest-
neighbor search, 1 space decomposition techniques, and clustering. Although memory-
based learning systems are not as powerful as neural net models in general, the training
problem for memory-based learning systems may be computationally more tractable. An
example memory-based learning system is shown in Figure 1. The "encoder" "y maps
an input from the input space X into a set of addresses and the "decoder"/3 maps the
set of activated memory locations into an output in the output space Y. The look-up
table for memory-based learning systems can be organized as hash tables, trees, or full-
search tables. The formal definitions of memory-based learning systems will be given in
Section 2.

* This research was done while the authors were at Brown University.

144 J.-H. LIN AND J. S. VITTER

Table look-up

decoder/ ,JYl
Y2

X 2

Input space X
NN£~N~NNN

s

/

/
/

/

/
Output space Y

Memory Z

Figure 1. An example memory-based learning system. The encoder 3' maps an input from the input space X
into a set of addresses and the decoder/3 maps the set of activated memory locations into an output in the
output space Y.

The motivation for our model is as follows: In the human motor system, most of
the computations done are entirely subconscious. The detailed computations of what
each muscle must do in order to coordinate with other muscles so as to produce the
desired movement are left to low-level, subconscious computing centers. Considering
the complexity of the type of manipulation tasks routinely performed by biological or-
ganisms, it seems that the approach of controlling robotic manipulator systems by a
mathematical formalism such as trigonometric equations is inadequate to produce truly
sophisticated motor behavior. To remedy this situation, Albus (1975a, 1975b, 1981) pro-
posed a memory-driven, table-reference motor control system called Cerebellar Model
Articulation Controller (CMAC). The fact that for n input variables with R distinguish-

A T H E O R Y F O R M E M O R Y - B A S E D L E A R N I N G 145

able levels there are R ~ possible inputs may be sufficient to discourage this line of
research. However, Albus observed that for any physical manipulator system, the num-
ber of different inputs that are likely to be encountered (and thus the size of memory
that is actually needed) is much smaller than R ~. He also noticed for similar motor be-
haviors (for example, swinging a bat or a golf club) that the required muscle movements
are similar. Albus outlined a memory management technique to take advantage of these
two properties and make the memory-based approach to learning control functions more
practical.

In the CMAC system, each input x from an input space X is assigned by a mapping 3'
to a set 3'(x) of locations in a memory V. Each location contains a vector in an output
space Y'. The output f(x) is computed by summing the values (weights) at all of the
memory locations assigned to x:

f(x) =

ic7(~)

The mapping has the characteristic that similar inputs in the input space X map to
overlapping sets of locations in the memory V, while dissimilar inputs map to distinct sets
of locations in the memory V. The amount of overlap between two sets of locations in the
memory V is related to the generalized Hamming distance between two corresponding
inputs in X. This mapping is supposed to give automatic generalization (interpolation)
between inputs in X: that is, similar inputs produce similar outputs.

Clearly, this scheme may require the size of memory V to be on the same order of
magnitude as the total number of possible input vectors in X. In practice, this is hardly
feasible. For this reason, the memory V is considered to be only a hypothetical memory;
each location in V is mapped using a hash function h to a physical memory Z of practical
size. The output f(x) is then computed by summing the values in the memory Z that
are mapped to by the input x:

f(x) = ~ ' Z[h(i)]
icy(x)

= z [/] ,

ice'(x)

where "71 = h o 3'. As a result of the random hashing from the hypothetical memory V
to the physical memory Z, the sets of memory locations mapped to by dissimilar inputs
in input space X have a low, but nonzero, probability of overlapping; this can create an
undesirable generalization between dissimilar inputs.

The resulting system will produce an output f(x) c Y for any input x in the input
space X. Since the number of locations in the real memory Z will typically be much
smaller than the total number of possible inputs, it is unlikely that the weights in Z can
be found such that the outputs of CMAC system are correct over the entire input space.
On the other hand, it is unlikely that all possible inputs will be encountered in solving a
particular control or classification problem.

The standard CMAC model has been applied to the real-time control of robots with
encouraging success (Miller, 1987; Miller, Glanz & Kraft, 1987). Dean and Wellman

146 J.-H. LIN AND J. S. VITTER

(1991) have given a comprehensive coverage of the CMAC models and learning algo-
rithms.

Research on the CMAC model and its variants is still in its early stage. In particu-
lar, there are very few rigorous theoretical results available. Many problems remained
unanswered, among them the following:

1. In the current experimental study, learning parameters are chosen on an ad hoc basis.
The effects of the scale of resolution, the size of physical memory, and the size of
the training database (examples) on system performance are largely unknown.

2. Given a class F of functions and a tolerable relative error bound, what are the sample
size and memory size required to approximate functions in 5c?

3. Given a sample, what are the computational complexities of training? That is, how
much time does it require to determine system parameters from the sample?

In Section 2 we outline a theoretical framework for answering these problems. Our
memory-based learning model is built upon the generalized PAC learning model of
Haussler (Haussler, 1989) and is closely related to the method of vector quantization
in data compression (Gersho, 1982; Gray, 1984; Riskin, 1990; Gersho & Gray, 1991).
Section 3 introduces the notion of quantization number, which is intended to capture
the optimal memory requirement of memory-based learning systems for a given error
bound. The quantization number can be significantly smaller than the covering number in
practice. In Section 4 we use our model to analyze several methods for learning smooth
functions by nearest-neighbor systems. Our main result is that we can build memory-
based learning systems using the new clustering algorithms (Lin & Vitter, 1992a) to
PAC-learn in polynomial time using only polynomial storage in typical situations. We
extend our analysis to tree-structured and higher-order memory-based learning system in
Section 5 and 6, respectively. We conclude with some possible extensions to our model
in Section 7.

2. A memory-based learning model

Let T be a complete and separable metric space with distance metric dT. We denote the
metric space by (T, dr). Let 7-t(T) denote the space whose points are the compact subset
of T. The diameter of a set A C 7-/(T), denoted as diam(A), is suptl,t2eT dT(tl, t2).
The distance dT(t, A) from a point t to a set A E ~ (T) , is defined as infxcA dT(t, x).
For any e > 0, an e-cover for A is a finite set L/ c_ T such that for all t C A there is
a u c Lt such that dT(t,u) <_ e. I f A h a s a finite e-cover for every e > 0 then A i s
totally bounded. Let A[(A, e, tiT) denote the size of the smallest e-cover for A. We refer
to A/'(A, e, dT) as the covering number.

In this paper, we let X C ~k be the input space and Y C ~e be the output space
and let dx and dy be the Euclidean metrics. In typical applications, X and Y are
usually hypercubes or hyperrectangles. Let Mx = diam(X) and M y = diam(Y). For
a positive integer s, let Ns denote the set { 1 , . . . , s}. Let N~ be the collection of all

A THEORY FOR MEMORY-BASED LEARNING 147

r-element subsets (r-subsets) of N~. Let H : { u l , . . . , u~} and B be a subset of H,
then index(B) denotes the set of indices of elements in B.

2.1. Memory-based learning systems

Definition. A generic memory based learning system G realizes a class of functions
from the input space (X, dx) to the output space (Y, dr). Each function 9 realizable
by G can be specified by a sequence of memory contents Z = (z l , . . . , z~), where s is
a positive integer, and a pair of functions (7,/3); -y is the encoder, which is a mapping
from X to 2 Ns and/3 is the decoder, which is a mapping from 2 Ns to Y. We can write g
as the composition/3 o 7. We denote Z(i) = zi.

We may regard N~ as the address (or neuronal) space and 2 Ns as the collection of sets
of activated addresses (or neurons).

We will often study parameterized classes of memory-based learning systems. Let
C : G ---+ ~+ be a complexity function of memory-based learning systems, which maps
a system 9 C G to a positive real number. The most straightforward complexity measure
is the size of memory, which we will use in this paper. However, for some applica-
tions, other complexity measures may be more appropriate. For example, in real-time
applications, we may be more concerned with the speed of encoding and decoding. In
remote-control applications, the sensor/encoder and effector/decoder may not be at the
same location, and the sensor has to send control signals (addresses) to the effector
via communication channels. In such a scenario, communication complexity may be a
more important issue. We let G~ denote the class of memory-based learning systems of
complexity at most s, that is G~ = {g I C(9) <_ s}.

We are interested in the following two types of memory-based learning systems: full-
search systems and tree-structured systems. In a ful|-search system, each memory location
corresponds to a region in the input space and contains a representative vector (key) and
a functional value; the encoder maps an input to the memory locations corresponding to
regions that include the input point. Examples of full-search systems include Voronoi
systems and receptive-field systems.

Definition. The class G = Us>rGrs of (generalized) Voronoi systems of order r is defined
as follows: Let / , / = { u l , . . . , u~} and B be an r-subset of H, then Vor(B; r) denotes
the Voronoi region of order r for B, i.e., Vor(B; r) consists of all x E X such that the
r nearest neighbors of x is B. The encoder "y of a Voronoi system of order r and size s
is a mapping from X to N~ and maps x E X to index(B) if and only if x E Vor(B; r).
The decoder/3 is a mapping from N~ to Y and a function 9 E G is defined as

g(x) -- 7

We shall refer to the first-order Voronoi systems simply as Voronoi systems.

148 J.-H. LIN AND J. S. VITTER

Definition. The class g = Us>iGs of receptive-field systems is defined as follows: Let
7~ = { R i , . . . , / { s } be a collection of polyhedral sets (regions) such that UTz Ri = x .
The encoder 7 maps an input x to the set 3'(x) of indices of regions that contain x. Note
that the regions are allowed to be overlapped. The maximum degree of overlap is the
order of the system. The decoder/3 is a mapping from N~ to I / a n d a function 9 E g
is defined as

~e~(~)

Notable examples of receptive-field systems include the CMAC model and Moody's
multi-resolution hierarchies (Moody, 1989).

In a tree-structured system, the encoder partitions the input space into a hierarchy
of regions. An input is mapped to the memory location corresponding to the region
represented by a leaf. The computational advantage of tree-structured systems over full-
search systems in sequential models of computation is that the mapping from an input
to a memory location can be done quickly by tree traversal.

Definition. The class g : Us_>lGs of tree-structured systems is defined as follows: The
encoder 3' of a tree-structured systems of size s partitions the input space into a hierarchy
of regions specified by a tree with s nodes. Each internal node has a number of branches,
each of which is associated with a key. Given an input, starting at the root node, the
encoder compares the input with each key and follows the branch associated with the
key nearest to the input; the search proceeds this way until a leaf is reached. The search
path is output by the encoder as the address for that input. The decoder/3 takes a search
path and outputs the value in the leaf.

Examples of tree-structured systems include learning systems based upon quadtrees
and k-d trees such as SAB-trees (Moore, 1989).

2.2. The memory-based learning problem

Informally, given a probability measure P over X × Y, the goal of learning in this model
is to approximate P by a memory-based learning system 9 E g of reasonable complexity.
The expected error of the hypothesis 9 with respect to P is denoted by

e rp(9) = E [dy(g(x) ,y)] = fx×y dy(g(x),y) dP(x,y),

where (x, y) is the random vector corresponding to P. The formal PAC memory-based
learning model is defined below:

Definition. A memory-based learning problem 13 is specified by a class ~ of memory-
based learning systems and a class 7) of probability measures over X × Y, where X C ~R k
and Y c_ 3:~ e. We say that/3 is learnable if for any 0 < 6 < 1/2 and 0 < e < 1/2 the

A THEORY FOR MEMORY-BASED LEARNING 149

following holds: There exists a (possibly randomized) algorithm L such that if L is given
as input a random sample sequence ~ = ((zi, Yi)) of polynomial size m(½, 1 k, g), then

with probability at least 1 - ~5, L will output a memory-based learning system L(~) E G
that satisfies

e r p (L (~)) _< eMy.

I f L runs in polynomial time, then we say that B is polynomial-time learnable.

2.3. Smooth functions

Without any restriction on the class 79 of probability measures over X x Y, learning
is not likely to be feasible in terms of memory requirement, sample size, and com-
putational complexity. In this paper, we restrict 79 to be generated by some smooth
function f and some probability measure Px over X , that is, the sample point is of the
form (z, f(z)). Poggio and Girosi (1989, 1990) have given further justification for the
smoothness assumption.

Definition. A function f from X into Y is called a Lipschitz function if and only if for
some K < oo we have

dy(f (z) , f(z')) <_ Kdx(z , z'),

for all :c, z ' E X. Let II/]IL denote the smallest such K . A class of functions F from X
into Y is called Lipschitz functions if and only if for some K < oo we have

sup IIfHL <- K.
/cy:

Let Ibfllc denote the smallest such K . We call K the Lipschitz bound.

The Lipschitz bound does not have to hold everywhere; it suffices for our purpose if it
holds with probability one over the probability distribution P•. For example, the class
of piece-wise Lipschitz functions satisfies this relaxed condition. Haussler (1989) has
relaxed the Lipschitz condition further:

Definition. For each f ~ F and real e > 0, A(f, e, .) is the real-valued function on X
defined by

A(f, e, z) = sup{dy(f(z), f(x'))},

where the supremum is taken over all z / C X for which dx(z , z ') <_ e. Let Px be a
probability measure over X. We say that the F is uniformly Lipschitz on the average
with respect to Px if for all e > 0 and all f C f" there exists some 0 < K < oo such
that

E [A(f, e/B2, x)] _< e.

Let I l f l l~ x be the smallest such K . For a class 79x of probability measures over X, we
define IIFIIr ~x = sUppxcT~ x IIFJlL Px.

1 5 0 J.-H. LIN AND J. S. VITTER

3. Voronoi encoders and quantization numbers

The class ~ = Us>_lOs of Voronoi systems (nearest-neighbor systems) is defined as
follows: We can specify each 9 E G~ by a set H = { u l , . . . ,u~} of size s. Let Vor(uj)
denote the Voronoi region for the point uj. The encoder 3' of 9 is a mapping from X
to Ns and maps z E X to j if and only if x E Vor(uj). Let Z = { Z l , . . . , Zs} C Y .
The decoder/3 of 9 is a mapping from N~ to Y defined by /3(j) = zj. In other words,
the system maps an input x to its nearest neighbor in H, and then outputs the value
stored in the memory location corresponding to that point.

We call the encoders of Voronoi systems the Voronoi encoders. In the following, we
introduce the notion of quantization number, which characterizes the optimal size of
Voronoi encoders for a given error bound. The quantization number can be substantially
smaller than the covering number.

Definition. Let Px be a probability measure over X and let x be the random vector
corresponding to Px. For any e > O, the quantization number Qpx (X, e, dx) of Px is
defined as the smallest integer s such that there exists a Voronoi encoder 7 of size s that
satisfies

E [dx(x,u,y(x))] <_ e.

For a class 7)x of probability measures over X, we define

Q~x(X,e, d x) = sup QPx(X,e, dx).
Px E 7)x

3.1. The pseudo-dimension of Voronoi encoders

Building on the work of Vapnik and Chervonenkis (Vapnik & Chervonenkis 1971; Vapnik
1982), Pollard (Pollard, 1984; Pollard, 1990), Dudley (Dudley, 1984), and Devroye
(Devroye, 1988), Haussler (1989) introduced the notion of pseudo-dimension, which is
a generalization of VC dimension. He first defined the notion of fullness of sets:

Definition. For x E N, let sign(x) = 1 if x > 0; else sign(x) = 0. For N =
(x l , . . . , x k) E ~'~, let sign(~) = (sign(xl), . . . ,sign(x~)) and for A C ~m let
sign(A) = {sign(V) [~ c A}. For any A C ~ '~ and ~ E ~'~, let A + ~ = {~ + ~ t

~ A}, that is, the translation of A obtained by adding the vector N. We say that A is
full if there exists 5 C ~ '~ such that sign(A + ~) = {0, 1} m, that is, if there exists some
translation of A that intersect all 2 m orthants of ~m.

For example, hyperplanes in ~rn are not full, since no hyperplanes in ~m can intersect
all orthants of ~'~. The pseudo-dimension is defined as follows:

Definition. Let 5 c be a class of functions from a set X into ~R. For any sequence
~x = (x l , . . . ,x,~) of points in X, let JC(~x) = { (f (x l) , . . . ,f(x,,~)) : f E Y}. If
F (~ x) is full then we say that ~x is shattered by 9 c. The pseudo-dimension of 5 c,

A THEORY FOR MEMORY-BASED LEARNING 151

denoted by d imp(U) , is the largest rn such that there exists a sequence of rn points
in X that is shattered by ,7-. If arbitrarily long sequences are shattered, then d i m e (U)
is infinite.

It is clear when ,7" is a class of {0, 1}-valued functions that the definition of the pseudo-
dimension is the same as that of the VC dimension. Dudley and Haussler have shown
the following useful property of pseudo-dimension:

THEOREM 1 (Dudley, 1978) Let U be a k-dimensional vector space of functions from
a set X to ~. Then d ime(U) = k.

THEOREM 2 (Haussler, 1989) Let U be a class of function from a set X into ~. Fix
any nondecreasing (or nonincreasing) function h: ~ - + ~ and let 7{ = {ho f : f E U}.
Then we have dirnp(7-/) _< d ime(U) .

To derive the pseudo-dimension of Voronoi encoders, we use the following lemma
attributed to Sauer (1972):

LEMMA 1 [Sauer's Lemma] Let U be a class of funetions from S = {1, 2 , . . . , rn} into
{0, 1} with IU[> 1 and let d be the length of the longest sequence of points ~s from S
such that U(~s) = {0, 1} d. Then we have

IuI _< (~rn/d) d,

where e is the base of the natural logarithm.

We now are ready to bound the pseudo-dimension of Voronoi encoders:

LEMMA 2 Let Gs be the Voronoi system of size at most s and let dx be the Euclidean
metric. For each possible encoder "y of Gs, we define fir (x) = dx (x, uT(x)) and let
F~: X ~ [0, Mx] be the class of all such functions f7 (x). Then we have

dimp(Ps) _< 2(k + 1)slog(3s) = O(ks logs) ,

where k is the dimension of the input space.

Proof: First consider s = 1. By the definition of the Euclidean metric, we can write
(f7 (x)) 2 as a polynomial in k variables with 2k + 1 coefficients, where k is the dimension
of the input space. By Theorems 1 and 2, we have d i m p (r l) _< 2k + 1.

Now consider a general s. Let ~x be a sequence of rn points in X and let T be an
arbitrary m-vector. Since each function fv (x) E Fs can be constructed by combining
functions from F1 using the minimum operation, that is, fir(x) = minucu d x (x , u) ,
where I///I < s, we have

Isig~(rs(~x)+T)l <_ I s ig~(r l (~x) + ~)l ~

The last inequality follows from Sauer's Lemma. If rn = 2(k + 1)slog(3s), then
(ern/(2k + 1)) (2k+l)s < 2 m. Therefore, we have d imp(r~) < 2(k + 1)slog(3s) =
O(ks log s). •

152 J . - H . L IN A N D a. S. V I T T E R

3.2. The uniform convergence of Voronoi encoders

In this section, we bound the sample size for estimating the error of Voronoi encoders.
In the following, let Egx (f) 1 m . • . = N Y]~i=l f (x i) be the empirical mean of the function f ,
and let d~(r, t) = Ir - t l / (u + r + t) . We need the following corollary from Haussler
and Long (1990):

COROLLARY 1 Let ~ be a family of functions from a set X into [0, Mx], where
dimp(,T') = d for some 1 < d < oo. Let Px be a probability measure on X. As-
sume u > 0 and 0 < o~ < 1. Let ~x be generated by m independent draws from X
according to Px. If the sample size is

m > - 9 M x (2dln 24MX ~) + In ,

then we have

P r { 3 f E 5 c I d~,(E~x (f) , E(f)) > a} < 5.

Lemma 2 and Corollary 1 imply the following theorem:

THEOREM 3 Let Fs be defined as in Lemma 2. Assume u > 0 and 0 < o~ < 1. Let Px
be a probability measure on X and ~x be generated by m independent draws from X
according to Px. If the sample size is

m _> 9MXce2u (2(2k + 1)s log(3s) In - -
4)

(c~v/..d) u -- in ,

then we have

P r { 3 f e Fs d~,(E~x(f) ,E(f)) > c~} <_ 6.

Proof: By Lemma 2, we have dimp(F~) < 2(k + 1)s log(3s). The rest of the proof
follows by applying Corollary 1 with d = 2(k + 1)s log(3s). •

4. Memory-efficient learning of smooth functions

In this section, we investigate in detail three methods of learning smooth functions by
Voronoi systems: e-covering, hashing, and clustering. Our results are summarized in
Table 1.

First, we introduce some notation: Let ~ = ((2 ; 1 , Y l) , . . . , (X r n , Y r n)) be a random
sample sequence of length m. We denote the sequence (x l , . . . ,xm) by ~x- We denote
the random vector corresponding to a probability measure P E "P by (x, y). We denote
the average empirical distance from the z-components of the examples to/1/by

A THEORY FOR MEMORY-BASED LEARNING 153

Table 1. Upper bounds on system size and sample size for six algorithms for learning smooth functions
by Voronoi systems. The goal of learning for each learning algorithm L is to achieve with probability
at least 1 - ~5 an error bound of e rp(L(~)) < eMy. In the table, k is the dimension of the input

• ~ r space, N is the covering number N (X , 4~- , dx), p << i is the fraction of nonempty Voronoi cells,
• . * ~ M ' y and s is the quannzaUon number QPx (X, ~R- , dx).

Algorithm System size Sample size

e-covefing(LE) N O (N l o g ~)

perfect hashing (LH1) O (~(pN) 2) O (~ - l o g ~ -)

universalhashing (LH2) O (l p N) O (~N- l o g ~ -~)

coalesced hashing O(pN) O (~ l o g ~ -)

optimal clustering (LC1) s 0 log s log - + - log

approx, clustering(LC2) O (s (l ° g k ~ S + l ° g l ° g 6)) e O (? l ° g s (l ° g ~ ~) 2 + - l l ° g l) e

(u) = _l dx U).
m i=1

The discrete version of the above problem is to restrict H to be a subset of ~x-
The learning problem is specified as follows: We are given a class G of Voronoi

systems and a class :P of probability measures generated by a class 7)x of probability
measures over X and a class 5 c of smooth functions from X to Y with IIFIIL px = K.
Each sample point is of the form (x, f(z)) for some f E 5 c. Given 0 < (5, e < 1 and
sample sequence ~ = {(Xl, Y l) , . . . , (x,~, y,~)), the goal of learning is to construct a
Voronoi system g ¢ G such that the size of 9 is as small as possible and the expected
error rate satisfies

e r p (g) ~_ eMy,

with probability at least 1 - (5.

4.1. Learning by e-covering

The main idea of e-covering is to cover the input space with small cells of radius e and
assign each cell a constant value. The smoothness condition assures a small expected
error for the resulting system. The algorithm essentially learns by brute force:

154 J.-H. LIN AND J. S. VITTER

A l g o r i t h m LE (learning by c-covering):

1 Let H be an ~4-¢~--cover of size N, where N = A/'(X, eMr dx). Let m = ~ - In N • ~ R - , T
be the sample size.

2. For each u~ E H, if Vor(ui) f3 ~x ~ 0 then we choose an arbitrary yj such that
xj E Vor(ui) (~ ~x and set Z(i) = yj; otherwise, we set Z(i) arbitrarily.

THEOREM 4 With probability at least 1-5, the expected error for Algorithm LE satisfies
erp(LE(~)) < eMy.

Proof: For each Voronoi cell Vor(ui) satisfying Px(Vor(ui)) >_ 7~, we have

(e
Pr(Vor(u~) N-~x = O) <_ 1 - ~

- N

Therefore, with probability at least 1 - (5, all Voronoi cells with probability over ~ will
be hit by some sample point.

Let .4 be the event that the test sample falls in a Voronoi cell that was hit. Since the
eMy diameter of each Voronoi cell is ~ and I l f l l~ X = K , we have

eMy
EL , , , l A1 <

- 2

Furthermore, the total probability measure of Voronoi cells with less than ~ probability
- - C is at most e/2, that is, P r (A) _< 7" Therefore, we have

erp(LE(~)) = E [dy(z~(x) ,y) lA] P r (A) + M y P r (A)

< eM o_e) eM¥
- 2
< eMy.

[]

4.2. Learning by hashing

Algorithm LE in the previous section covers the whole input space X with points. How-
ever, most of the Voronoi cells formed by points in the e-cover/4 are likely to be empty.
In this section we use hashing techniques to take advantage of this property. Below we
outline three hashing-based algorithms: perfect hashing, universal hashing, and hashing
with collision-resolution. These algorithms are motivated by Albus' CMAC motor con-
trol system (Albus, 1975a; Albus, 1975a; Albus, 1981), where hashing techniques were
used to reduce memory requirement. The CMAC model has been applied to real-world
control problems with encouraging success (Miller, 1987; Miller, Glanz & Kraft, 1987).
Our theoretical results in this section complement their experimental study.

A THEORY FOR MEMORY-BASED LEARNING 155

Let h be a hash function from N N to NN, , where N = IN[and N / is a positive
integer. For each address 1 < i < N ~ we define h - l (i) to be the subset of points in ~x
that hash to memory location i, namely, {xj [h('y(xj)) = i and xj E ~x}. We let
~-{N,N' be a class of universal hash functions (Carter & Wegman, 1979) from N N to
NN, .

For the ease of exposition, we assume in the following that the portion p of nonempty
Voronoi cells is known. This assumption can be removed 2 using the techniques of
Haussler, Kearns, Littlestone, and Warmuth (1991).

4.2.1. Perfect hashing

The first algorithm uses uniform hash functions and resorts to large physical memory to
assure perfect hashing with high probability. 3

Algor i thm LH1 (learning by perfect hashing):

1. L e t / / / b e an ~4-~-v-ff -cover of size N, where N = N'(X, ~a~-, dx), and let 0 < p << 1
be the fraction of non-empty Voronoi cells. Let m = -~U-ln ~ be the sample size.

2. Let N / = ~(pN) 2 be the size of physical memory Z and choose a uniform hash
function h.

3. For each address i, if h - l (i) is not empty then we choose an arbitrary 1 <_ j _< rn
such that xj E h - l (i) and set Z(i) = yj; otherwise we set Z(i) arbitrarily.

THEOREM 5 With probability at least 1 - 5, the expected error for Algorithm LH1
satisfies erp(LH1 (7)) < eMy.

Proof : Without any collision, by similar analysis as in the proof of Theorem 4, with
probability at least 1 - 5/2, we have erp(LH1 (-~)) < eMy.

By choosing physical memory size as N p = ~(pN) 2, we bound the probability that at
least one hashing collision occurs by

1 5

Therefore, with probability at least 1 - (5, we have no collisions and erp(LH1 (7)) <
eMg. •

4.2.2. Universal hashing

It is not necessary to avoid collisions completely. What we really need is a "good" hash
function that incurs not too many collisions. The following algorithm uses universal
hashing for finding a good hash function with high probability.

156 J.-H. LIN AND J. S. VITTER

Algorithm LH2 (learning by universal hashing):

1. Let/.4 be an ~4--~-cover of size N, where N = H (X , ~ -~ - , dx) , and let 0 < p << 1
be the fraction of non-empty cells. Let rn = sp@ In 2p~'be the sample size and let
N r = ~ p N be the size of physical memory Z.

2. Repeat the following procedure log4/3(2/~) times and choose the system with mini-
mum empirical error: We choose a hash function h randomly from the class TtN,N,
of universal hash functions and then call the subroutine H(~, h), which is given
immediately below:

Subroutine H: Given a sample sequence ~ and a hash function h, for each address i,
i f h - l (i) is not empty then we choose an arbitrary 1 _< j _< m such that z j E h - i (/)

and set Z(i) = yj; otherwise we set Z(i) arbitrarily.

THEOREM 6 With probability at least 1 - 6, the expected error for Algorithm LH2
satisfies erp(LH2(-~)) < eMy.

Proof: For each Voronoi cell Vor(ui) with P x (V o r (u i)) >_ S~-p-p-pW, we have

P r (V o r (u ~) ~ x = ~)) <- 1 - e "

6 <
- 2pN"

Therefore, using sample size m = SpN in 2p_~_, with probability at least 1 - 6 /2 , all
Voronoi cells with probability over e/(8pN) will be hit by some sample point. By the
property of universal hashing (Carter & Wegman, 1979), for each Voronoi cell hit, the
probability that the cell is involved in some hash collision is at most p N / N I = e/8. Let A
be the event that the test sample falls in a Voronoi cell that was hit. Since]ISCllL px = K ,
we have

E [dy(zh(.~(x)), y) IA]

C
_ .

5eMy <
8 '

where h is the random universal hash function. Furthermore, the total probability measure
of Voronoi cells with less than ~ probability is at most e/8, that is, P r (A) _< e/8.
Therefore, we have

E [erp(H(~, h))] = E [dy(zh(.y(×)), y) [A~Pr(A) + M y P r (A)

< 5 M (1)
- s g + - g - -

3eMy <
4 '

where the expectation is taken over ~N,N ' and ~.

A T H E O R Y F O R M E M O R Y - B A S E D L E A R N I N G 157

We say that a hash function h is "good" if the following inequality holds:

e rp (H(~ , h)) < cMy.

By Markov's inequality, at least one fourth of hash functions in ~}'~N,N' are good. There-
fore, by calling subroutine H at least log4/3 (2/6) times, the probability that we do not
get a good hash function is at most 6/2. Thus, with probability at least 1 - ~5, we have
erp(LH2(~)) < eMy. •

The physical memory size can be reduced to O(pN) while maintaining an O(1) worst-
case access time by using collision-resolution techniques. This can be achieved, for
example, by using coalesced hashing, which was analyzed in detail by Vitter and Chen
(1987) and Siegel (1991).

4.3. Learning by clustering

Although hashing techniques take advantage of the sparseness of distributions, they do
not take advantage of the skewness of distributions. We can exploit the skewness of
distributions by using clustering (or median) algorithms. Given a positive integer s <_ m,
the (continuous) s-median (or clustering) problem is to find a median set/.4 C_ X such
that I/gl = s and the average empirical distortion ~ x (H) is minimized. The discrete
s-median problem is to restrict/.g to be a subset of ~x.

The following lemma shows that the empirical distortion of the optimal solution of the
discrete s-median problem is at most twice that of the optimal solution of the continuous
s-median problem.

LEMMA 3 Let hi* be the optimal solution of the continuous s-median problem and let Lt
be the optimal solution of the corresponding discrete s-median problem. Then we have

(u) < (u*).

Proof: Let H* = { u l , . . . ,us}. We can construct a s-median set V c ~x_that meets
the bound by replacing each point ui E /,/* by its nearest neighbor vi in (x . By the
definition of empirical distortions and by algebraic manipulations, we have

(v) = _1 dx (xi, V)
Tr~

i=1

Trb
i=1 xC Vor(u~)n-~x

< - -
7n

i=1 x~ Vor(udn~x

dx (x, V)

dx

158 J . - H . L IN A N D J. S. V I T T E R

The last inequality follows from the fact that dx(x ,]2) < dx(x , vi) for all vi E V. By
the triangle inequality, we have

m
i=1 zC Vor(ul)n~x

<- - - E 2dx(x , ui)
m

i = 1 xE Vor(u~)fq~x

= 2 d + x (u *) .

Since L/ i s the optimal solution of the discrete s-median problem, we have shown

d~ (u) < d~ (v) < 2d~ (u*).

For simplicity, we assume in the following that the quantization number s = QPx (X,
,My dx) is known. This assumption can be removed 4 using the techniques in Haussler,
4 K

Kearns, Littlestone, and Warmuth (1991). In the following, we also assume that the
Lipschitz bound holds with probability one over the probability distribution P x 2 .

4.3.1. Optimal clustering

Ideally, we would like to use an algorithm for finding optimal clustering for learning:

Algor i thm LC1 (learning by optima! clustering):

1 1 log ~) be the sample size, where s is the quantization 1. Let m = gt(-~ logs log-~ + -g

number QPx (X , eMy dx). --UR--,

2. Find the optimal s-median set/4* such that d~x (b/*) is minimized.

3. Construct an s-median set L / b y replacing each point ui c / g * by its nearest neigh-
bor vi in ~x .

4. For each vi c L/, set Z(i) = f(vi) .

THEOREM 7 With probability at least 1 - 5, the expected error for Algorithm LC1
satisfies erp(LC1 (~)) < eMv.

P r o o f : In Theorem 3, we choose a -- 1/11 and let u = eMy / (2K) . Thus, by choosing
1 1 log ½), with probability at least 1 - 6, for all V C X sample size as f t (~ log s log ~ +

of size s, we have

e M v J~ (v) < 6E [d~ (x, Y)] + _ _
- 5 2 0 K '

A THEORY FOR MEMORY-BASED LEARNING 159

and

(y) eMy E [d x (x , V)] < 6 x + - - .
- 5 20K

Let H* be the optimal median set of size s with respect to Px, then we have

eMy E[dx(x,L/)] < 6 ~ x H , + - -
- 5 20K

"2- - -

< 12~x(u*) + eMy
- 5 20K

12 6 E [d x x,H*)] + __-=-===-_ + - - _<-g- cMy

20K

The second inequality follows from Lemma 3. Since H* is optimal, we
E [dx(x,H*)] < ~Mv Therefore, _ _ ~ - .

- 4----U + 2 0 K / + 2 0 7
eMy <

K

The rest of the proof follows from the Lipschitz bound.

have

4.3.2• Approximate clustering

Unfortunately, finding optimal clusters is N'P-hard even in Euclidean space (Kariv and
Hakimi, 1979; Garey & Johnson, 1979; Papadimitriou, 1981; Megiddo, 1984). How-
ever, as shown by Lin and Vitter (1992a), we have approximate clustering algorithms
with provably good performance guarantees. We may use these approximate clustering
algorithms for learning:

Algorithm LC2 (learning by approximate clustering):

1. Let m = f ~ (k s l o g s (l o g k s) 2 + I l o g 1) be the sample size, where s is the quantiza-
tionnumber~Qpx(X,C~_ dx)~. o

. Apply the greedy (discrete) s-median algorithm of Lin and Vitter (1992a) with relative
error bound on distortion as 1/8. (For convenience, the greedy s-median algorithm
is given in the appendix.) Le t / . /be the median set returned by the greedy s-median
algorithm.

3. For each zj = ui E U we set Z(i) = yj.

By Corollary 3 in the Appendix and Lemma 3, we have the following corollary:

160 J.-H. LIN AND J. S. VITTER

COROLLARY 2 Let 11[be the median set returned by the greedy s-median algorithm and
let Lt* be the set of optimal s-medians. Then we have

and

9&

lUl = O(slogm),

Proof: Let ?d ~ be the optimal solution of the discrete s-median problem. By Corollary 3
in the Appendix, the greedy algorithm outputs a median set b /o f size less than 9s(ln m +
1) such that

1 d d~x(U) <_ (1 + ~) ~x(u').

By Lemma 3, we have

9&
d~x(/A) < 2(1 +)d~x(/A*) < ~ ~x(b/*).

THEOREM 8 With probability at least 1 - 6, the expected error for Algorithm LC2
satisfies erp(LC2(~)) < eMy.

Proof: We apply Theorem 3 with a = 1/11 and u = cMy / (2K) . By using m =
f~(~ log s(log -~)2 + i log ½) sample points, with probability at least 1 - 6, for all V C X
of size at most lUl, we have

eMy ~ x (V) < 6E[dx(x ,V)] ÷ _ _
- 5 2 0 K '

and

E [d~(×, V)] < 6d~ (V) ,M~
5 + 20~'

Let b/* be the set of optimal s-medians. By Corollary 2 and by algebraic manipulations
similar to the proof of Theorem 7, we have

cMy
E[dx(x ,b /)] < T

The rest of the proof follows from the Lipschitz bound. •

A THEORY FOR MEMORY-BASED LEARNING 161

4.4. Summary

We summarize the results of this section in Table 1. We remark that, in ~k, the covering
number is exponential in the dimensionality of the input space. That is, we have N =
Af(X, ~4K, dx) = O((¼)k). On the other hand, as explained in Section 1, the number of
different inputs that are likely to be encountered for any physical manipulator system is
much smaller than N. Hence, in practice, it is reasonable to assume that the quantization
number s = QPx (X, ~ "J ~ 1 4K , a x j is a low-degree polynomial in 2. In such typical cases,
clustering algorithms reduce the dependency of memory size on dimensionality by an
exponential factor.

5. Tree-s t ruc tured systems

In a tree-structured system, the encoder partitions the input space into a hierarchy of
regions. An input is mapped to the memory location corresponding to the region rep-
resented by a leaf. As mentioned in Section 2, the computational advantage of tree-
structured systems over full-search systems in sequential models of computation is that
the mapping from an input to a memory location can be done quickly by tree traver-
sal. Tree-structured systems also have a distinguished "successive approximation" and
"'graceful degradation" character. By successive approximation, we mean that as the tree
grows larger, the partition will be finer and hence incurs less distortion. By graceful
degradation, we mean the capability to withstand partial damages to the tree. The full
definition of tree-structured systems is given in Section 2.1. We call the encoders of
tree-structured systems the tree-structured encoders.

LEMMA 4 Let Gs be the tree-structured systems of size s and let dx be the Euclidean
metric. For each possible encoder 3' of Gs, we define f,~(x) = dx (x, u~(~)) and let
Ps : X ---+ [0, Mx] be the class of all such functions. Then we have d lmp(F~) _<
2 (k + 1) (s - 1) l o g (3 (s - 1)) : o (k s l o g

Proof : There are s - 1 branches in a tree of size s, in which each branch corresponds
to a comparison. By derivation similar to the proof of Lemma 2, we have d iml , (P~) <
2(k + 1)@ - 1) log(3(s - 1)) = O(kslogs) . II

Lemma 4 and Corollary 1 imply the following result:

THEOREM 9 Let Fs be defined as in Lemma 4. Assume u > 0 and 0 < o~ < 1. Let P x
be a probability measure on X and ~x be generated by m independent draws from X
according to Px . If the sample size is

= fl ; V . log log + log ,

then we have

P r { 3 f c F~ I d~ , (E~x(f) ,E(f)) > a} < 6.

162 J.-H. LIN AND J. S. VITTER

in the following we outline an algorithm for building tree-structured systems:

1. Construct a tree-structured encoder for the input space from the z-components of the
sample.

2. Estimate a functional value for each node of the tree by averaging the y-components
of examples covered by the region represented by that node.

The smoothness of the function to be learned assures that the resulting system has small
expected error. The algorithm for building a tree-structured encoder is given by Lin
and Vitter (1992a, 1992b). In addition to memory-based learning, the algorithm also
has applications to regression, computer graphics, and lossy image compression (Lin &
Vitter, 1992b).

6. Higher-order systems

In a higher-order memory-based learning system, an input can activate more than one
memory location. Higher-order learning systems have the advantages of fault tolerance
and possibly better generalization ability given a limited number of examples. By fault
tolerance, we mean the capability to deal with memory failures or misclassification of
sample points.

In this section, we look at the r-nearest-neighbor systems and receptive-field systems
based upon the combinations of first-order systems:

The definition for the Voronoi systems of order r (r-nearest-neighbor systems) is given
in Section 2.1. In this section we extend our analysis in Section 3 to the rth-order Voronoi
Systems. We call the encoders of Voronoi systems of order r the Voronoi encoders of
order r.

LEMMA 5 Let Gr8 be the Voronoi systems of order r and s&e s and let d x be the
Euclidean distance. For each possible encoder 7 of Grs, we define

T

1 E d x (x, %(o (x)), fT(x) = r
i = 1

where 7 (0 (x) maps an input z to its ith nearest neighbor in bl and let F~s : X ---+ [0, Mx]
be the class of all such functions. Then we have dimp(F~) = O(krs log r log s).

Proof: By the definition of f.y(x), it is clear that the pseudo-dimension of F~ r is bounded
by the pseudo-dimension of sums of r functions from Fs, which is defined as in Lemma 2.
By derivation similar to the proof of Lemma 2, we have dimp(F~) = O(krs log r log s).

Lemma 5 and Corollary 1 imply the following:

THEOREM 10 Let Frs be defined as in Lemma 5. Assume u > 0 and 0 < ce < 1. Let P x
be a probability measure on X and ~ x be generated by m independent draws from X
according to Px. I f the sample size is

A THEORY FOR MEMORY-BASED LEARNING 163

M x (M x
ra = a -~u krs log r log s log (aff-a)u

then we have

P r { ~ f E F~ I d~,(E-~x(f),E(f)) > a} < ~.

In a receptive-field system, the regions may overlap. In the following, we propose to
model the receptive-field systems as weighted sums of first-order Voronoi systems.

Definition. Let Gs be the class of (first-order) Voronoi systems as defined in Section 3.
The r-combinations G~ of Voronoi systems are defined as the weighted sums of r Voronoi

7"
systems. That is, G~ r = {~i=1 wig~ I g~ E Gs and 0 < w~ <_ My} .

A receptive-field system as defined above can be arranged in a "multi-resolution" man-
ner (Moody, 1989), that is, as a sum of r Voronoi systems of different sizes. The learning
algorithm for such systems can start by approximating the function to be learned by the
smallest (lowest-resolution) component system, and then approximating the errors by the
second smallest component system, and so forth, until the largest (highest-resolution)
component system is trained.

7. Conclusions

In this paper, we propose a model for memory-based learning and use it to analyze
several methods for learning smooth functions by memory-based learning systems. Our
model is closely related to the generalized PAC learning model of Haussler (1989) and the
methods of vector quantization in data compression. Our main result is that we can build
memory-based learning systems using new clustering algorithms (Lin & Vitter, 1992a)
to PAC-learn in polynomial time using only polynomial storage in typical situations.
We also extend our analysis to tree-structured and higher-order memory-based learning
systems.

The memory-based learning systems that we have examined in this paper approximate
the functional value in each region by a constant. In practice, we might get better
approximations by using more complicated basis functions. However, this usually makes
the training problem harder; most work along this line has been mostly experimental
in terms of computational complexity. Interested readers are referred to the work of
Friedman (1988), Moody and Darken (1988), and Poggio and Girosi (1989, 1990).

Our memory-based learning algorithms mainly take advantage of the skewness of
distributions over the input space and assume the smoothness of functions over the input
space. However, the degree of smoothness may vary widely from one region to the
other (Dean & Wellman, 199t). In practice, after the initial clustering, we may estimate
the degree of smoothness of each region and then merge or split regions according to
their degrees of smoothness. From a theoretical viewpoint, we must develop models that
adequately capture this property and are computationally tractable.

164 J.-H. LIN AND J. S. VITTER

Appendix
Approximate Clustering

In this appendix, we adapt the greedy (discrete) s-median algorithm of Lin and Vitter
(1992a) to do the clustering needed for Algorithm LC2 in Section 4.3.2. The discrete
s-median problem is defined as follows: Let ~x = (xl , . . . , Xm) be a sequence of points
in X and let s be a positive integer. The goal is to select a subset L/__ ~x of s points
such that the average distance (distortion)

d~x (U) = __1 ~ dx (x~, U).
m

i=1

is minimized.
The discrete s-median problem can be formulated as a 0-1 integer program of mini-

mizing
m m

l ~ ~-~ dx(xi,xj)pi j (A .1)
73~

i=i j=i

subject to
m

~ P i j = 1, i = l , . . . , m , (A.2)
j = l

m

qj < S, (A.3)
j = l

p~j < qj, i , j = 1 , . . . , m , (A.4)

p~j,qj E {0,1}, i , j = l , . . . , m , (A.5)

where qj = 1 if and only if zj is chosen as a cluster center, and Pij = 1 if and only if
qj = 1 and x~ is "assigned" to zj.

The linear program relaxation of the above program is to allow qj and pij to take
rational values between 0 and 1. Clearly, the optimal fractional solution (linear program
solution) is a lower bound on the solutions of the discrete s-median problem.

Our greedy algorithm for the s-median problem works as follows:

1. Solve the linear program relaxation of the discrete s-median problem by linear pro-
gramming techniques; denote the fractional solution by ~',~.

m 2. For each i, compute/~i = }-~j=l dx(xi, xj)~ij.

3. Given a relative error bound c > 0, for each j such t h a t ~ > 0, construct a set Sj:
A point xi is in Sj if and only if dx(xi,xj) <_ (1 + c)Di.

4. Apply the greedy set cover algorithm (Johnson, 1974; Lovfisz, 1975; Chvfital, 1979):
Choose the set which covers the most uncovered points. Repeat this process until all
points are covered. Let U be the set of indices of sets chosen by the greedy heuristic.
Output L / = {xj}jcu as the median set.

A THEORY FOR MEMORY-BASED LEARNING 165

T h e l inear p r o g r a m m i n g p r o b l e m can be so lved in p rovab ly p o l y n o m i a l t ime by the

e l l ipso id a l g o r i t h m (Khach iyan , 1979) or by the in ter ior po in t m e t h o d (Karmarkar , 1984).

T h e s imp lex m e t h o d (Dantz ig , 1951) works very eff ic ient ly in pract ice , a l t h o u g h in the

wor s t case its p e r f o r m a n c e is no t po lynomia l - t ime .

T h e resul t s o f L in and Vi t ter (1992a) yie ld the fo l lowing appl ica t ion:

COROLLARY 3 Given any c > O, the greedy algorithm outputs a median set H of size
less than

(1 + 1/c) s (lnm + i)

such that

d:x (u) _< (: + c)Jg,

where D is the average distance of the optimal fractional solution for the discrete s-
median problem.

Acknowledgments

Suppor t was p rov ided in par t by by Na t iona l Sc ience F o u n d a t i o n re sea rch g ran t C C R -

9007851 , by A r m y R e s e a r c h Off ice g ran t D A A L 0 3 - 9 1 - G - 0 0 3 5 , and by A i r Fo rce Off ice

o f Scient i f ic Resea rch grants F 4 9 6 2 0 - 9 2 - J ~) 5 1 5 and F 4 9 6 2 0 - 9 4 - 1 - 0 2 1 7 .

Notes

1. Nearest-neighbor rules and their asymptotic properties (for example, as compared to Bayes' rules) have
been studied by the pattern recognition community for many years (Wilson, 1973; Cover, 1967; Duda &
Hart, 1973). In contrast, our main focus in this paper is on functional approximation.

2. One simple and efficient way of doing this is to start with some small fractional value p~ as the initial
guess for p and double the value of p when the learning is not successful. This simulation (or reduction)
preserves polynomial-time learnability.

3. The perfect hashing techniques as surveyed by Ramakrishna and Awasthi (1991) assume a static set of
keys, so we are not able to use these techniques for learning, which is dynamic in nature. However, when
the learning is complete (the set of keys (addresses) is fixed), we can use perfect hashing techniques to
reduce the size of physical memory.

4. One simple and efficient way of doing this is to start with s = 1 and double the value of s when the
learning is not successful. This simulation (or reduction) preserves polynomial-time leamability.

References

Albus, J. S. (1975a). Data storage in the cerebellar model articulation controller (CMAC). Journal of Dynamic
Systems, Measurement, and Control, 228-233.

Albus, J. S. (1975b). A new approach to manipulator control: The cerebellar model articulation controller
(CMAC). Journal of Dynamic Systems, Measurement, and Control, 220-227.

Albus, J. S. (1981). Brains, Behaviour, and Robotics. Byte Books, Peterborough, NH.

166 J.-H. LIN AND J. S. VITTER

Carter, J. L., & Wegman, M. N. (1979). Universal classes of hash functions. Journal of Computer System
and Science, 18(2):143-154.

Chv~ital, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations Research,
4(3):233-235.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13:21-27.

Dantzig, G. (1951). Programming of interdependent activities, II, mathematical models. In Activity Analysis
of Production and Allocation, 19-32. John Wiley & Sons, Inc, New York.

Dean, T. L., & Wellman, M. P. (1991). Planning and Control. Morgan Kaufmann Publishers.
Devroye, L. (1988). Automatic pattern recognition: A study of the probability of error. IEEE Transactions

on Pattern Recognition and Machine Intelligence, 10(4):530-543.
Duda, R. M., & Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley.
Dudley, R. M. (1978). Central limit theorems for empirical measures. Annals of Probability, 6(6):899-929.
Dudley, R. M. (1984). A course on empirical processes. In Lecture Note in Mathematics 1097. Springer

Verlag.
Friedman, J. H. (1988). Multivariate Adaptive Regression Splines. Technical Report 102, Standford University,

Lab for Computational Statistics.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A Guide to the Theory of .N'P-

completeness. W. H. Freeman and Co., San Francisco, CA.
Gersho, A. (1982). On the structure of vector quantizers. IEEE Transactions on Information Theory,

28(2):157-166.
Gersho, A., & Gray, R. M. (1991). Vector Quantization and Signal Compression. Kluwer Academic Press,

Massachusetts.
Gray, R. M. (1984). Vector quantization. IEEE ASSP Magazine, 4-29.
Haussler, D. (1989). Generalizing the PAC model: Sample size bounds from metric dimension-based uniform

convergence results. In Proceedings of the 30th Annual 1EEE Symposium on Foundations of Computer
Science, 40-45.

Hanssler, D., Keams, M., Littlestone, N., & Warmuth, M. K. (1991). Equivalence of models for polynomial
learnability. Information and Computation, 95:129-161.

Haussler, D., & Long, P (1990). A generalization of sauer's lemma. Ucsc-crl-90-15, Dept. of Computer
Science, UCSC.

Johnson, D. S. (1974). Approximation algorithms for combinatorial problems. Journal of Computer and
System Sciences, 9:256-278.

Kariv, O., & Hakimi, S. L. (1979). An algorithmic approach to network location problems. II: The p-medians.
SlAM Journal on Applied Mathematics, 539-560.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4:373-395.
Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Soviet Math. Doklady, 20:191-194.
Lin, J.-H., & Vitter, J. S. (1992a). e-approximations with minimum packing constraint violation. In Proceedings

of the 24th Annual ACM Symposium on Theory of Computing, 771-782, Victoria, BC, Canada.
Lin, J.-H., & Vitter, J. S. (1992b). Nearly optimal vector quantization via linear programming. In Proceedings

of the IEEE Data Compression Conference, 22-31, Snowbird, Utah.
Lovfisz, L. (1975). On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383-390.
Megiddo, N., & Supowit, K. J. (1984). On the complexity of some common geometric location problems.

SIAM Journal on Computing, 13(1):182-196.
Miller, W. T. (1987). Sensor-based control of robotic manipulators using a general learning algorithms. IEEE

Journal of Robotics and Automation, 3(2): 157-165.
Miller, W. T., Glanz, E H., & Kraft, L. G. (1987a). Application of a general learning algorithm to the control

of robotic manipulators. International Journal of Robotics Research, 6(2):84-98.
Moody, J. (1989). Fast learning in multi-resolution hierarchies. In Advances in Neural Information Processing

Systems 1, 29-39. Morgan Kaufmann Publisher.
Moody, J., & Darken, C. (1988). Learning with localized receptive fields. In Proceedings of the 1988

Connectionist Models Summer School, 133-143. Morgan Kaufmann Publisher.
Moore, A. W. (1989). Acquisition of Dynamic Control Knowledge for Robotic Manipulator. Manuscript.
Papadimitriou, C. H. (1981). Worst-case and probabilistic analysis of a geometric location problem. SlAM

Journal on Computing, 10:542-557.

A THEORY FOR MEMORY-BASED LEARNING 167

Poggio, T., & Girosi, E (1989). A theory of networks for approximation and learning. A. I. Memo No. 1140,
MIT. Artificial Intelligence Laboratory, Boston, MA.

Poggio, T., & Girosi, E (1990). Extensions of a theory of networks for approximation and learning: Dirnen-
sionality reduction and clustering. A. I. Memo No. 1167, MIT. Artificial Intelligence Laboratory, Boston,
MA.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag New York Inc.
Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference Series

in Probability and Statistics Volume 2.
Ramakrishna, M. V., & Awasthi, V. (1991). A Survey of Pe~'ect Hashing. Manuscript.
Riskin, E. A. (1990). Variable Rate Vector Quantization o.f Images. Ph. D. Dissertation, Stanford University.
Saner, N.(1972). On the density of families of sets. Journal of Combinatorial Theory (A), 13:145-147.
Siegel, A. (1991). Coalesced Hashing is Computably Good. Manuscript.
Vapn]k, V. N. (1982). Estimation of Dependences Based on Empirical Data. Springer Verlag, New York.
Vapn~k, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events

to their probabilities. Theory of Probability and its Applications, 264-280.
Vitter, J. S., &Chen, W.-C. (1987). Design and Analysis of Coalesced Hashing. Oxford University Press.
Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. 1EEE Transactions

on Systems, Man, and Cybernetics, 2(3):408-421.

Received November 16, 1992
Accepted December 14, 1993

Final Manuscript April 5, 1994

