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Abstract. Within the framework of pac-learning, we explore the learnability of concepts from samples 
using the paradigm of sample compression schemes. A sample compression scheme of size k for a concept 
class C' C_ 2 x consists of a compression function and a reconstruction function. The compression function 
receives a finite sample set consistent with some concept in C and chooses a subset of k examples as the 
compression set. The reconstruction function forms a hypothesis on X fron) a compression set of k examples. 
For any sample set of a concept in G' the compression set produced by the compression function must lead 
to a hypothesis consistent with the whole original sample set when it is fed to the reconstruction function. 
We demonstrate that the existence of a sample compression scheme of fixed-size for a class C is sufficient to 
ensure that the class C is pac-learnable. 

Previous work has shown that a class is pac-learnable if and only if the Vapnik-Chervonenkis (VC) dimension 
of the class is finite. In the second half of this paper we explore the relationship between sample compression 
schemes and the VC dimension. We define maximum and maximal classes of VC dimension d. For every 
maximum class of VC dimension d, there is a sample compression scheme of size d, and for sufficiently-large 
maximum classes there is no sample compression scheme of size less than d. We discuss briefly classes of VC 
dimension d that are maximal but not maximum. It is an open question whether every class of VC dimension d 
has a sample compression scheine of size O(d). 
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1. I n t r o d u c t i o n  

In this  paper  we discuss  the  use  of  s ample  c o m p r e s s i o n  s c h e m e s  wi th in  compu ta t i ona l  

l ea rn ing  theory,  and  exp lo re  the  re la t ionsh ips  be tween  pac- lea rn ing ,  s ample  compres -  

sion,  and  the V a p n i k - C h e r v o n e n k i s  d i m e n s i o n  (a combina to r i a l  p a r a m e t e r  m e a s u r i n g  the 

diff icul ty of  l ea rn ing  o f  a concep t  class).  

The re  are m a n y  e x a m p l e s  of  l ea rn ing  a lgor i thms  that  use  sampIe compression; that  is, 

that  select  a subse t  of  e x a m p l e s  f rom a sample  set, and  use  those  example s  to represen t  

a hypothes i s .  A c o m m o n  example  is the a lgo r i thm for  l ea rn ing  axis -para l le l  r ec tang les  

in the  plane.  F r o m  any  s a m p l e  of  pos i t ive  and  nega t ive  points  in the  p lane ,  where  the 

pos i t ive  po in t s  are those  con t a ined  in the  target  rec tangle ,  and  the  nega t ive  po in t s  are 
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those not contained in the target rectangle, the learning algorithm needs only to save the 
top, bottom, leftmost, and rightmost positive examples. The hypothesis represented by 
these examples is the smallest axis-parallel rectangle containing these four points. 

From Littlestone and Warmuth (1986), a sample compression scheme of size k tbr a 
concept class consists of a compression function and a reconstruction function. Given a 
finite set of examples, the compression function selects a compression set of at most k 
of the examples. The reconstruction function uses this compression set to construct 
a hypothesis for the concept to be learned. For a sample compression scheme, the 
reconstructed hypothesis must be guaranteed to predict the correct label for all of the 
examples in the original sample set. 

For a concept class with a sample compression scheme of size k, any sample set can 
be represented by a subset of size h. This quantifies the extent to which the compres- 
sion scheme can generalize from an arbitrary sample set. Previous work from Blumer, 
Ehrenfeucht, Haussler, and Warmuth (1989) has shown that a class is pac-learnable if 
and only if the Vapnik-Chervonenkis dimension is finite. In this work we follow an 
alternate approach, and show that the existence of an appropriate sample compression 
scheme is sufficient to ensure iearnability. For certain concept classes we show that there 
always exists a sample compression scheme of size equal to the VC dimension of the 
class. Recently Freund (1995) and Helmbold and Warmuth (1995) have shown that there 
is always an extended version of a sample compression scheme that is essentially of 
size O(d logm)  for any concept class of VC dimension d and smmple set size. m. (See 
the last section for a discussion of these results). 

The VC dimension has also been used in computational geometry by Haussler and Welzl 
(1987) to characterize the complexity of processing range queries. However recently 
alternate methods have been developed for the same problem using random sampling 
and divide and conquer. Some of the proofs by Clarkson (1992) for these alternate 
methods are similar to the proofs presented here of sample complexity bounds for sample 
compression schemes in the pac-learning model. 

Our use of a sample compression scheme is also somewhat different from Rissanen's 
Minimum Description Length Principle (MDLP) (1986). Borrowing from Quinlan and 
Rivest (1989), the minimum description length principle states that from a given set of 
hypotheses, the one that can predict the future with the most accuracy is the one that 
minimizes the combined coding length of the hypothesis and of the data that is incorrectly 
predicted by the hypothesis. In contrast, we measure the size of our compression set not 
by the number of bits used to encode the examples, but simply by the number of examples 
in the compression set. In addition, we use the approach of pac-learning to quantify the 
sample size needed to predict the future with an acceptable de~ee of accuracy. 

Nevertheless, the idea behind MDLP, applied to a learning algorithm that is restricted to 
save only examples from the sample set, would be to minimize the sum of the number of 
examples used to express the hypothesis and the number of examples incorrectly predicted 
by the hypothesis. Thus, MDLP would imply that a learning algorithm restricted to saving 
a subset of the sample set should save the smallest number of examples that it can, while 
still correctly predicting all of the examples in the sample set. That is the approach 
followed in this paper. 
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This paper considers several general procedures for constructing sample compression 
schemes. We show that the existence of an appropriate mistake-bounded on-line learn- 
ing algorithm is sufficient to construct a sample compression scheme of size equal to 
the mistake bound. With this result, known computationally-efficient mistake-bounded 
learning algorithms can be used to construct computationally-efficient sample compres- 
sion schemes for classes such as k-literal monotone disjunctions and monomials. Also, 
since the Halving algorithm from Angluin (1988) and Littlestone (1988) has a mistake 
bound of log ICl for any finite concept class C, this implies that there is a sample 
compression scheme of size at most log ICl. 

For infinite concept classes a different approach is needed to construct sample com- 
pression schemes. Following Blumer et al. (1989), we use the Vapnik-Chervonenkis 
dimension for this purpose. Using definitions from Welzl (1987), we consider maximum 
and maximal concept classes of VC dimension d. Maximal concept classes are classes 
where no concept can be added without increasing the VC dimension of the class. Max- 
imum classes are in some sense the largest concept classes. We show that any maximum 
concept class of VC dimension d has a sample compression scheine of size d. Further, 
this result is optimal; for any sufficiently large maximum class of VC dimension d, there 
can be no sample compression scheme of size less than d. From Littlestone and Warmuth 
(1986), it remains an open question whether there is a sample compression scheme of 
size O(d) for every class of VC dimension d. 

This paper explores the use of sample compression schemes in batch learning algo- 
rithms, where the learner is given a finite sample set, and constructs a hypothesis after 
examining all of the examples in the sample set. Sample compression schemes can also 
be used in on-line learning algorithms, where the learner receives examples one at a time 
and updates its hypothesis after each example. Such compression schemes in on-line 
learning algorithms are explored in more detail in Floyd's thesis (1989). 

The paper is organized as follows. Section 2 reviews pac-learning and the VC dimen- 
sion. In Section 3 we define the sample compression schemes of size at most k used 
in this paper. Section 4 gives sample compression schemes based on on-line mistake- 
bounded lem-ning algorithms. As a special case we obtain sample compression schemes 
of size at most log ICl for any finite class C. In Section 5 we show that the existence 
of a sample compression scheine for a class C is sufficient to give a pac-learning algo- 
rithm for that class, and we improve slightly on the original sample complexity bounds 
from Littlestone and Warmuth for pac-learning algorithms based on sample compression 
schemes (1986). 

In Section 6 we define maximal and maximum classes of VC dimension d, and give 
a sample compression scheme of size d that applies to any maximum class of VC 
dimension d. Combined with the results from previous sections, this improves somewhat 
on the previously-known sample complexity of batch learning algorithms for maximum 
classes. In Section 6.4 we show that this result is optimal; that is, for any sufficiently 
large maximum class of VC dimension d, there is no sample compression scheine of size 
less than d. Section 7 discusses sample compression schemes for maximal classes of VC 
dimension d. One of the major open problems is whether there is a sample compression 
scheme of size d for everv maximal class of VC dimension d. 
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Definition. A-B is used to denote the difference of sets, so A-B is defined as {a E A: 
a ~ B}. We ler lnz denote lo9~:c and we let loga: denote [o92z. 

A domain is any set X. A concept c on the domain X is äny subset of  X. For a 
concept c E C and element aa E X, c(aa) gives the classification of z in the class e. That 
is, c(z) = 1 if z E c, and e(z) = 0 otherwise. The elements of X x {0, 1} are called 
examples. Positive examples are examples labeled "1" and negative examples are labeled 
"0". The elements of X are sometimes called unlabeled examples. For any set A C X, 
we let A ±'~ C A × {0, 1} denote the set A of examples labeled as in the concept c. We 
let A ± refer to an arbitrary set of labeled examples A. 

A conceptclass C on X is any subset of 2 X. For Y C X,  we define C]Y as the 
restriction of the class C to the set Y. That is, C[Y = {c n Y : c E C}. We say that 
the class C is finite if ICl is finite; otherwise we say that the class C is infinite. Because 
C is finite, C can be considered as a class on a finite domäin X. (If two elements in 
X have the same label for all concepts in the class C, then these two elements can be 
considered as a single element.) 

A sample set is a set of examples; a sample sequence is a sequence of examples, 
possibly including duplicates. A sample set or sequence is consistent with a concept c 
if the labels of its examples agree with e. 

2. Pacqearning and the VC dimension 

In this section we review the model of probably approximately correct (pac) learning, 
and the connections between pac-learning and the Vapnik-Chervonenkis dimension. From 
Vapnik (1982) and Blumer et al. (1987, 1989), Theorem 1 states that finite classes are 
pac-learnable with a sample size that is linear in in ICl. For infinite classes, the Vapnik- 
Chervonenkis dimension was used to extend this result, showing that a class is pac- 
learnable from a fixed sample size only if the Vapnik-Chervonenkis dimension is finite. 
In this case, the sample size is linear in the Vapnik-Chervonenkis dimension. 

First we review the model of pac-learning. Valiant (1984) introduced a pac-learning 
model of learning concepts from examples taken from an unknown distribution. In this 
model of learning, each example is drawn independently from a fixed but unknown 
distribution D on the domain X, and the examples are labeled consistently with some 
unknown target concept e in the class C. 

Definition. The goal of the learning algorithm is to learn a good approximation of the 
target concept, with high probability. This is called "probably approximately correct" 
learning or pac-Iearning. A learning algorithm has as inputs an accuracy parameter e, 
a confidence parameter ~5, and an oracle that provides labeled examples of the target 
concept e, drawn according to a probability distribution D on X. The sample size of the 
algorithm is the number of labeled examples in the sample sequence drawn from the 
oracle. The learning algorithm returns a hypothesis h. The error of  the hypothesis is the 
total probability, with respect to the distribution D, of the symmetrie difference of c and 
B. 
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A concept class C is called learnable if there exists a pac-learning algorithm such 
that, for any e and ~5, there exists a fixed sample size such that, for any concept c E C 
and for any probability distribution on X, the learning algorithm produces a probably- 
approximately-correct hypothesis; a probably-approximately-correct hypothesis is one 
that has error at most e with probability at least 1-& The sample complexity of the 
learning algorithm for C is the smallest required sample size, as a function of e, 5, and 
parameters of the class C. 

For a finite concept class C, Theorem 1 gives an upper bound on the sample complexity 
required for learning the class C. This upper bound is linear in ln[C I. 

THEOREM 1 (Vapnik, 1982, and Blumer et al., 1989) Let C be any finite concept class. 
l lnlCl Then for sample size greater than ~~~~-~-, any algorithm that chooses a hypothesis from 

C consistent with the exampIes is a learning algorithm for C. 

Definition. For infinite classes such as geometric concept classes on R ~, Theorem 1 
cannot be used to obtain bounds on the sample complexity. For these classes, a parameter 
of the class called the Vapnik-Chervonenkis dimension is used to give upper and lower 
bounds on the sample complexity. For a concept class C on X, and for S _C X, if 
CIS = 2 S, then the set S is shattered by C. The Vapnik-Chervonenkis dimension (VC 
dimension) of the class C is the largest integer d such that some S c_ X of size d is 
shattered by C. If arbitrarily large finite subsets of X are shattered by the class C, then 
the VC dimension of C is infinite. Note that a class C with one concept is of VC 
dimension 0. By convention, the empty class is of VC dimension -1. 

If the class C C 2 x has VC dimension d, then for all Y c X,  the restriction C[Y has 
VC dimension at most d. 

Theorem 2 from Blumer et al. (1989), adapted ffom Vapnik and Chervonenkis (1971), 
gives an upper bound on the sample complexity of learning algorithms in terms of the 
VC dimension of the class. 

THEOREM 2 (Blumer et al., 1989) Let C be a well-behaved ~ concept class. I f  the VC 
dimension of C is d < oc, then for 0 < e, (5 < 1 and for sampIe size at least 

(4 ~~~~o~~~~ 
max  log~,  e e / '  

C is learnable by an), aIgorithm thatfinds a concept cfrom C consistent with the sample 
sequence. 

In Theorem 2, the VC dimension essentially replaces lnIC I from Theorem 1 as a measure 
of the size of the class C. Blumer et al. (1989) further show that a class is pac-learnable 
from a fixed-size sample if and only if the VC dimension of the class is finite. Shawe- 
Taylor, Anthõny, and Biggs (1989) improve the sample size in Theorem 2 to 

1 ~ ~ ( 1  ~) 
~(1 - ~) in ~ + ~(1 ~~ ln-~ + 2(ln 2 + ~n ) 
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- ( 1 - c ~ )  in + - - + - l n  
e e 

for 0 < a < 1. The second line is to facilitate comparison with bounds derived later in 
the paper. 

As in the theorems in this section, the theoretical results in this paper generally do not 
address computational concerns. We address the question of computationally-efficient 
leaming algorithms separately in out examples. Computational issues regarding com- 
pression schemes are discussed further in Floyd's thesis (1989). 

3. Sample eompression schemes 

In this section we define a sample compression scheine of size at most k for a concept 
class C, and we give several examples of such a sample compression scheme. 

Definition. This paper uses the simplest version of the compression schemes introduced 
by Littlestone and Warmuth (1986); extended versions of these compression schemes save 
additional information. A sample compression scheine of size at most k for a concept 
class C on X consists of a compression function and a reconstruction function. The 
compression function f maps every finite sample set to a compression set, a subset of at 
most k labeled examples. The reconstructionfunction g maps every possible compression 
set to a hypothesis h c X. This hypothesis is not required to be in the class C. For 
any sample set y+ ,c  labeled consistently with some concept c in C, the hypothesis 
g(f(Y±'C)) is required to be consistent with the original sample set Y~'% In this paper 
the size of a compression set refers to the number of examples in the compression set. 

Example: rectangles. Consider the class of axis-parallel rectangles in R S. Each concept 
corresponds to an axis-parallel rectangle; the points within the axis-parallel rectangle are 
labeled '1' (positive), and the points outside the rectangle are labeled '0'  (negative). The 
compression function for the class of axis-parallel rectangles in R2 takes the leftmost, 
rightmost, top, and bottom positive points from a set of examples; this compression 
function saves at most four points from any sample set. The reconstruction function has 
as a hypothesis the smallest axis-parallel rectangle consistent with these points. This 
hypothesis is guaranteed to be consistent with the original set of examples. This class is 
of VC dimension four. [] 

Example: intersection closed concept classes and nested differences thereof For any 
concept class C c 2 x and any subset S of the domain X the closure of S with respect 
to C, denotedby CLOS(S),  is the set N { e :  c E C and S c c}. Aconcept  class C 
is intersection closed 2 if whenever S is a finite subset of some concept in C then the 
cIosure of S, denoted as CLOS(S),  is a concept of C. Clearly axis-parallel rectangles 
in Æn are intersection closed and there are many other examples given by Helmbold, 
Sloan, and Warmuth (1990, 1992) such as monomials, vector spaces in Æn and integer 
lattices. 

For any set of examples labeled consistently with some concept in the intersection 
closed class C, consider the closure of the positive examples. This concept, the "smallest" 
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concept in C containing those positive examples, is clearly consistent with the whole 
sample. A minimal spanning set of the positive examples is any minimal subset of the 
positive examples whose closure is the same as the closure of all positive examples. 
Such a minimal spanning set can be used as a compression set for the sample. Helmbold 
et al. (1990) have proved that the size of such minimal spanning sets is always bounded 
by the VC dimension of the intersection closed concept class. Thus, any intersection 
closed class has a sample compression scheine whose size is at most the VC dimension 
of the class. 

Surprisingly, using the methods of Helmbold et al. (1990) one can obtain a sample 
compression scheine for nested differences of concepts from an intersection-closed con- 
cept class. For example, cl - (c2 - (c3 - (c4 - c5)))) is a nested difference of depth 
five. The VC dimension of nested differences of depth p is at most p times the VC 
dimension of the original class. Again the compression sets for classes of nested dif- 
ferences of bounded depth have size at most as large as the VC dimension of the class. 
We will only sketch how the compression set is constructed for the more complicated 
case of nested differences. First a minimal spanning set of all positive examples is found 
and added to the compression set. Then all negative examples falling in the closure 
of the first minimal spanning set are considered. Again a minimal spanning set of all 
these examples is added to the compression set. Then all positive example falling in 
the closure of the last spanning set are considered and a minimal spanning is added to 
the compression set. This process is iterated until there are no more examples left. 

[] 

Example: intervals on the line. Space efficient learning algorithms for the class of at 
most n intervals on the line have been studied by Haussler (1988). One compression 
function for the class of at most n intervals on the line scans the points from left to right, 
saving the first positive example, and then the first subsequent negative example, and so 
on. At most 2n examples are saved. The reconstruction function has as a hypothesis the 
union of at most n intervals, where the leftmost two examples saved denote the boundaries 
of the first positive interval, and each succeeding pair of examples saved denote the 
boundaries of the next positive interval. For the sample set in Figure 1, this compression 
function saves the examples {(xi, 1), (i5,0}, @7, 1), (x11,0), (x14, 1), @16, 0)} which 
represents the hypothesis [x3,xs) U [xT, x l l )  U [x14,x16). Note that the class of at 
most n intervals on the ]ine is of VC dimension 2n, [] 

Xl x2 x3 x4 x5 x6 x7 x8 x9 xlOXllX12 x13x14 x15 x16 
OO 1 1 O 0  1 1 1 1 0 0 0 1 1 0 

Figure 1. A sample set from the union of three intervals on the line. 

Note that the sample compression scheine defined in this section differs from the 
traditional definition of data compression. Consider the compression function for axis- 
parallel rectangles that saves at most four positive examples from a sample set. From a 
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compression set of at most four examples, it is not possible to reconstruct the original 
set of examples. However, given any unlabeled point from the original set of examples, 
it is possible to reconstruct the label for that point. 

4. Compression Schemes and Mistake-bounded Learning Algorithms 

In this section, we discuss the relationship between sample compression schemes and 
mistake-bounded on-line learning algorithms. An on-line learning algorithm P proceeds 
in trials. In each trial t the algorithm is presented with an unlabeled example at over 
some domain X and produces a binary prediction. It then receives a label for the example 
and incurs a mistake if the label differs from the algorithm's prediction. 

Defnition. The mistake bound of algorithm P for a concept class C C 2 x is the 
worst-case number of mistakes that P can make on any sequence of examples labeled 
consistently with some concept in C. We say that an on-line learning algorithm is 
mistake-driven a if its hypothesis is a function of the past sequence of examples in which 
the algorithm made a mistake. Thus mistake-driven algorithms "ignore" those examples 
on which the algorithm predicted correctly. 

Any mistake-bounded learning algorithm P can be converted to a mistake-driven al- 
gorithm Q; after a mistake, let Algorithm Q take the hypothesis that algorithm P would 
have taken if the intervening non-mistake examples had not happened. It is easy to see 
that this conversion does not increase the worst-case mistake bound of the algorithm. 
We show that any class with a mistake-bounded learning algorithm that is also mistake- 
driven has a One-Pass Compression Scheme with the same size bound as the mistake 
bound. 

Consider a class C C_ 2 x with an on-line learning algorithm P that has a mistake 
bound k. That is, given any concept c from the class C, and any sequence of examples 
from X,  the on-line learning algorithm P makes at most Æ mistakes in predicting the 
labels of the examples of c. We assume some default ordering on X, and in the algorithm 
below we are only concerned with mistake bounds where the order of examples in the 
arbitrary sample set is consistent with the default order on X. Further, assume that 
the algorithm P is mistake-driven. The One-Pass Compression Scheine below uses the 
on-line learning algorithm P to construct a sample compression scheine of size at most 
k for C. 

The One-Pass Compression Scheme (for finite classes with mistake-driven and mistake- 
bounded learning algorithms). 

• The compression function: The input is the labeled sample set y=E,c C X x {0, 1}. 
The One-Pass Compression Scheme examines the examples from the sample set 
in the default order, saving all examples for which the mistake-bounded learning 
algorithm P made a mistake predicting the label. 

• The reconstruction function: The input to the reconstruction function is a compres- 
sion set A +. For any element in the compression set, the reconstruction function 
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predicts the label for that element in the compression set. For any element x not in 
the compression set, the reconstruction function considers those elements from the 
compression set that precede x in the default order on X.  The reconstruction func- 
tion applies the learning algorithm P to those elements, in order. The reconstruction 
function then uses the current hypothesis of the learning algorithm P to predict the 
label for z. 

Theorem 3 shows that for any class with a mistake-driven and mistake-bounded learning 
algorithm with bound k, the One-Pass Compression Scheine gives a sample compression 
scheine of size at most k. 

THEOREM 3 Let C C_ 2 x have a mistake-driven mistake-bounded learning algorithm P 
with bound k, with respect to the default ordering on X.  Then the One-Pass Compression 
Scheine is a sample compression scheme of size at most k for the class C. 

Proof: For any concept c from C and for any sample set, the mistake-bounded learning 
algorithm makes at most k mistakes. Therefore, the One-Pass Compression Scheine 
produces a compression set of size at most k. 

We will reason that for any element x not in the compression set, the reconstruction 
function reproduces the same prediction on x as it did when the mistake-bounded learn- 
ing algorithm was used to construct the compression set. For any element from the 
compression set that precedes x in the default order on X, the reconstruction function 
examines that element in the same order as did the mistake-bounded learning algorithm 
looking at the original sample set. Since the algorithm is mistake=driven we have that in 
both cases the algorithm predicts on x using the hypothesis represented by the sequence 
of mistakes preceding z. (Note that all the mistakes were saved in the compression set.) 
Since x was not added to the compression set the learning algorithm predicted correctly 
on x when the compression set was constructed and the reconstruction funetion produces 
the same correct prediction. • 

Example: k-literal disjunctions. Littlestone (1988) gives a computationally-efficient, 
mistake-driven and mistake-bounded learning algorithm, called Winnowl, for leaming 
k-literal monotone disjunctions. This algorithm is designed to learn efficiently even 
in the presence of large numbers of irrelevant attributes. In particular, the results 
from Littlestone, along with Theorem 3, give a sample compression scheine of size at 
most k(1 + 2 log n /k )  for the class of monotone disjunctions with at most k literals. This 
class has a VC dimension, and therefore a lower bound on the optimal mistake bound, 
of at least (k/8)(1 + logn/k) .  Using reductions, Littlestone (1988, 1989) shows that 
Winnowl and its relatives lead to efficient learning algorithms with firm mistake bounds 
for a number of classes: non-monotõne disjunctions with at most k literals, k-literal 
monomials, r of k threshold functions, /-term DNF where each monomial has at most k 
literals. Thus immediately we can obtain sample compression schemes for these classes. 

[] 

Example: monomials. We now discuss an elimination algorithm for learning monomials 
from Valiant (1984) and Angluin (1988); similar elimination algorithms exist for more 
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general conjunctive concepts. Let C C 2 X be the class of monomials over n variables, 
for X = {0, 1} n and for some default order on X. The initial hypothesis for the mistake- 
bounded learning algorithm is the monotone monomial containing all 2n literals. The 
first positive example eliminates n literals and for each further positive example whose 
label is predicted incorrectly by the learning algorithm, at least one literal is deleted 
from the hypothesis monomial; thus, this learning algorithm is mistake-driven, and by 
Theorem 3 we obtain a sample compression scheme of size at most n + 1 using the One- 
Pass Compression Algorithm. After one pass, the most general (maximal) monomial 
consistent with the compression set is consistent with all of the examples in the sample 
set, so there is a reconstruction function that is independent of the ordering on X. The 
class of monomials has VC dimension at least n. [] 

4.1. Sample compression schemes for finite classes 

Angluin (1988) and Littlestone (1988) have considered a simple on-line learning algo- 
rithm for learning an arbitrary finite concept class C C 2 x with at most log ICI mistakes. 
This is called the Halving algorithm and works as follows: The algorithm keeps track of 
all concepts consistent with all past examples. From Mitchell (1977), this set of concepts 
is called the version space. For each new example, the algorithm predicts the value that 
agrees with the majority of the concepts in the version space. (In the case of a tie, the 
Halving algorithm can predict either label.) After each trial, the algorithm updates the 
version space. 

Clearly the mistake bound of this algorithm comes from the fact that each time the 
algorithm makes a mistake the size of the version space is reduced by at least 50%. 
There is also a mistake-driven version of this algorithm: simply update the version space 
only when a mistake occurs. This mistake-driven algorithm together with Theorem 3 
immediately leads to a sample compression scheme. 

THEOREM 4 Let C c 2 x be any finite concept class. Then the One-Pass Compression 
Scheme using the mistake-driven Halving algorithm gives a sample compression scheme 
of size at most log !C 1 for the class C. 

Note that the hypotheses of the mistake-driven Halving algorithm, of the algorithm 
Winnowl for learning k literal monotone disjunctions, and of the elimination algorithm 
for learning monomials, all have the property that they depend only on the set of examples 
on which the algorithm made a mistake in the past; their order does not matter. This 
immediately leads to a simpler construction of a sample compression scheme for mistake- 
driven algorithms that have this additional property. Now the compression function 
iteratively finds any example that is not yet in the compression set on which the algorithm 
makes a mistake and feeds this example to the algorithm as well as adding it to the 
compression set. The number of examples saved until the hypothesis of the algorithm is 
consistent with all remaining examples is clearly bounded by the mistake bound of the 
on-line algorithm. The reconstruction function simply feeds the compression set to the 
on-line algorithm (in any order) and uses the resulting hypothesis to predict on examples 
not in the compression set. 
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5. Batch learning algorithms using sample compression schemes 

In this section, we show that any class with a sample compression scheine of size at 
most d has a corresponding batch learning algorithm, with the sample complexity of the 
batch learning algorithm given by Theorem 6. Coupled with results later in the paper, 
this improves slightly on known results of the sample complexity of maximum classes 
with finite VC dimension. 

For a class C C 2 x with a sample compression scheine of size at most k, the corre- 
sponding batch learning algorithm is a straightforward application of the sample com- 
pression scheine. The learner requests a sample sequence y± ,c  of m examples labeled 
consistently with some concept in the class C. The learner then converts the sample se- 
quence to a sample set, removing duplicates, and uses the compression function from the 
sample compression scheine to find a compression set for this sample set. The hypothesis 
of the batch learning algorithm is the hypothesis reconstructed from the compression set 
by the sample compression scheme's reconstruction function. Note that this hypothesis is 
guaranteed to be consistent with all of the examples in the original sample set. However, 
the sample compression scheme does not require this hypothesis to be consistent with 
some concept from the class C. 

THEOREM 5 (Littlestone and Warmuth, 1986) Let D be any probability distribution on 
a domain X ,  c be any concept on X ,  and 9 be anyfunction mapping sets o f  at most d 
examples from X to hypotheses that are subsets of X.  Then the probability that m > d 
examples drawn independently at random according to D contain a subset of  at most d 
examples that map via g to a hypothesis that is both consistent with all m examples and 

has error larger than e is at most Y~,i=0 (1 - 

Proof: The proof is in the appendix. • 

Using the techniques of Littlestone et al. (1994), the above theorem could be used to 
obtain bounds on the expected error of a compression scheine. Hefe we develop sample 
complexity bounds for pac-learning. 

LEMMA 1 For 0 < e, (5 <_ 1, i f  

m_> (1 ô-------) l n ~ + d + T l n  

for any 0 </3 < 1, then ~ i = o  (1 - < ~5. 

Proof: Let ~ ( ~ ~  _~~~ ~_~ (1 -/3) l~~+d+~ /3~]<m 
for 0 </3  < 1, which is equivalent to 

l l n ~  + d  + d( l + l n  d e e ~ee - 1 + ra - Ind) _< m. (1) 
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We use the fact from Shawe-Taylor et al. (1989) that 

- l n c ~ - l + c ~ m > l n m  fora l l  c~>0.  

~6 
For c~ = --g- we get 

d 
ln-ff~ - 1 + rn > inm.  

By substituting lnm into the left hand side of equation (1) we get 

1 _d lnd)__ l n ~ + d +  ~ ( l + l n m -  m 

1 
4:~ l n ~ + d ( l + l n m - l n d ) < e ( m - d )  

4:~ < ee(m-d) 5. 

Since, from Blumer et al. (1989), 

- \ d ] ' for all r e > d > 1 ,  

we have 

E (1 - e)m-, _< (I)ct(m)(1 - ~)m-d <_ V 
i=0 

The above lemma leads to sample size bounds that grow linearly in the size of the 
compression scheme d. The original bounds of Littlestone and Warmuth (1986) had 
d log d dependence. 

THEOREM 6 Let C C_ 2 x be any concept class with a sample compression scheme of 
size at most d. Then for 0 < ~, 5 < 1 , the learning algorithm using this scheme learns 
C with sample size 

m >  ( l - g )  l n ~ + d + - ~ I n  

for any 0 </3 < 1. 

Proof: This follows from Theorem 5 and Lemma 1. • 

Theorem 6 can be used to give simple bounds on sample complexity for pac-learning 
algorithms based on sample compression schemes. This choice of g can be optimized 
as done by Cesa-Bianchi et al. (1993) leading to a marginal improvement. From The- 
orem 6, batch learning algorithms are computationally efficient for any class with a 
computationally efficient sample compression scheme. 
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Later in this paper we give a sample compression scheine of size d that applies to all 
maximum classes of VC dimension d and that produces hypotheses from the class. For 
maximum classes of VC dimension d Theorem 6 slightly improves the sample complexity 
of batch learning from the previously known results from Blumer et al. and Shawe-Taylor 
et al. given in Theorem 2. 

1 Note that the upper bounds have the form O(-}(dlog ~ + log -})) where d is the size 
of a compression scheine. For maximum classes, these bounds cannot be improved 
in that there exist concept classes of VC dimension d for which there are learning 
algorithms that produce consistent hypotheses from the same class that require sample 
size f~(l(dlog-} ÷ log-})). (This essentially follows from lower bounds on the size 
of e-nets for concept classes of VC dimension d from Pach and Woeginger (1990) and 
Littlestone, Haussler, and Warmuth (1994).) Similarly, following Littlestone et al. (1994), 
one can show that there are concept classes of VC dimension d with a learning algorithm 
using a compression scheme of size d that requires the same sample size. Ehrenfeucht, 
Haussler, Kearns, and Valiant (1987) give general lower bounds of f2(¼(d + log ½)) for 
learning any concept class of VC dimension d. 

For a class with a mistake-bounded on-line learning algorithm with mistake bound 
k, Littlestone (1989) gives a conversion to a batch pac-learning algorithm with sample 
complexity at most 

(481n ~ + 4k + 231n(k + 2) - 2) 

1 k) 
= O ( 1 1 n 5  + e " 

This is an improvement over the sample complexity that would result from applying The- 
orem 6 to sample compression schemes based on mistake-bounded learning algorithms. 
Note that our One-Pass Compression Scheme based on mistake-bounded learning algo- 
rithms can be modified to give "unlabeled" compression sets, where the labels of the 
examples in the compression set do not have to be saved. It is an open problem whether 
these "unlabeled" compression schemes result in an improved sample complexity. 

In practical algorithms one might want to compress the sample to a small compression 
set plus some additional information. This motivates the following extension of a sample 
compression scheine by Littlestone and Warmuth (1986). 

Definition. An extended sample compression scheme of size at most k using b bits for a 
concept class C on X consists of a compression function and a reconstruction function. 
The compression function f maps every finite sample set to b bits plus a compression 
set, which is a subset of at most k labeled examples. The reconstructionfunction g maps 
every possible compression set and b bits to a hypothesis h C_ X. This hypothesis is not 
required to be in the class C. For any sample set y+,c  labeled consistently with some 
concept e in C, the hypothesis g(f(Y'±,c)) is required to be consistent with the original 
sample set y±,c.  

Theorem 5 can be easily generalized as follows. 
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•HEOREM 7 (Littlestone and Warmuth, 1986) Let D be any probability distribution 
on a domain X ,  c be any concept on X ,  and 9 be any function mapping from sets 
of at most d exampIes from X plus b bits to hypotheses that are subsets of X.  Then 
the probability that ra >_ d examples drawn independently at random according to D 
contain a subset of at most d examples that combined by some b bits map via 9 to a 
hypothesis that is both consistent with all rn exampIes and has error larger than e is at 

By generalizing Lemma 1 this leads to the following sample complexity bound. 

~~'HEOREM 8 Let C C_ 2 x be any concept class with an extended sample compression 
scheine of size at most d examples plus b bits. Then for 0 < e, 6 < 1 , the Iearning 
algorithm using this scheme learns C with sample size 

1 ( 1 1  b d ~ )  
m>_ (1 /3"-----) l n ~ + d + - l n 2 + - l n e  e 

B r  any O < /3 < l. 

6. Sample compression schemes for maximum classes 

In this section we explore sample compression algorithms based on the VC dimension of 
a class. Theorem 4 shows that any finite class C has a sample compression scheme of 
size log IC I. Theorems 1 and 2 suggest that analogs to Theorem 4 should hold when we 
replace log ICl with the VC dimension of C. Thus, in order to discuss sample compression 
schemes for infinite as well as finite classes, we consider sample compression schemes 
based on the VC dimension of the class. 

We first define a maximum class of VC dimension d, and then show that any maximum 
class of VC dimension d has a sample compression scheine of size d. We further show 
that this result is optimal, in that for X sufficiently large, there is no sample compression 
scheine of size less than d for a maximum class C C_ 2 x of VC dimension d. 

Definition. We use the definitions from Welzl (1987) of maximum and maximal concept 
classes. A concept class is called maximal if adding any concept to the class increases 

the VC dimension of the class. Let ffa(m) be defined as ~ i = 0  for m > d, and as 

2 "~ for m < d. Frorn Vapnik and Chervonenkis (1971) and Sauer (1972), for any class 
C of VC dimension d on a domain X of cardinality m, the cardinality of C is at most 

A concept class C of VC dimension d on X is called maximum il, for every finite subset 
Y of X, C I Y  contains ~ä(IYI) concepts on Y. Thus ä maximum class C restricted to 
a finite set Y is of maximum size, given the VC dimension of the class. From Welzl 
and Woeginger (1987), a concept class that is maximum on a finite domain X is also 
maximal on that set. 
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Class D Class E 

w x y z  w x y z  

0 0 0 0  0 0 0 1  

0 0 1 0  0 0 1 0  

0 0 1 1  0 0 1 1  

0 1 0 0  0 1 0 0  

0 1 0 1  0 1 0 1  

0 1 1 0  0 1 1 0  

0 1 1 1  0 1 1 1  

1 0 0 0  1 0 0 1  

1 0 1 0  1 0 1 0  

1 0 1 1  1 1 0 0  

1 1 0 0  

Figure 2. Class D is maximum. Class E is maximal but not maximum. 

Example: maximum and maximal classes. Figure 2 shows two classes, class D and class 
E,  on the set X = {w, x, y, z}. For each table, each row represents one concept on X. 
Recall that a concept c in a class can be thought of  eithër as a subset of positive examples 
from the set X, or as the characteristic function of that subset on X. For example, Figure 
2 shows that the null concept, represented by "0000", is in class D but not in class 
E.  Both classes are of  VC dimension 2; for example, in both classes the set {9, z} 
is shattered, because both classes contain all four possible concepts restricted to {y, z}. 
However, neither class contains a shattered set of size 3. That is, there is no subset of X 
of size 3 for which either class contains all 8 possible concepts restricted to that class. 
Class D and class E are both maximal of VC dimension 2, because adding an additional 
concept to either class would shatter a set of size 3. For example, adding the concept 
"0000" to the class E would shatter the set {x, y, x}, increasing the VC dimension to 
three. 

Class D is maximum, because class D is of maximum size on all subsets: every subset 
of  X of size 1 or 2 is shattered, class D contains ~52(3 ) = 7 of the 8 possible concepts 
on every subset of size 3, and class D contains ~52(4) = 11 concepts on X.  Class E is 
not maximum of VC dimension two because it contains less than 02(4) = 11 concepts. 
Thus, class E in Figure 2 is maximal but not maximum. [] 

Natural examples of maximum classes that are discussed later in the paper include 
positive halfspaces, balls in _R ~, and positive sets in the plane defined by polynomials 
of  degree at most n - 1. More examples of  maximal but not maximum classes can be 
found in Figure 6, and are discussed by Welzl and Woeginger (1987) and Floyd (1989). 
As Section 7 shows, most maximal classes are in fact not maximum. Nevertheless, we 
do not know any natural example of a maximal but not maximum class. 
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6.1. The sample compression funct ion f o r  m a x i m u m  classes 

Definition. For x E X, we define C - x,  the x-restriction of C, as C t ( X  - {x}), and 
we define C{ x}, the x-reduction of C, as the class {e E C[x ~ e and c U {x} E C}. 
Both the x-restriction of C and the x-reduction of C have the domain X-{x}. For each 
concept c in C {~}, the two concepts c U {(x, 0)} and c tg {(x, 1)} are both in the class 
C. 

As an illustration, consider the maximum class D in Figure 2. The class C {z} on 
X - {z} contains four concepts. These concepts, represented as characteristic vectors 
on { w , x , y } ,  are 001,010,  011, and 101. 

Theorem 9 from Welzl shows that we can determine if a class C of  VC dimension d 
is maximum simply from the cardinality of  the class. The proof shows that if C is of 
maximum size on the entire domain X,  then C must be of  maximum size when restricted 
to any subset of X.  

THEOREM 9 (Welzl, 1987) A concept class C o f  VC dimension d on a finite domain X 
is maximum if  and only i f  ICt = ~d(IXl ) .  

Proof:  B y  definition, if C is maximum, then IcI  = ~d( IXI ) .  We show that if ICI = 
~d(IXI) ,  then for every" Y C_ X,  I(C[Y)I = ~d(IYI)-  

Assume that ]C I = 'I)d(m), for IXI = m. Let x E X.  By definition, for every concept 
e in C{ x} the class C contains two concepts that are consistent with c on X-{z};  for 
every concept c in C - x but not in C {z}, the class C contains one concept that is 
consistent with c on X-{x}. Thus tCI = IC - x I + iC{:~}l. The class C - x is of  VC 
dimension at most d on X-{x}, so IC - zt _< 4~d(m -- 1). 

The class C {~} is of VC dimension at most d - 1 on X-{x}. If  some set Z C X of 
cardinality d was shattered by the class C {z}, then the set Z U {x} would be shattered 
by the class C, contradicting the fact that C is of  VC dimension d. Thus IC{~}I _< 
(JX)d-l(T/'~- 1). 

Because (Pd(m) = Od(m -- 1) + (I)d-l(m -- 1), it follows that IC - x I = (Pd(m -- 1), 
and that tC{Z}I = ~ S d _ l ( m -  1). By induction, for any Y c_C_ X, t (CIY)I  = ~d(Igl). 

Corollary 1 from Welzl is the key statement of the underlying structure of  maximum 
classes. Corollary 1 shows that for a finite maximum class C of  VC dimension d, the 
x-restriction C - x and the x-reduction C{ ~} are both maximum classes on X-{z}.  The 
result is based on the observation that the class C {~} is of VC dimension at most d - 1, 
and follows from the counting argument used in Theorem 9. 

COROLLARY 1 (Welzl, 1987) Let C C_ 2 x be a maximum concept class o f  VC dimen- 
sion d > 1 on the finite domain X. Then for  any z E X ,  C {~} is a maximum class o f  
VC dimension d -  1 on X-{z} .  I f  IX  - {x}t _> d, then C - z is a maximum class of  VC 
dimension d on X-{z} .  

Proof:  Let X be of cardinality m. From the definition of  maximum classes, I C - x I 
= ~ d ( m  -- 1). From Theorem 9, if IX - {x}t >_ d, then C - z is a maximum class 
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on X-{x} of VC dimension d. Similarly, because ICl = t C -  x] + ]C{Z}], and C{ ~) is 
of VC dimension at most d - 1, C {~} is a maximum class of VC dimension d - 1 on 
X-{x} of size ~d- l ( r a  -- 1). • 

Definition. Let C C 2 x be a maximum concept class of VC dimension d, and let A = 
{xl ..... xÆ} for A C X. Then C A, the A-reduction of C, is defined by Welzl (1987) as 
the class (((C{Z~}){z2})...) {zk}. 

The class C A consists of all concepts c on X - A such that for any labeling of A, the 
concept c when extended by that labeling remains in the class C. Thus, for each concept 
in C A, there a re  2 FA] related concepts in C. From Welzl (1987), for any distinct x and y 
in X, (C{X)) {v} = (C{Y}) {x}. Therefore for any A C X, the class C A is well-defined. 

COROLLARY 2 (Welzl, 1987) Ler C C_ 2 x be a maximum concept class of VC dimension 
d on the finite domain X. Ler A be any subset of X of cardinality d. Then the class C A 
is of VC dimension O, and thus consists of a single concept. 

Proof: This follows from repeated application of Corollary 1. The class C A contains 
the single concept e on X-A such that, for any labeling A ± of the elements of A, c U A ± 
remains a concept in C. • 

Definition. For any maximum concept class C _C 2 x of VC dimension d on the finite 
domain X, and for any set A C X of cardinality d, CA, the expansion of A, is defined by 
Welzl (1987) as the unique concept in C A, the A-reduction of C, on the domain X-A. 

Example: at most two positive examples. As an example, consider the maximum class 
C of VC dimension two on X that consists of all concepts with at most two positive 
examples. Then, for {xl, x2} C_ X, c{xl,x2} denotes the concept on X -  {xl, x2} where 
every example is a negative example. This is the only concept on X - {xl, x~} that 
remains a concept in C if both xl and x2 are positive examples. [] 

Example: intervals on the line. Let Cm be the class containing all unions of at most n 
positive intervals on the line. This class is maximum of VC dimension 2n. This follows 

because for any finite set of ra points on the line, for ra _> 2n, there are ~ i = o  i 

ways to label those m points consistent with at most n positive intervals on the line. For 
C3, let A be the set of 6 points {x l , x2 , x3 , x4 , x s , xG}  shown below. Figure 3 shows 
the unique labeling of the rest of the line for the concept c »  For any labeling of the 
points in A, the resulting labeling of the entire line corresponds to some concept in Ca. 

[] 

Definition. For any maximum concept class C of VC dimension d on the finite domain 
X, and for any A C_ X of cardinality d, there is a corresponding concept CA on the set 
X-A. For the labeled set A +, let CA~, the expansion of A +, denote the concept on X with 
X-A labeled as in the concept CA, and with A labeled as in A +. Thus for every labeled 
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x 1 x 2 x 3 x 4 x 5 x 6 

.............................. i :~ ......... i 
0 1 0 1 0 1 0 

Figure 3, A compression set for the union of three intervals on the line. 

set A ~: of cardinality d, for A C X, there is a corresponding concept CAi on X. We say 
that the set A =~ is a compression set for the concept CA±, and that the set A i represents 
the concept CA±. Thus every set of d labeled examples from the domain X represents 
a concept from the maximum class C. Speaking loosely, we say that a compression set 
A + predicts labels for the elements in X, according to the concept CA±. 

Example: positive halfspaces. Let Cn be the class containing all positive half-spaces 
in R •. That is, Cn contains all n-tuples (Yl,--- ,Y~) such that y,~ > a n - l Y n - t  + ... + 
aly l  + ao, for Yl, .., Y~ C X. (Note that for positive half-spaces the coefficient before 
yn is always +1.) Let the finite sample set X C R ~ contain at most n examples on any 
hyperplane. Then from Floyd (1989), the class C~ is maximum of VC dimension n on 
X. Let A C X be a set of n examples in R n. The concept cA on X - A represents the 
positive halfspace defined by the unique hyperptane determined by the set A. For any 
labeling A + of A, the concept CA± represented by the compression set A ± is consistent 
with some positive half-space in /~n. The compression set A essentially defines the 
boundary between the positive and negative examples. This gives a computationatly- 
efficient compression scheme of size n for positive half-spaces in _R'% 

This application of compression schemes can be generalized to any class of positive 
sets defined by an n-dimensional vector space of real functions on some set X. This 
generalization includes classes such as balls in R n -1 and positive sets in the plane defined 
by polynomials of degree at most n - 1. [] 

Lemma 2 shows that CA± in the class cIY is identical to the restriction to the set Y 
of CA± in the class C. This lemma is necessary to show that there is a unique definition 
of the concept CA± for infinite classes. 

LEMMA 2 Let C C_ 2 x be a maximum class of  VC dimension d, for X finite. Let 
A C Y C X,  for IAI = d. Then for any labeling A ± of  A, and for z E Y,  CA± in the 
class C and CA± in the class C I Y  assign the same label to the element z. 

Proof: If z E A, then for both CA± in the class C and CA± in the class CIY,  z is 
labeled as in A +. tf  z ~ A, then assume for purposes of contradiction that Lemma 
2 is false. Without loss of generality, assume that CA± in the class C contains (z, 0), 
and that Ca+- in the class C I Y  contains (z, 1). Because Ca± in the class C contains 
(z, 0), then for every labeling of A, the class C contains a concept with that labeling, 
and with (z, 0). Because Ca± in the class CJY contains (x, 1}, then for every labeling 
of A, the class C]Y contains a concept with that labeling, and with (z, 1). Then the set 
A U {z} is shattered in the class C, contradicting the fact that C is of VC dimension d. 
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Definition. The concept CA for an infinite set X.  For the infinite set X, for ACBCX,  
for IAl=d, and for B finite, we define the concept CA for the class C as identical, when 
restricted to the finite set B-A, to the concept Ca in the finite class CIB.  The concept CA 
in the class C assigns a unique label to each element z EX-A; if not then there would be 
two finite subsets B1 and B2 of X containing z,  such that CA in C]Æ 1 and Ca in CIB2 
assigned different labels to the element z, contradicting Lemma 2. 

Example: two-dimensionalpositive halfspaces. Consider the class of  positive half-spaces 
in /~2, given an infinite domain X C R 2 with at most two collinear points. This 
class is maximum of VC dimension 2. The sample set shown in Figure 4 can be 
represented by the compression set A ± = {(zl ,  1}, (z2, 0}}. For any finite subset of 
X,  the concept represented by CA~ is consistent with some positive halfspace on X.  

[]  

1 
• 1 

1 0 ~ ~ ~ ~ ~ ~ "  

~~ 0 

0 

Figure 4. A colnpression set for positive halfspaces in the plane. 

Theorem 10 is the main technical result used to show that every maximum class C of 
VC dimension d has a sample compression scheme of  size d. In particular, Theorem 10 
shows that for a maximum class C of VC dimension d, given a finite domain X, every 
concept in the class is represented by some labeled set A i of cardinality d. Theorem 10 
is also stated without proof by Welzl (1987). 

TItEOREM 10 Ler C C_ 22 be a maximum concept class o f  VC dimension d on a finite 
domain X, for  IXI = m >_ d. Then for  each concept c E C, there is a compression set 
A i o f  exactly d elements, for  A ± C_ X × {0, 1}, such that c = CA~. 

Proof- The proof is by double induction on d and m. The first base case is for m = d 
for any d > 0. In this case, we save the complete set X + of  d elements. 

The second base case is for d -- 0, for any m. In this case there is a single concept in 
the concept class, and this concept is represented by the empty set. 

Induction step: We prove that the theorem holds for d and m, for d > 0 and m > d. By 
the induction hypothesis, the theorem holds for all d t and rrd such that d t _< d, rn r < m, 
and d t + m t < d + rn. Ler X = {:tl, z2, ..., z ~ } .  There are two cases to consider. 

Case 1 Let c be a concept in C - z,~ such that cU  {•zm,0)} and cU  {(z~ ,  1}} are 
not both in C. Without loss of generality, assume that only c U {(zm, 0}} is in U. 
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From Corollary 1, C - z,~ is maximum of VC dimension d. Thus by the induction 
hypothesis, each concept c in C - zrn can be represented by a compression set A :k of d 
labeled elements, for A c_ X - tErn, with c identical to Ca+- in the class C - am. From 
Corollary 2, A ± represents some concept CA+- on X in the class C. From Lemma 2, CA~ 

in the class C - am  agrees on X - a m  with CA~: in the class C .  If  cA~. in the class C 
contains (am,  1}, then c O {(zrn, 1}} is in C, violating the assumption for Case 1. Thus 
cA+- in the class C contains (z,~, 0}, and case 1 is done. 

Case 2: Let c be a concept in C -  zrn such that ct0 {(zm,0}} and c U  {(mm, l )}  
are both in C. Thus c E C {~~}. From Corollary 1, C {~'~} is a maximum class of  VC 
dimension d - 1 on X - am. By the induction hypothesis, there is a compression set 
B ± of d - 1 elements of X - am, such that c is identical to OB+- in the class C {xm}. 

Let el : CU {{tErn,0)}. Ler A ± = B + U {(xm,0}}. From Corollary 2, the labeled 
set A ± of cardinality d represents a unique concept Ca+- in C. 

We show that CA+- in the class C and CB~ in the class C {~"} assign the same labels 
to all elements of  X - zrn. Assume not, for purposes of contradiction. Then there is 
some element zi  of (X - am) - B such that zi  is assigned one label le in Ca± in the 
class C, and another label le in cB+- in the class C {:~~}. Because CA+- in the class C 
contains (zi, le), then for ±ach of the 24 labelings of A, and for (ze, le), there is a concept 
consistent with that labeling in C. Because CB± in the class C {z~} contains (tEe, K), then 
for ±ach of the 2 d-1 labelings of B, and for {zi ,~),  there is a concept consistent with 
that labeling in C {zÈ~}. For each concept in C {z~} ,  th±re is a concept in C with {am, 0}, 
and another concept in C with (am, 1}. Thus the d + 1 elements in A U{zi} are shattered 
by the concept class C. This contradicts the fact that the class C is of  VC dimension d. 
rhus the set A + is a compression set for the concept c U{(Zm, 0}} , and case 2 is done. 

Note that for a concept c E C, th±re might be more than one compression set A ± such 
that c is identical to CA e . 

Theorem 11 extends Theorem 10 to give a compression scheme for any maximum 
class of VC dimension d. Let C C 2 x be any maximum class of VC dimension d. The 
input to the sample compression scheme is any labeled sample set Y±'C of size at least 
d, for Y C_ X. The examples in Y+'~ are assumed to be labeled consistently with some 
concept c in C. 

The VC Compression Scheme (for maximum classes). 

The compression function: The input is a sample set y ± , c  of cardinality at least d, 
labeled consistently with some concept c in C. The finite class C I Y  is maximum 
of VC dimension d. From Theorem 10, in the class C [ Y  there is a compression set 
A + of exactly d elements, for A :k C_ y± ,c ,  such that the concept c]Y  is represented 
by the compression set A +. The compression function chooses some such set A ± 
as the compression set. 

• The reconstruction function: The input is a compression set A ~: of cardinality d. For 
an element z E A, the reconstruction function predicts the label for z in the set A ±. 
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For z • A, let C 1 be the class C restricted to A U {z}. C1 is a maximum class of 
VC dimension d on A ~J {z}. Ler CA in C~I predict (z, l), for 1 6 {0, 1}. Then the 
reconstruction function predicts the label T for z. 

Note that in the VC Compression Scheme sample sets of size at least d are compressed 
to subsets of size equal to d. 

THEOREM 11 Ler C C_ 2 X be a maximum class of VC dimension d on the (possibly 
infinite) domain X. Then the VC Compression Scheine is a sample compression scheine 
of size d for C. 

Prõof: Let the input to the sample compression scheine be a finite labeled sample 
set y±,c of size at least d. The compression function saves some labeled set A ± of 
cardinality d, for A ± c y:k,% such that CA-- in the class C]Y is consistent with the 
sample set. The reconstruction function gives as a hypothesis the concept cA± in the 
class C. 

From Theorem 9, C[Y is a maximum class of VC dimension d. Thus, by 1%eorem 10, 
there exists a subset A ± of y±,c, for IA±I = d, such that CA:L in the class CIY 
is consistent with the sample set. From Lemma 2, the concept CA~: in the class • 
is consistent with CA± in the cla'ss CIY on the original sample set Y. Thus we have 
a sample compression scheme of size d for maximum classes of VC dimension d. 

6.2. An algorithm for the compression function 

This section gives a Greedy Compression Algorithm that implements the VC Compres- 
sion Scheine for a maximum class C of VC dimension d on the (possibly infinite) domäin 
X. The proof of Theorem 10 suggests an algorithm to find the compression set. The input 
for the compression algorithm is a finite sample set y± ,c  of size at least d, labeled con- 
sistently with some concept c in C. The output is a labeled compression set A ± C y:k,~ 
of cardinality d that represents some concept in C consistent with the sample set. The 
Greedy Compression Algorithm uses the consistency oracle defined below. The more 
efficient Group Compression Algorithm, described later in this section, requires the more 
powerful group consistency oracle, also defined in this section. 

Definition. The consistency problem for a particular concept class C is defined in 
Blumer et al. (1989) as the problem of determining whether there is a concept in C 
consistent with a particular set of labeled examples on X. We define a consistency oracle 
as a procedure for dec±ding the consistency problem. 

The Greedy Compression Algorithm (for the VC Compression Scheme). 

• The compression algorithm: The input is the finite sample set 

y±,c = {<xl, 11),., <~~, 1,~d }, 
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labeled consistently with some concept e in C. Initially the compression set A ± is 
the empty set. The compression algorithm examines each element of the sample set 
in arbitrary order, deciding whether to add each element in turn to the compression 
set Am. At step i, the algorithm decides whether to add the labeled element (xi, li} 
to the partial compression set A ±, for 0 _< IAt _< d - 1. 

The algorithm determines whether, for each possible labeling of the elements in 
A U {xi}, there exists a concept in CIY  consistent with that labeling along with the 
labeling of other elements given in the sample set. If so, then (xi, l~} is added to 
A +. The compression algorithm terminates when A ± is of cardinality d. 

• The reconstruction algorithm: The input is a compression set A ± of cardinality d, 
and the reconstruction function is asked to predict the label for some element x E X. 
If :c E A, then the reconstruction algorithm predicts the label for x in A ~:. If x ~ A, 
let G'l be Ct(A U {x}). If, for each of the 2 a possible labelings A + of A, there is 
a concept in C1 consistent with A + O (x, 0), then CA±,Cl predicts label '0' for the 
element x. Otherwise, CA±,Cl predicts the label '1' for x. 

Example: intervals on the line. Consider the Greedy Compression Algorithm applied to 
a finite sample set from the class C3 of at most 3 intervals on the line, as in Figure 1. The 
examples in Figure 1 are labeled consistently with some concept c in C3. Consider the 
examples one at a time, starting with the leftmost example. Let the initial compression 
set A ± be the empty set. First consider the example ":c1". There is no concept in C3 
with @1, 1), and with the other examples labeled as in Figure 1. Therefore the example 
"xa" is not added to the current compression set. There is a concept in C3 with {x2, 1), 
and with the other examples labeled as in Figure 1. Therefore, (z2, 0} is added to the 
current compression set A ±. Now consider the element "x3". For every labeling of 
the elements {:c2, x3}, is there a concept in Ca consistent with that labeling, and with 
the labeling of the other points in the sample set? No, because there is no concept 
in C3 with (x2, 1}, (:ca, 0}, and with the given labeling of the other points. Therefore 
'x3' is not added to the current compression set. Proceeding in this fashion, the Greedy 
Compression Algorithm constructs the compression set A = {(x2, 0), (x4, 1}, (x6, 0}, 
(xlo, 1), (x13, 0), {:c15, 1}}. The reconstruction function for this class is illustrated by 
Figure 3. [] 

Theorem 12 shows that the Greedy Compression Algorithm terminates with a correct 
compression set of size d. 

THEOREM 12 Let C C_ 2 x be a maximum class of VC dimension d, and let y-k,~ be 
a flnite sample set labeled consistently with some concept c E C, for IY±'~l >_ d. Then 
the Greedy Compression Algorithm after each step maintains the invariant that, for the 
partial compression set A ±, the labeled set ( Y  - A) ±'~ is consistent with some concept 
in C "4. Furthermore, the Greedy Compression Algorithm on Y+-'~ terminates with a 
compression set of cardinaIity d for the concept c. 

Proof: From the algorithm it follows immediately that at each step the invariant is 
maintained that the labeled set (Y - A) ±,~ is consistent with some concept in C A. 
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Assume for purposes of  contradiction that the Greedy Compression Algorithm ends 
with the compression set A ±, where IA+I = s < d. Then the labeled sample set y±,c  
is consistent with some concept on Y-A in C A. From Corollary 1, C A is a maximum 
class of VC dimension d - s on Y-A. From Theorem 10, there is a compression set of 
cardinality d - s from (Y - A) ±'c for c](Y - A) in the class C A. Let zj  be a member 
of some such compression set of cardinality d - s. Then (CA) {xj} is a maximum 
class of VC dimension d - s - 1 on (Y-A)-{zj} that contains a concept consistent with 
c. Ler A1 C_ A denote the partial compression set held by the compression algorithm 
before the compression algorithm dec±des whether or not to add the element xj.  Then 
(C AI){°:D contains a concept consistent with c. Therefore z j  would have been included 
in the partial compression set. This contradicts the fact that xj  ¢_ A. Therefore the 
compression algorithm can not terminate with a compression set of cardinality s < d. 

[] 

The compression algorithm from the Greedy Compression Algorithm requires at most 
( m _ d ) 2 a - 1 + 2  a_ 1 calls to the consistency oracle for C. This upper bound holds because 
the d elements added to the compression set require at most 2 o +  21 +. . .  + 2 a -  1 = 2 a _ 1 
calls to the consistency oracle, and each other element requires at most 2 a-1 calls to 
the consistency oracle. When the compression set Ai contains i examples, and the 
compression algorithm considers whether or not to add the next example (xj, lj) to the 
compression set, it is already known that the sample set on Y - Ai - {xj } is consistent 
with Ix j , l j )  and each possible labeling of  the elements in A, Thus the compression 
algoritbm has to make at most 2 i calls to the consistency oracle to dec±de whether or not 
to add xj to the compression set. 

To predict the label for x~, the reconstruction function needs to make at most 2 a calls 
to the consistency oracle. 

Note that if the consistency problem for C is not efficiently computable, then we are not 
likely to find computationally-efficient algorithms for the sample compression scheme. 
From Pitt and Valiant (1988) and Blumer et al. (1989), if the consistency problem for C 
is NP-hard and R P  ~; N P ,  4 then C is not polynomially learnable by an algorithm that 
produces hypotheses from C. 

A more efficient algorithm for the VC Compression Scheme is based on the more 
powerful group consistency oracle defined below. 

Definition. We define a group consistency oracIe for the maximum class C of  VC 
dimension d as a procedure that, given as input a set Y± of labeled examples and a 
set A C Y, can determine whether the examples in Y± are labeled consistently with 
some concept in the class C A. We say that a family of classes C~ _c 2 xt, , n > 1, hat a 
polynomial-time group consistency oracle if there is a group consistency oracle that runs 
in time polynomial in the sample size and in the VC dimension of the class. 

Example: intervals on the line. Let C be the maximum class C of VC dimension 2n of at 
most n intervals on the line. Given a set A, a poly-time group consistency oracle needs to 
determine if a particular labeled set Y:~ of  points is consistent with some concept in C A. 
The group consistency algorithm assigns that labeling A ± to the points in A that gives the 
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maximum number of intervals for the set of points (Y tO A)± .  The labeled set ( Y - A )  ± is 
in C A if and only if the maximum number of  positive intervals for ( Y U A )  + is at most n. 

[]  

The Group Compression Algorithm (for the VC Compression Scheme). 

The compression algorithm: The elements of the sample y ± , c  are examined one at 
a time, as in the earlier Greedy Compression Algorithm. Initially, the compression 
set A is empty. At step i, to determine whether to add (xi, l~) to the set A ±, the 
compression algorithm calls the group-consistency oracle to determine if for every, 
labeling of A tO {xi}, there is a concept in C consistent with that labeling, and with 
the labeling of  the other elements of  y + , c  If  so, (xi, li) is added to the compression 
set A J:. 

The reconstruction algorithm: The input is a compression set A J: of cardinality d, 
and the hypothesis is the concept CA±. The group consistency oracle is used to 
predict the label for an element z E X - A. 

The group compression algorithm requires at most m calls to the group consistency 
oracle, for a sample set of  size ra. The reconstruction algorithm can predict the label 
for x.i in CAi with one call to the group consistency oracle. If  the family of  classes 
Cn C 2x~ ", n _> 1, has a polynomial-time group consistency oracle, then the sample 
compression scheme for C,~ can be implemented in time polynomial in the VC dimension 
and the sample size. 

6.3. Infinite max imum classes are not necessarily maximal  

This section discusses infinite maximum classes that are not maximal. For a maximum 
but not maximal class C of VC dimension d on an infinite domain X ,  and for some 
compression set A of size d, the concept CA± is not necessarily a member  of  the class 
C. 

Corollary 1 from Welzl showed that for a finite maximum class C, both the x-restriction 
C - x and the x-reduction C {x} are maximum classes on X - {x}. In this section we 
show that for an infinite maximum class, the x-restriction C - x is a maximum class on 
X - {x}, but the x-reduction C {'~} is not necessarily a maximum class. Floyd (1989, 
p. 25) shows that Corollary 1 can be extended to any maximum and also maximal class 
on an infinite domain X. 

Corollary 3 below shows that for an infinite maximum class, the x-restriction C - x is 
also a maximum class. From Floyd (1989), the proof follows directly from the definition 
of a maximum class as of  maximum size on every finite subset of  X.  

COROLLARY 3 Let C C 2 x be a maximum concept class o f  VC dimension d on the 
infinite domain X. Then for  any x E X ,  C - x is a maximum class o f  VC dimension d 
o n  X-{z}, 
Proof" The w o o f  follows directly from the definition of  a maximum class. • 
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Any maximum class C on a finite domain X is also a maximal class. However Welzl 
and Woeginger (1987) show that tbr an infinite domain X for any d _> 1 there are concept 
classes of VC dimension d that are maximum but not maximal. This occurs because a 
maximum class C is defined only as being maximum, and therefore maximal, on finite 
subsets of X. A maximum class C on X is not required to be maximal on the infinite 
domain X. 

Example: a maximum class that is not maximal. Consider the maximum class C of VC 
dimension 1 on an infinite domain X where each concept contains exactly one positive 
example. This class is not maximal, because the concept with no positive examples 
could be added to C without increasing the VC dimension of the class. However, the 
class C is maximum, because it is of maximum size on every finite subset of X. For 
this class, for x cX, C {~} is the empty set. From the definition above, the concept c{:~} 
is defined by its value on finite subsets of X. Thus c{x} is defined as the concept with 
all negative examples on X-{x}, even though c{x} U (x, 0} is not a concept in C. 

[] 

6.4. A lower b o u n d  on the size of  a sample compression scheme 

In this section we show that for a maximum class C C 2 x of VC dimension d for 
X sufficiently large, there is no sample compression scheme of size less than d. This 
shows that the sample compression schemes of size at most d given above for maximum 
classes of VC dimension d are optimal, for X sufficiently large. We also show that for 
an arbitrary concept class C C 2 2 of VC dimension d (not necessarily maximum), there 
is no sample compression scheme of size at most d/5. 

These results refers to a sample compression scheme as defined in Section 3, where a 
sample compression set consists of an unordered, labeled subset from the original sample 
set. Theorem 13 follows from a counting argument comparing the number of labeled 
compression sets of size at most d - 1 with the number of different labelings of a sample 
of size m that are consistent with some concept in C. 

THEOREM 13 For any maximum concept class C C 2 x of VC dimension d > O, there 
is no sample compression scheme of size less than d for sample sets of  size at least 
d22 d-1. 

Proof: Let Y be any subset of X of cardinality m ._> d22 d-1. The class CIY contains 
(bd(m) concepts. We show that there are less than (bd(m) labeled compression sets 
of size at most d - 1 from Y. For each set of i elements in a compression set, for 
0 < i < d -  1, those elements could be labeled in 2 ~ different ways. Therefore there are 
at most 

d - 1  

i=0  

distinct labeled compression sets of size at most d - 1 from Y. 



294 S. F L O Y D  A N D  M. W A R M U T H  

We show that 

i = 0  i = 0  

d - -1  

i = 0  

It suffices to show that 

d ( 2 d - l - 1 ) ( d - l m  ) < (re~)  = ( m d  1 ) m - d + l d  

This is equivalent to showing that 

d22 d-1 - d 2 + d -  1 < m. 

This inequality holds because m _> d22d-1. III 

Theorem 13 shows that for any infinite maximum class of VC dimension d, there is 
no sample compression scheme of size less than d. Theorem 13 is also likely to apply 
to most finite maximum classes of practical interest. For classes on finite domains with 
n attributes, each at least two-valued, the size of the domain X is at least 2 '~. Typically 
the task is to learn polynomial-sized rules of some type, so classes of practical interest 
are likely to to have a VC dimension that is at most polynomial in n, giving a sample 
space that is exponential in the VC dimension. 

Note that the argument in Theorem 13 does not necessarily apply for classes that are 
not maximum. For example, consider the class C of arbitrary halfspaces in the plane, 
on a set X with no three cotlinear points. From Blumer and Littlestone (1989), the class 
C has VC dimension three, but there exists a sample compression scheme of size two 
for this class. Class C is neither maximum nor maximal; for some sets of ~bur points 
in the plane there are less than ~a(4) = 15 ways to label those four points consistently 
with some arbitrary halfspace. Theorem 14 below gives a lower bound for the size of a 
sample compression scheme for an arbitrary concept class C of VC dimension d. 

THEOREM 14 For an arbitrary, concept class C of  VC dimension d, there is no sample 
compression scheme of  size at most d/5 for sample sets o f  size at least d. 

Proof: Let Y be any set of d unlabeled examples. There are at most 

d/5 

i = 0  

compression sets of size at most d/5 from Y. Since from Blumer at at. (1989) 

• k(rn) < ( e @ )  k _ for all r e > k >  1, 
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the number of  compression sets is bounded above by 

(lOe) d/5 < 32 ~/5 = 2 ~. 

Thus if ]z is shattered by the class C, then there are not enough compression sets for 
the 2 d labelings of Y. • 

7. M a x i m a l  classes 

In this section we discuss randomly-generated maximal classes. Although we have 
no natural example of  a maximal class that is not also maximum, we show that the 
vast majori ty of  randomly-generated maximal  classes are not maximum. It is an open 
question whether there is a sample compression scheine of size d for every maximal 
class of  VC dimension d. In this section we describe a sample compression scheine that 
is a modification of the VC Compression Scheine and that applies for some classes that 
are maximal but not maximum. 

Every class C of VC dimension d on a finite set X can be embedded in a maximal 
class of  VC dimension d: simply keep adding concepts to the class C until there are no 
more concepts that can be added without increasing the VC dimension. From Welzl and 
Woeginger (1987), every maximal  class of  VC dimension 1 is also a maximum class, 
but for classes of  VC dimension greater than 1, there are maximal classes that are not 
maximum. Figures 2 and 6 both show classes of  VC dimension 2 that are maximal but 
not maximum. 

7.1. Randomly-generated maximal classes 

This section defines a randomly-generated maximal  class of VC dimension d on a finite 
domain X. We show that for VC dimensions 2 and 3, a large number of  randomly- 
generated maximal classes are not maximum. There are many natural examples of 
maximum classes, but in spite of  the abundance of  classes that are maximal but not 
maximum, we are not aware of  a natural example from the literature of  a class that is 
maximal hut not maximum. 

We define a randomly-generated maximal class by the following procedure for ran- 
domly generating such classes. 

Procedure for generating a random maximal class of VC dimension d. 

1. For a maximal class of  VC dimension d on a set of  m elements, there are 2 ~ possible 
concepts on these m elements. Each possible concept is classified as a member of 
the class C, not a member of C, or undecided. Initially, the status of each possible 
concept is undecided. At  each step, the program independently and uniformly selects 
one of the undecided concepts c. Step 2 is repeated for each selected undecided 
conceot. 
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2. If the undecided concept c can be added to the class C without increasing the VC 
dimension to d + 1, then the concept c becomes a member of the class C. Otherwise, 
the concept c is not a member of the class C. 

After the status of all 2 ~ possible concepts has been decided, the resulting class C is 
a maximal class of VC dimension d. No additional concepts can be added to the class 
without increasing the VC dimension of the class to d + 1. Because the procedure for 
randomly generating a maximal class examines all 2 m possible concepts, the procedure 
can only be run for small values of ra. Our program uses a pseudo-random number 
generator to select undecided concepts. 

E 

The size rn of the domain X 

Figure 5. Randomly-generated maximal classes of VC dimension 2. 

From Theorem 9, a program can determine if a given class C C 2 x of VC dimension d 
is a maximum class simply by counting the number of concepts in the class. Figure 5 
shows the percent of randomly-generated maximal classes of VC dimension 2 that are also 
maximum, from our experiments. The x-axis shows the size ra of domain X; the y-axis 
shows the percent of the randomly-generated maximal classes that are maximum. For 
each value of ra C {4, 6, 8, 10}, our program created 100 randomly-generated maximal 
classes of VC dimension 2 on m elements. From Figure 5, as ra increases, the percent 
of randomly-generated maximal classes that are also maximum decreases sharply. For 
maximal classes of VC dimension 3, none of the 100 randomly-generated classes on 6 
or 8 elements were maximum. These results suggest that for m and d sufficiently large, 
few maximal classes of VC dimension d on ra elements will be maximum. 

7.2. Compression schemes for maximal classes: an open question 

The VC Compression Scheme described in Section 6 applies to maximum classes of VC 
dimension d; it can not necessarily be applied to maximal but not maximum classes of 
VC dimension d. For example, Figure 6 shows a maximal class of VC dimension 2 for 
which the VC Compression Scheme does not apply. A key open question is whether there 
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is a compression scheine of size O(d) for every maximal class of VC dimension d. This 
section presents a modified version of the VC Compression Scheine, called the Subset 
Compression Scheme, that applies for some maximal classes of VC dimension d. It is 
an open question whether the Subset Compression Scheme gives a sample compression 
scheme of size d for all maximal classes of VC dimension d. 

C l a s s  C 

X 1 X 2 X 3 X4 

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

Figure 6. A maximal but not maximum class C of VC dimension 2. 

First, we show that the VC Compression Scheme given above for maximum classes 
does not apply to some maximal but not maximum classes. For example, class C in 
Figure 6 is maximal but not maximum, of VC dimension 2. For concept c = 1100 in 
C there is no compression set of size two using the VC Compression Scheine. That is, 
there is no A_C X, for [A 1=2, such that c restricted to X - A is in the class C A. 

The Subset Compression Scheme defined below gives a sample compression scheme 
of size 2 for the class C in Figure 6. Note that no algorithm is given for the compression 
function in the Subset Compression Scheme, other than checking each possible set of 
size at most d to see if it suffices as a compression set. 

The Subset Compression Scheme (for some maximal classes). 

• The compression function: Let C c 2 X be a maximal class of VC dimension d. The 
compression function is given as input the sample set y=k,c labeled consistently with 
some concept c in C, for Y C X. The compression function finds a subset A ~-'c C 
y~_,c, for [A±[ = d, that represents the concept c on Y using the reconstruction 
scheine below. 

The reconstruction function: The reconstruction function is given as input the com- 
pression set A ±, of cardinality d. For xi ¢ A, the label that the compression set A ± 
predicts for zi is determined by considering the class Ci = C](A tO {az/}), of VC 
dimension at most d. The class (Ci) A is of VC dimension at most 0, and is either 
empty or contains exactly one concept. If (Ci) A is nonempty, then (C~) A contains a 
single concept {zi, le), for li E{0, 1}. In this case, the compression set A + predicts 
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the label li for zi. (This part of the reconstruction function is identical to that in the 
VC Compression Scheme.) 

If  (Ci) A is empty, then let the label predicted by A i for x~ depend on the labels of 
the elements in the compression set A +. If there is only one possible label for zi 
in concepts in the class C, given the labels of the elements in A i ,  then that is the 
label predicted by the compression set A ±. Otherwise, arbitrarily let the compression 
set A ± predict the label '0' for zi. With this definition; each compression set A ± 
predicts a unique label for each element x~ of X, and therefore a unique hypothesis 
on X. This hypothesis is not necessarily in the class C. 

For a maximum class of VC dimension d, the Subset Compression Scheme is identical 
to the VC Compression Scheme. For a maximal class let eA:~ denote the concept on 
X represented by the compression set A ± using the Subset Compression Scheme. The 
Subset Compression Scheme is motivated by a combinatorial characterization of maximal 
classes of VC dimension d given by Floyd (1989) by "forbidden labels" on subsets of 
d + 1 elements. It is an open question whether the subset compression scheme gives a 
sample compression scheme of size d for every maximal class of VC dimension d. It is 
easily verified that the subset compression scheme gives a sample compression scheme 
of size 2 for the maximal class C of VC dimension 2 in Figure 6. 

It is an open question whether there exists a compression scheme of size O(d) for 
every maximal class of VC dimension d, or for every class of VC dimension d. The 
structure of maximal classes of VC dimension d is discussed further in Floyd's thesis 
(1989). 

8. Sample compression schemes and self-directed learning 

Goldman and Sloan (1994) discussed the relationship between the VC dimension and 
self-directed learning, a variant of on-line learning where the learner gets to select the 
presentation order of instances from the finite domain X. The learning complexity of 
self-directed learning is defined by the number of examples for which the learner predicts 
the incorrect label. 

Self-directed learning differs from sample compression in that the learner in self- 
directed learning is not restricted to a particular sample set. The learner gets to select 
the examples from the domain, one at a time. 

Thus, for example, the self-directed learning complexity for monotone monomials is 
one, because the learner can first took at the example with all variables set to '0', and then 
at all examples with only one variable set to '1', and so on. The first positive example 
that the learner finds completely characterizes the monotone monomial. In contrast, in 
sample compression schemes the learner is restricted to saving a subset of the original 
sample set. Thus, even though each monotone monomial could be characterized by the 
positive example with the smallest number of variables set to '1', that positive example 
might not be included in the original sample set. 
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9. Conclusions and related work 

This section summarizes some of the relationships between pac-learning, compression 
schemes, and the VC dimension. This section later discusses open questions concern- 
ing compression schemes for maximal classes, "unlabeled" compression schemes, and 
iterative compression algorithms. 

From the work of Blumer et al. (1989) it has been known for some time that a concept 
class is pac-learnable from a fixed-size sample if and only if the VC dimension is finite. 
We summarize some of the relationships discussed in this paper between pac-learning and 
sample compression, between the VC dimension and sample compression, and, for finite 
classes, the relationships between sample compression and mistake-bounded learning 
algorithms. 

First, following Littlestone and Warmuth (1986), sample compression implies pac- 
learning. In particular, Theorem 6 shows that for any class with a sample compression 
scheine of size at most k, there is a corresponding pac-learning algorithm with sample 
complexity that is linear in k. 

Second, by using some results from Welzl (1987) we give a sample compression scheme 
of size d for any maximum class of VC dimension d. Further, for a maximum class of 
VC dimension d on a sufficiently large set X there is no sample compression scheme of 
size less than d. Together with Theorem 6, this result improves on the previously-known 
sample complexity for pac-learning for maximum classes of VC dimension d. 

We have shown that mistake-bounded learning algorithms imply sample compression 
scfiemes of the same size. More precisely, we show in Theorem 3 that any finite class 
with a mistake-driven and mistake-bounded learning algorithm with bound k has a sample 
compression scheme of size at most k. In particular, this implies that any finite class C 
has a sample compression scheine of size at most log ICl. 

9.1. Compression schemes of  small size 

We believe that small compression sets are interesting in their own right since they 
represent a concept consistent with the whole sample set. The main open question of 
this paper is whether there is a sample compression scheme of size d, or of size O(d), 
for every concept class of VC dimension d. We presented a compression scheme of 
size d for all maximum classes of VC dimension d and also gave a sample compression 
scheme of size d for some classes that are maximal but not maximum and have VC 
dimension d. We defined randomly-generated classes of VC dimension d, and showed 
that a large proportion of randomly-generated maximal classes of VC dimension d are 
not maximum. 

There is a refinement of the above open problem that is even more intriguing. In 
the definition of compression schemes used in this paper the compression function maps 
every finite set of labeled examples to a subset of at most k labeled examples. From the 
combinatorial point of view the following restricted definition of a compression scheme 
might be the most interesting even though at this point we don't know how to obtain 
better sample complexity bounds by exploiting this restriction. In the restricted definition 
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we require that the compression function maps every finite set of labeled examples to a 
subset of h examples with their labels removed. 

Most examples of sample compression schemes given in this paper can be modified 
to unlabeled sample compression schemes. For example, for the class of intervals (Sec- 
tion 3), since the compression set always consists of alternating positive and negative 
examples, starting with a positive example (when the points are ordered left to right), 
then it is not necessary to explicitly save the labels of the points in the compression set. 
The compression scheme given for intersection closed concept classes given in Section 3 
only uses positive examples in the compression set and thus the labels are redundant. 
For any application of the One-Pass Compression Scheme in Section 4.1 the labels are 
also redundant since the on-line algorithm predicts wrongly on all examples in the com- 
pression set. However, we don't know of a modification of the VC Compression Scheme 
for maximum classes that saves only unlabeled examples. It is again an open problem 
whether there is an "unlabeled" compression scheme of size d for any concept class of 
VC dimension d. Note that the latter definition leaves no slack because for any maximum 
concept class C of VC dimension d and any finite set S of the domain, the number of 
concepts in C]S equals exactly the number of subsets of at most d unlabeled examples 
from S. Thus, there would be exactly one compression set and exactly one hypothesis 
for every sample set of size at most d. 

A reasonable question one might ask is whether there are any size bounds on the 
smallest compression scheme for an arbitrary concept class of VC dimension d. Freund 
(1995) and Helmbold and Warmuth (1995) have given a partial answer to this question, 
where a compression scheme is presented that compresses a sample of size m, labeled 
by a concept from an arbitrary concept class of VC dimension d, to a compression set 
of size O(d log m) plus O (d log ra(log log m)) bits. This compression scheme is based 
on recent results by Freund (1995) on boosting "weak" pac-learning algorithms. In this 
method O( logm) hypotheses are constructed by giving sets of O(d) examples to the 
weak learning algorithm. Each individual hypothesis is guaranteed to have error at most 
half with probability at least half with respect to some judiciously chosen distribution. 
The majority of all hypotheses are guaranteed to be consistent with the whole sample. 
The compression set consists of all O ( d l o g m )  examples plus O( log logm)  bits per 
example to associate each example with the right call of the weak algorithm. 

9.2. Generalized compression schemes 

In the definitions discussed so far we required that the compression sets represent hy- 
potheses that are consistent with the whole óriginal example set. It would be natural to 
only require consistency with all but a fraction of " /o f  the original examples. If the goal 
is to find a hypothesis with error c then a choice of "y = c/2 would be reasonable. In this 
paper the probability that a compression set of size d out of a sample of size m has error 
at least e and is consistent with the whole sample can easily be bounded by (1 - e) ~ -d .  
If the hypotheses represented by the compression set only have to be ,/-consistent, then 
Chernoff bounds taust be used instead. The generalized notion of compression schemes 
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is likely to lead to improved sample complexity bounds. However we did not use this 
generalized notion in this paper, because we wanted to keep the proofs simple. 

Sample compression schemes can also be used to learn classes of real-valued functions 
instead of concepts (which are binary functions). In this case compression sets must 
represent functions that have small loss on the whole original sample. Loss bounds for 
this generalization still have to be developed. 

9.3. Iterative compression algorithms 

This paper discussed briefly the use of sample compression schemes in constructing batch 
learning algorithms for pac-learning. Another application of sample compression schemes 
is for space-bounded iterative compression algorithms that save only a small number of 
examples at one time. Let C C 2 x be a class with a sample compression scheme of 
size d. An iterative compression algorithm draws d + 1 examples, and saves only d 
of these examples, using the sample compression scheme. The iterative compression 
algorithm continues to draw a new example, to choose a compression set of size d from 
the d + 1 saved examples, and to discard the example that is not in the compression set. 
The compression set of size d represents the current hypothesis of the learning algorithm. 

For a fairly simple example, one iterative compression algorithm for axis-parallel rect- 
angles in R 2 (of VC dimension 4) saves the rightmost, leftmost, top, and bottom positive 
points seen so far; these points define the current hypothesis of the algorithm. When a 
new point is drawn whose label is predicted incorrectly by the current hypothesis, then 
the new point is saved and one of the old points might be discarded; the iterative com- 
pression algorithm always saves at most four points. Each time that the compression set 
is changed, the size of the hypothesized axis-parallel rectangle is increased. 

As a more interesting application of the iterative compression algorithm, Floyd (1989) 
discusses classes defined by n-dimensional vector spaces of real functions on some 
domain X. Such classes include balls in R ~-1, positive halfspaces in R ~, and positive 
sets in the plane defined by polynomials of degree at most n - 1. With appropriate 
restrictions to the domain X given in Floyd's thesis (1989, p. 102), each of these classes 
is a maximum class of VC dimension n, and the iterative compression set for each class 
saves at most n examples at a time. This compression set of n examples saved by 
the iterative compression algorithm defines the boundary between the positive and the 
negative examples in the hypothesis. Note that the hypothesis represented by the current 
compression set is not necessarily consistent with all of the examples that have been 
seen so far. Nevertheless, for maximum classes the iterative compression algorithm is 
acyclic; that is, there is a partial order on the set of all possible compression sets, and 
each change of the compression set is to a compression set that is higher in the partial 
order. From Floyd (1989), there are many open questions concerning the use of iterative 
compression algorithms for pac-learning for maximum and maximal classes. 
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Appendix 

Proof of Theorem 5 

Proof" Let y ± , c  be a sequence of m examples drawn independently at random accord- 
ing to the distribution D labeled by the concept c. Call any subset A Z of at most d 
examples from Y±,C a compression set if g(A ±) is consistent with Y±,% 

First we consider compression sets of size exactly d. Let T be the collection of  d- 

element subsets of {1, .., rn}. There are exactly ( d )  such subsets. For any example 

xi in the sample sequence, ler c(zi) be the label for that example. For any T = 
{~1,--, td} C T,  let BT contain all sample sequences ((xl,  c ( x j } , . . ,  (x,~, c(x,~))) such 
that the hypothesis 9 ( { ( x t l , c ( x t l ) ) , . . ,  (Xtd,C(Xtd))}) is consistent with the sample 
sequence Y±'~ = ((xl,  C ( Z l ) ) , . . ,  (Xr~, c(x,O) ). Let UT contain all sample sequences 
( x l , . . . ,  x , J ,  where the hypothesis g({(xt~, c(zt~ ) ) , . . . ,  (ztd, c(xtd))}) has error greater 
than e, with respect to the concept c. (Recall that the error of  a hypothesis h is the 
probability, with respect to the distribution D, of the symmetric difference of c and h.) 
The probability that a sample sequence Y±'~ of m examples is drawn, and the hypothesis 
represented by a sample compression set of d examples from y±,c has error more than 
e, is at most 

Œ D'~(B~ n U~). 
T E T  

For a particular T, what is an upper bound on the probability D'~(BT A UT) of 
drawing m examples, such that A Z = { (xt1, c( xtl ) ) , . . , (xtd , c( xtd ) ) } is a compression 
set of size exactly d for those rn examples, and the hypothesis represented by A Z has 
error greater than e? Because the elements of y±,c are drawn independently from the 
distribution D, for a fixed T we can assume that the d examples of  the compression set 
A Z are drawn first. Next the remaining m - d elements of  y ± , c  are drawn. If  g(A ±) 
has error greater than e and is consistent with the remaining m - d elements of y±,c 
then the probability that a single example drawn from X is consistent with 9(A ±) is less 
than 1 - e. The probability that ra - d examples drawn from X are consistent with the 
hypothesis 9(A i )  is less than (1 - e) "~-d. Thus 

D'~(BT A [IT) < (1 -- e) "~-d. 

Because ]T I = d ' 

T c T  

Now we consider compression sets of size at most d. What is the probability of 
drawing rn examples, such that there is a compression set of size at most d for those rn 
examples, and the hypothesis represented by the compression set has error greater than 
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e? This  probabil i ty is less than 

d ~(~)(~ ~,~~ 
i=0 
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Notes 

1. This is a measure-theoretic condition given by Blumer et al. (1989). It is not likely to exclude any concept 
class considered in the context of machine leaming applications. 

2. If the concept class is finite then this definition is equivalent to requiring that the intersection of any pair 
of concepts in the class is also in the class, 

3. Our definition of a mistake-driven algorithm is closely related to Haussler's (1988) definition of a conser- 
vative learning algorithm, where the current hypothesis is modified if and only if it is inconsistent with the 
current example. 

4. R P  is the class of problems solvable by randomized polynomial time algorithms, and N P  is the class 
of problems solvable by nondeterministic polynomial time algorithms. 
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