
Machine Learning, 17, 47-67 (1994) 
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Algebraic Reasoning about Reactions: Discovery of 
Conserved Properties in Particle Physics 

RAI~L E. VALDI~S-PI~REZ valdes@cs.cmu.edu 

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 - USA 

Editor: Paul Utgoff 

Abstract. Kocabas (1991) describes a situation from particle physics in which quantum properties and 
conservation laws are postulated from lists of observed and unobserved reactions. Kocabas also presents a 
program named BR-3 that can rediscover some accepted quantum properties from textbook data, although 
it fails on a more difficult example from the same source. This paper describes PAULI, a program that 
solves the same task as BR-3 but uses a different problem-solving model. PAULI produces different, simpler 
solutions than does BR-3, and it can also handle the problematic example. After comparing the two programs, 
we conclude that PAULI offers distinct advantages over its predecessor, which we attribute to an algebraic 
approach to reasoning about sets of reactions. 
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1. Introduction 

Kocabas (1991) described a situation from elementary particle physics in which new 
particle properties are postulated from data on observed reactions among these particles, 
and from lists of reactions that have never been observed despite considerable effort 
(Omnes, 1971). Whenever the existing quantum properties and their conservation laws 
cannot account for the non-existence of the unobserved reactions, new quantum properties 
are sought that will provide selection rules: the observed reactions conserve all of the 
new properties, whereas each unobserved reaction violates at least one property. Finding 
such new properties provides a satisfactory phenomenological explanation for why certain 
reactions occur and others do not. 

Kocabas's introduction of the problem into machine discovery is valuable because it 
involves a simple, powerful heuristic of physics that leads to the discovery of new con- 
served properties. Moreover, the problem differs from more familiar situations involving 
conservation-law induction from numeric data (Langley, Bradshaw, & Simon, 1981). 

The purpose of this paper is to introduce a computational model of the task that offers 
certain advantages over the one given by Kocabas. The behavior of the present model, 
implemented in a computer program PAULI, is compared with the model reflected in the 
program BR-3. 

The approach embodied in PAULI relies on a key idea that it shares with the MECHEM 
system (Valdes-Perez, 1994; Valdes-Perez, 1992a). Reasoning about sets of reactions, 
which is a common task throughout the natural sciences, is better accomplished by an 
algebraic representation of reactions, which allows the application of powerful mathemat- 
ical and algorithmic tools to answer questions of scientific interest. Many processes in 
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science are similar to reactions, hence automated reasoning about reactions advances the 
field of machine scientific discovery by making yet one more class of tasks intelligible 
in terms of computation. 

We begin by reviewing the scientific task and the design of BR-3. We then show how 
one can express the task constraints algebraically, and describe a program that can search 
for solutions that satisfy these constraints. The solutions found by the new program are 
compared with those found by its predecessor, and the former are shown to be simpler. 
Finally, we contrast the two task models and extract a lesson from this work, which we 
anticipate as follows: automated reasoning about reaction-like processes should make 
use of algebraic representations and draw on the powerful methods developed within 
mathematics and computer science for dealing with such representations. 

2. Discovery of Quantum Properties 

In their book The Particle Hunters, Ne'eman and Kirsh (1986) describe how modern 
physics found it necessary to expand on the conservation laws of classical physics, such 
as those governing energy, charge, and momentum. Certain reactions among elementary 
particles were never observed to occur, despite much experimental effort, even though 
they obeyed classical laws. For background, we quote at some length from Ne'eman 
and Kirsh (p. 132): 

In classical physics, conservation principles are used to simplify difficult calcu- 
lations. If one is to deal with a complicated multi-step process, it is helpful to 
know that certain quantities remain constant throughout the whole process. The 
relative importance of conservation laws in classical physics was, at any rate, 
secondary. [...] 

In modern physics, not only were several conservation laws added, but their 
relative importance increased as well. And this is no surprise: in a world ruled 
by probability, where laws such as those of Newton are unable to predict just 
what will happen, laws which determine what cannot happen become increasingly 
important. If  we know that no process which contradicts any conservation law 
can take place, we may infer that for any process which does not contradict any 
conservation law, a certain probability exists that it will occur. [...] 

Let us assume that a given particle can decay into other particles without breaking 
a single conservation law. Will it actually do so? The answer is yes! All of the 
experimental data at hand indicate that it will do so as soon as possible! [...] 

Let us now summarize this important change in outlook: instead of the set of 
deterministic laws predicting exactly what will occur, which ruled in classical 
physics, modern physics is ruled by conservation laws, which determine what 
cannot occur. And according to the present approach, any process which does 
not contradict these laws does indeed take place, 

Physicists concluded that particle interactions must be governed by new conservation 
laws that are not revealed in the behavior of macroscopic objects, hence were not discov- 
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ered within the framework of classical physics. Some of these laws, and the quantities 
they conserve, were postulated quite ad hoc; the conservation of baryon number and 
strangeness are two such cases. These ad-hoc postulates addressed the specific problem 
of ruling out experimentally unobserved reactions; they were not derived theoretically. 
Neither the textbook by Omnes (1971) that Kocabas used as a source, nor a more re- 
cent popular account by Ne'eman and Kirsh (1986), describe any systematic method to 
discover these properties. Describing such a method is an important contribution of the 
Kocabas paper. 

There is nothing sacrosanct about using conservation laws as explanations for why cer- 
tain reactions occur and others do not. In chemistry, analogous explanations of chemical 
reactions are made using the concept of free energy, which is a defined quantity that 
tends to decrease, rather than increase or remain constant. In thermodynamics, the re- 
lated concept of entropy is invoked to explain why certain processes that would decrease 

entropy cannot happen. Further comparisons between chemical and nuclear reactions are 
made by Godfrey, McLachlan, and Atwood (1991). 

Interestingly, discovery can also proceed in the reverse direction. A well-established 
conservation law may surprisingly rule out a newly observed reaction. Rather than discard 
the conservation law, or narrow the scope of its application, the impasse may be resolved 
by postulating an unnoticed participant in the reaction whose quantum numbers are such 
that all established conservation laws are upheld. This was the reasoning followed by 
Wolfgang Pauli in 1930 in the context of beta decay, in which a nucleus apparently 
decayed into a lighter nucleus and an electron in a way that violated conservation of 
energy (Sutton, 1990). To uphold energy conservation, Pauli postulated a novel particle 
(later named 'neutrino' by Enrico Fermi) as a third product of the decay. We have named 
the present program PAULI after Wolfgang Pauli, even though he was not involved in 
postulating new quantum properties. 1 

For brevity of exposition, we refer in this paper to the observed reactions as "good" 
reactions, and to the unobserved reactions as "bad." The following simple problem 
illustrates the case of a single good and a single bad reaction: 

g o o d :  ~ + p --+ 7r ° + n 

bad:  p ~ 7r + Tr ° 

The symbol '--+' indicates that the particles on the left undergo a reaction that forms 
the particles on the right. Typically, reactions occur upon collision between particles, 
and new products are formed due to interactions among the reacting particles or their 
fragments. The symbol '-+~' indicates an unobserved (bad) reaction. 

To exclude the bad reaction above, while admitting the good one, it suffices to postulate 
a new quantum property having the value of unity for p and n and zero for the other 
particles. This property is conserved by the good reaction and violated by the bad one. 
Section 4.5 shows how the PAULI program is able to postulate this property. 
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3. Summary of BR-3 

Kocabas describes the design of his Prolog program BR-3 in terms of three operators 
check-consistency, check-completeness, and revise-beliefs. The check-consistency op- 
erator tests whether the current assignment of quantum numbers to the particles results 
in conservation in the case of the good reactions. The check-completeness operator 
tests whether each bad reaction violates conservation of at least one quantum property. 
Finally, the revise-beliefs operator is charged with carrying out the search for quantum 
numbers that satisfy the given constraints, which are discussed by Kocabas and are also 
discussed in Section 4.2 of this paper. 

The author summarizes BR-3's behavior as a backtrack search for quantum numbers 
over a small set of several integer values. There is a degree of look-ahead in the backtrack 
search, in the sense that the system uses a "simple linear equation solver" to carry out 
some simple algebraic inference. The program's search regimen is consonant with the 
control structure of Prolog, its implementation language. For full details on BR-3, we 
refer the reader to the original paper. 

One limitation of BR-3 is that it searches for quantum numbers over a small fixed 
integer set, such {-1,0,1 } in some examples discussed by Kocabas. Of course, one could 
enlarge this set, but the generate-and-test regimen employed by the program renders large 
integer sets rather problematic, as is readily acknowledged by the author. 

In our opinion, there is a second limitation that strictly concerns not the program itself, 
but its manner of use on several cases of discovery. BR-3 was used on bad reactions 
one at a time, and new quantum properties were postulated whenever the current stock 
of conservation laws could not rule out the new bad reaction. It is not clear to this writer 
whether the historical record exhibits this one-at-a-time consideration of unobserved 
reactions. Whether it does or not, we assert that it is preferable to consider all the existing 
data before postulating hidden properties, especially if the number of data is more like 
a dozen, rather than a million. Sections 5.1 and 5.2 below show how, given the same 
data, PAULI finds solutions having fewer postulated quantum properties than those found 
by BR-3. We do not believe that saving computation via incremental processing is an 
important issue in such cases of scientific discovery, since novel fundamental properties 
are not postulated every day. 

4. The PAULI Program 

PAULI's design is quite different from that of BR-3. One difference is that PAULI 
carries out a highly constrained search for quantum numbers, because the constraints 
on acceptable solutions are incorporated within the generator and serve to guide the 
search very selectively. Due to the formal structure of the problem, which permits 
formulating most of the constraints as linear equalities and inequalities, one can exploit 
linear programming as an efficient search algorithm. The usual algorithms for solving 
linear-programming problems never generate candidate solutions that violate the given 
constraints; their search is concerned entirely with finding an optimum among the feasible 
solutions. It is in this sense that PAULI carries out a highly constrained search. 
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4.1. Overview o f  linear programming 

A linear programming problem consists of a set of constraints, which can be linear 
equations Z a i j x i  = cj or linear inequalities Eai j x i  > cj, and a linear expression Ebixi  

to be minimized, called the objective function. The xi are variables, whereas the aq,  
cj, and bi are known constants. By convention, all variables appearing in the constraints 
assume only non-negative values. 

A linear-programming problem is solved by reporting one of three results: the con- 
straints are inconsistent; the quantity to be minimized is unbounded; or values for the 
variables that minimize the objective function, along with the numeric value of the ob- 
jective function. The simplex algorithm is a highly efficient procedure for solving linear- 
programming problems. Papadimitriou and Steiglitz (1982) give a detailed description 
of linear programming and the simplex algorithm. 

4.2. Expression o f  the task constraints 

We use the notation rl + • • • + rm ~ Pl + • • • + Pn to refer to a good reaction, and 
a similar notation with '-~' instead of '---+' to refer to a bad reaction; the 'r' suggests 
'reactant' and the 'p' suggests 'product' (not 'proton' nor 'particle'). The sum of the 
values for quantum property q within a single reaction i is denoted as 

E pikq -- E ritq 
k 1 

where the sums are taken over the particles appearing among the 1 reactants and among 
the k products. We use 15'] to denote the cardinality of a set S, and 5 to denote the 
antiparticle corresponding to particle x; for example, ~ is an antiproton. We use the 
symbol 'x'  to refer to particles generically. 

Generally in science, a conservation law states that a certain property keeps the same 
aggregate value after undergoing a certain class of processes. In our case, aggregation is 
summation, and the processes are reactions. The requirement that the i th  good reaction 
obey all Q conservation laws (one for each quantum property) can be expressed as the 
following conjunction of Q equations: 

E pikl -- Z r i l l  = 0  A Z P i k 2  -- Z r i l 2  = 0  A . . .  (1) 
k l k 1 

. . .  A  fikq-  i Q = 0 
k l 

Conversely, the requirement that the j t h  bad reaction violate at least one of Q conser- 
vation laws is expressed as a disjunction of inequations thus: 

E p J k l -  E J I/o v E p i c 2 -  ETJ,2 t o  v ... (2) 
k l k l 

- Z / o 
k l 
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(an inequation ' ¢ '  is the logical negation of an equation '= ' ) .  In linear programming, 
one can express the Conjunction (1) straightforwardly as a set of Q algebraic equations. 
The expression of Condition (2) is less straightforward, but can be accomplished via a 
representational device to be described shortly. Before doing so, and for simplicity of 
exposition, we ignore the fact that variables of linear programming are restricted to non- 
negative values; later we show how to restore the restriction while keeping the ability to 
postulate negative quantum numbers, which is allowed in physics. 

When Q new quantum properties need to be postulated to explain the reaction data, the 
Disjunction (2) for the j th  bad reaction can be reformulated as a single, linear inequation: 

k l k l 

. . .  + ¢ o 

k l 

in which b is an arbitrary positive constant raised to the various powers shown. To 
prevent the summation from equaling zero due to nonzero terms that cancel, one imposes 
Q additional conditions on the reaction sums: 

- ( b - l )  ~ E p j k l - E r j l  I < ( b - I )  
k l 

- ( b - l )  < E p j k e - ~ - ~ r j t 2  < ( b - l )  
k 1 

- ( b - l )  < ~-~PjkQ--~--~rjtQ <_ ( b - l )  
k l 

(4) 

These ensure that no nonzero terms in Inequation (3) cancel out, so that if the summation 
does equal zero, it implies that all Q terms within it are zero. In effect, a "number" of 
base b is formulated, each "digit" of which is the sum of the bad reaction j for one of 
the Q properties. Since the quantity b is a free parameter, it can be set to any value 
deemed "safe." We have never needed to change b's default value of 100. 2 

Linear programming cannot directly express inequation constraints of the form expres -  
sion ~ constant, of which Constraint (3) is an instance. This obstacle is overcome by 
searching on a case-by-case basis: first the constraint expression > constant + A can 
be tried, followed by the converse constraint expression <_ constant - A, where A is 
a small positive constant (we have used ]~6o)" Finding a solution, or verifying that there 
is none for the given Q, may involve a search of complexity 2 Ib"al (Ibadl is the number 
of bad reactions) in the worst case, since a binary search tree of depth [bad[ is generated 
by the two choices for inequality direction per bad reaction. 

Another set of constraints arises from any specified particle/anti-particle pairs, since 
their quantum numbers are set opposite thus: ~ = - x  for all Q quantum proper- 
ties. Following Kocabas, quantum numbers for any antiparticles are also required to 
be non-positive. These two conditions contribute respectively Q x [antipairs[ and 
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Q x ]antiparticles I constraints, where lantipairs[ is the number of particle/anti-particle 
pairs (possibly none), which can be smaller than the number [antiparticles] if a particle 
does not appear in the reactions, but its antiparticle is present. 

Above, we temporarily ignored the fact that variables in linear programming must be 
non-negative, and proceeded to express certain key task constraints in which variables 
could be negative. Now we overcome the restriction to the non-negative numbers by 
another representational device: each occurrence of a variable x is replaced by (x I - z " ) .  
Both of the variables x t and x" are necessarily non-negative, but the replacement allows 
converting the domain of the represented quantity from the non-negative numbers to the 
entire numeric domain. For example, a negative number - 5  can thus be represented 
as 0 - 5, where x ~ is 0 and x" is 5, i.e., both positive numbers. Even though this 
representational device doubles the number of variables, the added computational cost 
should be small, since typically the number of simplex iterations depends on the number 
of constraints (see below). 

Finally, a linear program includes an objective function, which serves to select one 
optimized solution from among the potentially many allowed by the constraints. The 
objective function is a linear expression which is to be minimized. We wish to minimize 
the sum of absolute values of all quantum numbers, which, however, is not a linear func- 
tion. Nevertheless, this wish is met by adapting a familiar trick from linear-programming 
practice (Chvatal, 1983), as follows. First, one formulates another set of constraints: 

(5) 

where i and j span respectively the number of particles P (including anti-particles) and 
the number of quantum properties Q being postulated, thus yielding a total of 2PQ 
inequalities. Then, one selects the following objective function: 

P Q 

i=1 j=l 
(6) 

whose minimization will, in effect, force the overall sum of the quantum-number mag- 
nitudes to be minimal. In the absence of any constraints, this bias forces all quantum 
numbers to zero, which is a sensible result in scientific practice. With constraints, the 
bias is for smaller quantum numbers. Unless the constraints are contradictory, the sim- 
plex algorithm will always find a solution, since the objective function is bounded from 
below. All linear-programming variables are non-negative, so a lower bound on the 
minimization is clearly zero. 

4.3. Search complexity 

Taken together, the total number of constraints is: 

QIgoodl + (2Q + 1)lbadl + Q(fantipairsl + lantiparticZes]) + 2QIparticles 

(7) 
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and the number of variables is: 

4QIpar~iclesl ÷ (2Q+ 1)lbad I + Qlantiparticles[ (8) 

where all but 2Q[particles I of these variables are due to the usual "slack variables" 
needed to put all the inequality constraints in the standard form of equalities (Papadim- 
itriou and Steiglitz, 1982). A textbook on linear programming (Chvatal, 1983) states that 
"the typical number of iterations increases proportionally to m," where m is the number 
of constraints in the linear program. Assuming that our problem is not pathological, it 
follows that the expected number of iterations is proportional to Expression (7). We can 
combine this expression with the cost of the exhaustive case-by-case search mentioned 
previously (admitting the peccadillo of combining typical-case with worst-case analysis) 
to obtain an order of complexity of: 

2ib~dIQ(Igoodl + Ibadl + Ipartidesl) (9) 

where Q is the number of postulated quantum properties. If the quantity 21b~d[ becomes 
impracticably large, then a divide-and-conquer heuristic could be applied by considering 
subsets of the set bad separately and incrementally. In the extreme of one bad reaction 
at a time, one obtains the approach taken in Kocabas's BR-3 system. 

4.4. Search modes 

PAULI can search in either "satisficing" or "optimizing" mode. In satisficing mode, the 
program reports the first solution it finds, which will always involve the smallest number 
of new quantum properties, since the program starts with Q = 1 and increments from 
there as needed. In optimizing mode, even after finding a solution, PAULI continues 
searching (but keeping the number of quantum properties constant) by varying the in- 
equality directions generated by the implementation of Constraint (3) above. Recall that 
this constraint induces a case-by-case search, since linear programming cannot directly 
express an inequation constraint of the form Y'~i aix~ ~ O. After examining all of the 
remaining cases with Q fixed, PAULI reports the solution that minimizes the criterion 
discussed in the next paragraph. 

Satisfaction of the task constraints by the simplex algorithm actually leads to fractional 
values of quantum numbers. These numbers are then converted to integers by multiplying 
by the least-common-multiple of all the denominators. Multiplication of all quantum 
numbers (corresponding to a single property) by a non-zero constant does not change 
whether a given reaction conserves or violates that property. In optimizing mode, the 

' - program will report the integer assignment that minimizes ~ i  ~q IXiq i.e., the 
sum of absolute values of all the quantum numbers. Hence, smaller assignments are 
favored over larger ones. 

4.5. An illustrative example 
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Table 1. Constraints for one Bad Reaction, one Good Reaction, and one 
Quantum Property. 

Constraint Reference 

(~10 -~- ~ i  ) -- (~1 -~- Pl  ) ---- 0 
7rl q- 71-~ -- Pl  ~-- i / i 0 0  
71"1 -}- 7r~ -- p l  ~ 99 
~rl + 7r~' - Pl _> -99 

gl + Trl = 0 
~l _< 0 
~r ° _< E~o 

-E~ _< ~o 
n l  <_ E n l  

- E n l  <_ nl 

pl < Em 
--Epl  ~ Pl 

7r l ~_ E~r l 

[Constraint (1)] 
[Constraint (3)] 
[Constraint (4)] 
[Constraint (4)] 
[particle/antiparticle constraint] 
[antiparticles are non-positive] 
[remainder are Constraints (5)] 

Let us reconsider the simple problem from Section 2 that involved a single good and a 
single bad reaction: 

g o o d :  f f  + p --+ 7v ° + n 

bad : p --~ ~v + 7~ ° 

As predicted by Expression (7), PAULI sets up 16 linear constraints as it postulates 
a single quantum property; these constraints appear in Table 1. The system actually 
represents a property like 7h as 7r~ - 7r~'; we have avoided these details for ease of 
exposition. The second constraint in the Table is one case of the case-by-case search 
needed to implement Constraint (3); the only other case here would involve the constraint 
vh + vrl ° - Pl  -< - 1 / 1 0 0 .  The program indeed reports that a single quantum property 
is enough to include the good reaction and exclude the bad one: both p and n receive 
quantum numbers of unity and the rest are zero. 

If  two quantum properties were considered for this problem, then suitably subscripted 
duplicates of  the constraints would be added to the linear program, since the quantum 
numbers are assigned independently. Even though two quantum properties are not needed 
to exclude a single bad reaction, we illustrate in Table 2 what one set of constraints would 
be in this case. 

4.6. C o m m e n t s  on P A U L I ' S  induct ive  bias 

PAULI's  inductive bias is to minimize, first, the number of  postulated quantum properties, 
and second, the sum of absolute values of all quantum numbers. We believe that this 
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Table 2. Constraints for one Bad Reaction, one Good Reaction, and two Quantum Proper- 
ties, 

Constraint Reference 

( ~ + n l ) - ( ~ l + m )  -- 0 
(Tr~ + n2)  (~2 q- P2) = 0 

(7rl + 7r ° -- P l )  + 100 (7r2 + 7r ° - P2) _> 1 /1 00  
7h + 7r~ - P l  _ 99 
7rl + 7r~ - P l  _> -99 
7r2 + 7r~ - P2 _< 99 
7r2 + 7r 2 - P2 > -99 

~1 + 7rl = 0 
~ 2  -}- 71"2 = 0 

~i __ 0 
~2 < 0 

n l  _< E,~ 1 
- E , ~  1 _< n l  

~1 -< E-~I 
- E ~  _< ~ l  

P l  <7 Epl  
- Epl <_ Pl 

7r l <_ E ~  1 

n2 <_ En2  

--En2 ~ n2 

-F-~ 2 <_ ~ 

P2 <~ Ep2 
- Ep2 ~- P2 

7r2 <_ E ~  2 
-E~ 2 < ~r2 

[Constraint (1)] 
[Constraint (1)] 
[Constraint (3)] 
[Constraint (4)] 
[Constraint (4)] 
[Constraint (4)] 
[Constraint (4)] 
[particle/antiparticle constraint] 
[particle/antiparticle constraint] 
[antiparticles are non-positive] 
[antiparticles are non-positive] 
[remainder are Constraints (5)] 
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is a generally accepted heuristic in science; in the absence of other factors, smaller 
numbers are preferable. This heuristic seems especially justified when the quantities that 
are involved potentially represent numbers of objects or processes. Whereas here we are 
concerned with abstract properties, physicists have given structural interpretations for 
these properties which indicate why small property values are preferred: the quantum 
value for a particle is the sum of quantum values for the particle's structural constituents, 
and one prefers to postulate fewer such constituents. Finding the structural constituents 
of particles is the very problem addressed by Fischer and Zytkow (1990) in their GELL- 
MANN program. 

Instead of minimizing the aggregate sum of quantum-number magnitudes, one could 
instead use a minimax bias that minimizes the maximum quantum number (Chvatal, 
1983). To adapt this new bias involves changing the Constraints (5) to the following: 

I II - E  < _ x i j - x i j  < E (lO) 

and changing the objective function (Expression (6)) to minimize, quite simply, the 
variable E,  which serves to minimize the maximum quantum number. This bias is inferior 
to the bias that PAULI uses because, for example, the number of particles that share the 
maximum quantum number becomes irrelevant under this bias. We have implemented 
and discarded the minimax bias in PAULI after observing such inferior results. 

5. Examples of Discovery using Historical Data 

This section examines PAULI's performance on four examples taken from Kocabas 
(1991); each example reflects a historical instance of the discovery of a novel quantum 
property. In the first two cases, the present program finds solutions having one fewer 
quantum property than was found by its predecessor. In the third case, both programs 
agree that a single quantum property is enough, but they disagree on the exact quantum 
numbers. Finally, on the strangeness example that BR-3 was unable to solve, PAULI 
verifies that the accepted strangeness values are the simplest, given the constraints used 
in the actual discovery. Another example, created by collecting reactions from the first 
three cases, illustrates how PAULI can quickly detect insoluble problems. 

5.1. Lepton and baryon numbers 

In sections 3.1 and 3.2 of his paper, Kocabas reports that, given the reactions in his Table 
3, BR-3 discovers the lepton and baryon numbers as a consequence of incrementally 
postulating two quantum properties to explain the reaction data. Given the same data 
all at once in optimizing mode, PAULI creates a linear program having 64 constraints 
that leads it to conclude after 40 seconds 3 that a single quantum property suffices. The 
nonzero quantum numbers found are unity for each of the particles n (neutron), p (proton), 
and K °. The quantum numbers for the particles appearing in this solution correspond to 
the baryon numbers accepted in physics, except that K ° instead of A receives a quantum 
value of unity. The lepton numbers were not needed, since only a single new property 
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was enough to account for the reaction data. In satisficing mode, the program finds after 
several seconds the same solution as in optimizing mode. 

The fact that PAULI found different assignments to the quantum properties than both 
physicists and BR-3 is surprising. Moreover, PAULI finds different assignments for all 
of the four cases taken from the Kocabas paper. In each case, PAULI's values are simpler 
by our criterion; two of these cases involve one fewer quantum property, and two cases 
involve the same number of properties (one) but exhibit simpler numeric assignments. 
Section 5.5 tries to explain these surprises, but first we proceed by reporting the program's 
behavior on the remaining cases. 

5.2. Electron and muon numbers 

In his section 3.3, Kocabas reports that, given the reactions in his Table 4, BR-3 discovers 
the electron and muon numbers as a result of incrementally postulating two quantum 
properties to explain the reaction data. Given the same data in optimizing mode, PAULI 
creates a linear program having 62 constraints, and the program again reports after 20 
seconds that a single new quantum property is enough; two properties are not needed. 
The nonzero values found in this case are # = 1, u,  = 1, ~ = - 1 ,  ~ ,  = - 1 ,  and 

= - 1 .  In satisficing mode, PAULI finds a single quantum-property solution having 
nine nonzero quantum numbers, rather than the previous five. 

5.3. Electric charge 

On page 293 of section 3.3, Kocabas states that, given the reactions in his Table 6, BR-3 
discovers the accepted values of electric charge. Given the same data in optimizing mode, 
PAULI creates a linear program having 38 constraints. After one second the program 
confirms that a single new quantum property suffices, although the values it finds differ 
from BR-3's values. PAULI's nonzero values are p = 1, 7r = 1, u = 1, ~ = - 1 ,  and 

= - 1 ,  which differ from the conventional values, since the electron is here assigned a 
zero charge. The same solution is found in satisficing mode. PAULI's solution is again 
simpler than BR-3's. 

5.4. Strangeness 

Kocabas also considers the strangeness property described by Omnes (1971) in chapter 
2, section 5, who lists the twelve observed reactions and six unobserved reactions shown 
here in Table 3. Kocabas (p. 291) observes that for BR-3, "the strangeness property is 
problematic because it takes on integer values between - 3  and 3 inclusively, while the 
current version of BR-3 assigns the values - 1 ,  0, and 1 for reasons of search control." 

We speculate that another reason that finding the strangeness property is problematic 
for BR-3's incremental approach is that by examining only one of the six bad reactions 
at a time, many more quantum properties will be postulated than by considering all the 
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Table 3. Reactions Giving Rise to the Strangeness Property. 

Observed reactions Unobserved reactions 

p + p  ---+ p + A + K +  
K -  + p  --~ A+~r  ° 

f f + p  --+ 7r+ + 7r- + 7r+ + 7r - 

~ + p  ~ K+  + K °  +Tr - 
~ + p  ---+ K - + K O + z r  + 

K -  + p ---+ E - + T r  + 
K -  + p ~ E°+Tr  ° 
K -  + p  --+ E + +Tr-  
K - + p  ~ E - + K  + 
K - + p  ~ ~ O + K + + T r -  

K - + p  ~ ~t- + K ° + K  + 
E° --+ A° + 7 

p + n  --'+ p + A  
p + p  --¢+ p q - n + K +  
p + n  --~ p + p + K -  

K -  q-p  -7"+ f~-  + Tr + 
I f -  ~ 7r- +'~ 

E+ -~  P q - 7  

Table 4. Strangeness values given by Omnes and PAULI. 

particle Omnes's PAULI's PAULI's particle Omnes's PAULI's PAULI's 
values values values values values values 

(run 1) (run II) (run I) (run II) 

K + 1 0 1 ~ 0 0 0 
A - 1  0 - 1  K ° 1 1 1 
p 0 0 0 ~ o  - 1  - 1  - 1  
n 0 2 0 E -  - 1  1 - t  

K -  - 1  0 - 1  E ° - 1  0 - 1  
7r + 0 - 1  0 E + - 1  - 1  - 1  
7r- 0 1 0 ~ -  - 2  0 - 2  
7r ° 0 0 0 E ° - 2  - 1  - 2  
~/ 0 1 0 ~2- - 3  - 1  - 3  

A ° - 1  - 1  - 1  

bad reactions at once.  Accord ing  to N e ' e m a n  and Kirsh (1986), a number  o f  bad reac- 

tions were  known and considered when  M. Ge l l -Mann  and K. Nish i j ima  independent ly  

postulated the strangeness property in 1953. 

G iven  the 18 reactions f rom Omnes,  PAULI  creates a linear p rogram having 72 con-  

straints in op t imiz ing  mode.  Af ter  three minutes,  the p rogram ascertains that a s ingle  

new quan tum property involv ing  only the integer set ( - 1 , 0 , 1 , 2 )  is enough  to account  

for the observed and unobserved  reactions.  However ,  these quantum numbers  ( shown as 

co lumns  labelled "run I"  in Table 4) differ f rom the accepted strangeness values  g iven  

by Omnes .  In fact, PAULI ' s  values are somewha t  "bet ter"  according to the cr i ter ion 

discussed in Sect ion 4.4. That  is, the absolute-value sum of  the d i scovered  values  is 
smal ler  in P A U L I ' s  case. 

These  discrepant  values of  "s t rangeness"  were  surprising to us. However ,  N e ' e m a n  

and Kirsh (1986) explain that a further constraint  used to postulate s trangeness is that 
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particles of the nucleon and pion families possess zero strangeness. When this constraint 
is added to the others, PAULI does find the accepted values of strangeness after four 
minutes of search, and further verifies (in optimizing mode) that they are the simplest 
solutions. These results are labelled "run II" in Table 4. 

According to Kocabas (personal communication, February 12, 1993), BR-3 did not 
make use of the constraint on nucleons and pions because that program found the accepted 
strangeness values without the constraint. PAULI's analysis indicates that the nucleon 
and pion constraint is strictly needed to justify the accepted strangeness values, since 
otherwise simpler solutions exist. 

5.5. Why doesn't PAULI find the accepted quantum numbers? 

Using only Kocabas's data, PAULI finds solutions that disagree with the accepted val- 
ues in physics in every case. The program disagrees with BR-3 in every case except 
strangeness, which the latter program did not handle. In all cases, PAULI's values were 
simpler. How does one make sense of these facts? 

We can see three possible explanations: 

1. Physicists erred by proposing unnecessarily complex assignments of quantum values. 

2. Physicists used further constraints to postulate the new quantum properties. 

3. PAULI's inductive bias is different from (and inferior to) the biases used by physicists. 

The second of these explanations is correct for the case of strangeness, since Ne'eman 
and Kirsh (1986) discuss a further constraint (the nucleon and pion families possess zero 
strangeness) that was not mentioned in Omnes (1971) nor used by Kocabas in BR-3. 
Yuval Ne'eman (personal communication, October 26, 1993) has pointed out that other 
constraints beyond the data on good and bad reactions should be incorporated in order to 
express other experimental facts. His initial suggestions can be expressed as inequation 
constraints between pairs of particles, but further work and experimentation are needed 
to determine whether the current framework should be extended to handle more complex 
constraints, if any. Since PAULI's current framework is already a hybrid of search and 
linear optimization, adding more complex nonlinear constraints would imply a more 
complex search procedure. 

5.6. Detecting insoluble problems 

As a last example, let us consider PAULI's behavior when we input the union of the 
reactions from Sections 5.1, 5.2, and 5.3 of this paper, while keeping the distinction 
between good and bad reactions. PAULI determines, before beginning the search for 
quantum properties, that no conservation laws can account for the reaction data. This is 
because there exists a bad reaction, u~ ÷ n --~ p + e, that is a linear combination of five 
good reactions: 
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u ~ + n  ---+ p + #  

n ---+ p + e + - Y  
--~ # + - y  

-ff + p -+ 7rO + n 

p + p  ~ p + p + T r  ° 

The first reaction is taken from the problem in Section 5.2, whereas the remaining four 
come from Section 5.3; the full reaction data for all problems are given in the Kocabas 
paper. 

Since the sum of any conserved quantum property across a good reaction is zero, 
any linear combination of good reactions must also possess a zero sum. Hence the 
problem data are insoluble, since the dependent bad reaction cannot be made to violate 
any quantum property that the good reactions conserve. 

A reason for the above contradiction was offered by Yuval Ne'eman (personal commu- 
nication, October 26, 1993): the reactions data in Sections 5.2 and 5.3 (taken from the 
Kocabas paper) do not reflect the modern distinction between "neutrinos associated with 
muons" and "neutrinos associated with electrons," rather, both types are simply called 
"neutrinos." For example, the reaction of beta decay in Kocabas (p. 279) is 

n --+ p + e + - P  

whereas the modern interpretation is that the third product is instead the antineutrino 
electron 7¢. We quote again from Ne'eman and Kirsh (p. 72): 

During the 1930s a particle named the muon ... was discovered. It was found 
that in some of the processes in which the muon participates, a neutrino, similar 
in its properties to the neutrino of the electron, is also producted. However, in 
1962 the Americans Lederman, Schwartz, and Steinberger found that the muon 
neutrino is in fact different from the 'electron' neutrino - it 'remembers' its origin 
and in reactions which it initiates only muons, and not electrons, are produced. 

Later sections of Kocabas's paper involve the modem distinction between neutrinos, 
although the earlier sections do not, in order to reflect the historical situation. 

The contradiction found when considering all the reactions as a whole illustrates the 
benefits of an algebraic representation of reactions as matrices. In fact, detecting such 
contradictions can motivate postulating two types of a single particle (as was done with 
neutrinos) in a data-driven manner. 

To detect insoluble reaction data, first one finds the rank of the good-reactions matrix. 
Then, for each bad reaction B, one finds the rank of the good-reactions matrix augmented 
with B. If  the rank of the augmented matrix remains the same, then clearly B is linearly 
dependent on the good reactions, and the problem cannot be solved with the use of 
conservation laws. The problem is soluble only if the rank increases in every case. 

By taking a matrix-algebraic viewpoint on the task, one also sees that the number of 
good reactions can be reduced at the start by finding a full-rank subset of the reactions, 
since any good reaction that is linearly dependent on this subset will conserve any 
property that the subset does. PAULI carries out this reduction of the good reactions. 
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6. Discussion 

This section compares in some detail the approaches embodied in BR-3 and PAULI. 
The two main contrasts between the approaches lie in the use of algebraic methods, and 
also in whether to examine bad reactions incrementally or as a whole. In closing, we 
analyze the limitations of the newer program, and comment on possible relevance to 
current physics research. 

6.1. Comparison on general approach 

An important difference between the PAULI and BR-3 approaches is that PAULI reasons 
about reactions at a highly algebraic level, whereas BR-3 deals with reactions mostly 
at the arithmetic level. A key difference between arithmetic and algebra is their level 
of abstraction. Whereas arithmetic deals with specific numbers, algebra introduces the 
replacement of numbers by variables. The immediate consequence of this replacement 
is greater generality. Moreover, mathematics has contributed powerful reasoning tools 
at the algebraic level. BR-3 does make use of a simple linear equation solver, but it is 
unclear from the paper what sorts of algebraic manipulation this solver can carry out. 

We illustrate what we mean by the arithmetic level as follows. If a program approached 
the current task completely by naive generate-and-test, in which a small set of integer 
values are assigned in all ways to the particle properties, and balance were tested by 
summing the integer assignments, then that program would be entirely arithmetic, and 
would make no use at all of algebraic reasoning. The DALTON program described in 
Langley, Simon, Bradshaw, and Zytkow (1987) operated largely in this manner. 

PAULI represents sets of reactions as explicit algebraic equations by replacing the '--+' 
by '= '  and interpreting the particles as variables over the domain of numbers. The 
resulting set of homogeneous equations can be manipulated with the familiar methods 
of elementary algebra, matrix algebra, and linear programming. That is, algebraic con- 
straints (by definition, containing variables) are thoroughly manipulated in order to carry 
out the intended inference, whether to solve for the variables, test linear dependence, or 
some other purpose. 

The algebraic representation, which makes connection with powerful mathematical and 
algorithmic methods, is the source of PAULI's power. It likewise is one source of the 
power of MECHEM (Valdes-Perez, 1994) in comparison with the programs in Langley 
et al. (1987) dealing with chemical reactions. The STAHLp program (Rose and Langley, 
1988) had some reasoning at the algebraic level, in the sense of substituting variables in 
expressions, but without the full algebraic representation and manipulation of the type 
present in PAULI and MECHEM. 

A second important difference concerns strictly how BR-3 and PAULI were used rather 
than the programs themselves. Kocabas used BR-3 incrementally to examine one bad 
reaction at a time, whereas in this paper PAULI considers all of the available data at 
once. We argue below that the latter strategy is preferable; our evidence is that PAULI 
consistently found simpler solutions given the same facts and constraints. In two cases, 
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PAULI's solutions were incontrovertibly simpler, since they involved postulating one 
quantum property rather than two. 

6.2. Comparison on original criteria 

In section 4 of his paper, Kocabas evaluates BR-3 along several dimensions. The present 
subsection compares BR-3 and PAULI along those same dimensions that we consider to 
reveal interesting differences. 

Research goals. The goal of BR-3 is seemingly to postulate a conserved quantity 
when confronted with a single unexplained bad reaction. One never needs more than 
one such quantity to explain one bad reaction, so the program ordinarily postulates one 
quantity at a time. Kocabas used BR-3 mostly in this incremental way, although he 
mentions having tested the program in "batch" mode. PAULI, on the other hand, aims 
to postulate the minimal number of conserved quantities Q required to explain all the 
known good and bad reactions, and to find the simplest combination of quantum numbers 
for the given Q. Of course, nothing limits PAULI to running only once; new data on 
bad reactions could prompt calling the program with a new state of knowledge. We do 
not view incrementalism as a necessary virtue in such areas of scientific discovery, since 
new conserved quantum properties are not postulated very often. 

Belief revision and search methods. Kocabas explains that BR-3 revises its beliefs 
as it backtracks upon finding that an assignment of quantum numbers has led to a 
contradiction, e.g., a good reaction is found to violate a property. Further, the program's 
search method is largely inherited from Prolog: integer assignments to particle properties 
are generated and tested for contradictions. In contrast, PAULI formulates the constraints 
explicitly at the start, and then uses an efficient search algorithm (linear programming 
with simplex) that involves hill climbing from one feasible solution to a better one, 
finally arriving at an optimum. The design of PAULI exploits the formal structure of the 
problem, and uses algebraic methods to carry out much of the inference. 

Generality of methods. There are two forms of generality typically of interest in AI. 
One refers to the ability to handle many problems within a single task domain, and 
another refers to the range of distinct tasks that are susceptible to similar methods. We 
compare BR-3 and PAULI in both respects. 

We have some evidence that PAULI can handle more problems within the same domain 
than can BR-3, since it was able to solve the strangeness problem of Section 5.4. We 
conjecture that BR-3 would output too many new properties for the strangeness case when 
used incrementally. In addition, PAULI searches a larger space of assignments than BR- 
Ys discrete set {-1,0,1}. The latter program could of course execute with a larger set, but 
the run time would grow exponentially with this factor under BR-Ys backtrack search 
regimen, whereas the linear programming in PAULI automatically considers the whole 
range of non-negative numbers. 

The core of PAULI is an optimization carried out by linear programming. Experience 
has shown that the simplex algorithm of linear programming is applicable across a wide 
range of tasks from various disciplines, including scientific inference. For example, we 
have used it within MECHEM to determine an overall stoichiometrv of a set of chemical 
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reactions (Valdes-Perez, 1991), and to infer whether a set of reactions is consistent with 
experimental evidence of catalysis (Valdes-Perez, 1992b). 

Effects of data order and size. PAULI has little dependence on the order of data 
presentation. The minimal number of quantum numbers needed will never depend on 
the order, although in satisficing mode the exact assignment found may vary. BR-3's 
behavior does depend on the order, as Kocabas points out. The effect of problem size on 
PAULI was given as Expression (9) in Section 4.3. Kocabas does not give an analogous 
result, but does point out that for BR-3 batch processing becomes more economical than 
incremental processing as the number of reactions increases. We have also demonstrated 
above that batch processing gives rise to simpler solutions. 

6.3. Comparison on simplicity 

Comparing the relative simplicity of two computer models is not straightforward. It is 
generally agreed that a model M1 is simpler than another model M2 if M1 has fewer free 
parameters, ceteris paribus. Additionally, in the case of AI programs, "free parameters" 
can include ad-hoc heuristics of meager generality, either across tasks or within the same 
task domain. PAULI contains a free parameter that acts to bound the sum of quantum 
numbers across any bad reaction. 4 BR-3 does not have this free parameter, but for the 
reason that its search is limited by an ad-hoc heuristic to the small set of integer values 
{-1,0,1}. Hence, the two systems appear roughly equal in terms of simplicity. 

6.4. Limitations of the current approach 

There are two main limitations to PAULI. First is the expected exponential growth in 
computation with the number of bad reactions. This has not proved important in the 
historical examples addressed here. However, on a much larger set this factor could 
present problems. We have not studied this issue, but we conjecture that divide-and- 
conquer heuristics could be introduced, together with an incremental version of the 
simplex algorithm, to reduce computation time. 5 

The second limitation is that it remains unclear whether there are other physical con- 
straints one would want to incorporate that cannot not be expressed within the current 
framework of linear constraints augmented with linear inequations. Certainly one can 
conceive of such constraints (e.g., arbitrary nonlinear ones), but whether they are needed 
to solve any problems of scientific interest in this domain is not known to us. 

6.5. Relevance to current physics 

As in the case of strangeness, physicists sometimes postulate phenomenological selection 
rules in order to explain why observed reactions happen and unobserved ones do not. 
Selection rules are still being invented today, as revealed by searches of databases of 
physics literature using keywords like 'seIection rule' and 'novel.' 
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Nevertheless, the relevance of a program such as BR-3 or PAULI to current physics 
is still unclear. It might be interesting to run these programs, or their successors, on all 
the observed and unobserved reactions known to physics to determine a minimal set of 
selection rules or conserved quantum properties. As a first step, we have submitted a 
short article to a physics journal (Valdes-Perez, 1993) in order to acquaint physicists with 
PAULI (which is available by emailed request to valdes@cs.cmu.edu). The paper also 
discusses how the program can be modified to discover entropy-like selection rules, in 
which observed reactions increase or maintain a quantity, rather than exactly conserve 
it, and unobserved reactions diminish the quantity. 

7. Conclusion 

An important goal of computational scientific discovery is to impose order on the seem- 
ingly great variety of scientific inference by means of computational models. Reasoning 
about reaction-like processes is one category of scientific inference found throughout 
natural science; biology, chemistry, petrology, and physics all deal with reactions or with 
analogous processes. We have even argued elsewhere that the production rules of cog- 
nitive psychology bear potentially useful similarities to reactions (Valdes-Perez, Simon, 
and Murphy, 1992). 

The present work, together with some of our other work (Valdes-Perez, 1994; Valdes- 
Perez, 1992a) imposes a semblance of order on reasoning about reactions by developing 
algorithms that answer various scientific questions, including determination of the sim- 
plest pathway (set of concurrent reactions) consistent with experimental data. The main 
argument in this paper is that reasoning about sets of reactions is better accomplished 
with the aid of mathematical and algorithmic tools that accompany an algebraic repre- 
sentation of reactions. Our description of an alternative, arguably superior model for the 
discovery of conserved quantum properties in particle physics illustrates the power of 
this idea. While we have also pointed out an advantage to using all of the available data, 
rather than proceeding incrementally, it is not our intention to formulate this specific 
point into a general lesson. 

Finally, we have recently reported unsuspected similarities in the search spaces of sev- 
eral discovery tasks, including the task of BR-3 and PAULI (Valdes-Perez, Zytkow, and 
Simon 1993). We expect that these similarities, and the concept and notation introduced 
to express them, will lead to further applications of the central lesson of this paper. 
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N a t i o n a l  S c i e n c e  F o u n d a t i o n ,  # B I R - 8 9 2 0 1 1 8 ,  and  by  a H i g h  P e r f o r m a n c e  C o m p u t i n g  

and  C o m m u n i c a t i o n s  g ran t  f r o m  the  N a t i o n a l  S c i e n c e  F o u n d a t i o n ,  # A S C - 9 2 1 7 0 9 1 .  

Notes 

1. GELL-MANN would be a natural name for the present program, since Murray Gell-Mann was a co- 
discoverer of strangeness (Ne'eman and Kirsh, 1986). However, M. Gell-Mann also proposed quark 
models, hence the name of the program in Fischer and Zytkow (1990). 

2. Actually, the Constraints (4) are not an absolute guarantee that no solution will be missed. For example, 
if ~ k p j k l  -- ~ z  ril 1 equals 10, ~ k P j k 2  -- ~ l  rjt2 equals --1/10,  and there are only two quantum 
properties being considered, then the sum 10 + 100 x ( - 1 / 1 0 )  equals zero, and this satisfactory solution 
will be rejected. However, it seems unlikely that solutions involving fractional quantum numbers exist while 
integral solutions do not, given the relatively small sizes of the reactions (in terms of number of reactants 
and products). The Constraints (4) constitute a reliable heuristic implementation of Disjunction (2). 

3. All execution times in this paper refer to solitary use of a Silicon Graphics Indigo. 

4. In any case, we have not needed to adjust this parameter on any problem the program has handled, since 
in all cases the program found that a single new quantum property was sufficient. 

5. The term 'incremental' has a different meaning here. An incremental version of simplex allows adding and 
deleting one or a small number of constraints and re-doing the optimization with less work than formulating 
the constraints from scratch. 
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