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Abstract. This paper describes a method for learning flexible concepts, by which are meant concepts that lack 
precise definition and are context-dependent. To describe such concepts, the method employs a two-tiered represen- 
tation, in which the first tier captures explicitly basic concept properties, and the second tier characterizes allowable 
concept's modifications and context dependency. In the proposed method, the first tier, called Base Concept Represen- 
t~ation (BCR), is created in two phases. In phase 1, the AQ-15 rule learning program is applied to induce a com- 
plete and consistent concept description from supplied examples. In phase 2, this description is optimized accord- 
i~ng to a domain-dependent quality criterion. The second tier, called the inferential concept interpretation (ICI), 
consists of a procedure for flexible matching, and a set of inference rules. The proposed method has been im- 
plemented in the POSEIDON system, and experimentally tested on two real-word problems: learning the con- 
cept of an acceptable union contract, and learning voting patterns of Republicans and Democrats in the U.S. 
Congress. For comparison, a few other learning methods were also applied to the same problems. These methods 
included simple variants of exemplar-based learning, and an ID-3-type decision tree learning, implemented in 
the ASSISTANT program. In the experiments, POSEIDON generated concept descriptions that were both, more 
accurate and also substantially simpler than those produced by the other methods. 

Keywords. Concept learning, learning imprecise concepts, inductive learning, learning flexible concepts, two- 
tiered concept representation, flexible matching 

1. Introduct ion  

Most current methods of machine learning, both empirical and analytic, assume that concepts 
are precise and context-independent, and representable by a single symbolic description. 
An important consequence of this assumption is that the recognition of such concepts, which 
we call crisp, is very simple: if an instance satisfies a concept description, then it belongs 
to the concept, otherwise it does not. Another common assumption is that concept instances 
are equally representative, that is, there is no distinction in typicality among instances. 

In some methods, these assumptions are partially relaxed by assigning to a concept a 
fuzzy set membership function (e.g., Zadeh, 1974) or a probability distribution (e.g., 
Cheeseman, et al., 1988; Fisher, 1987). However, once such a measure is defined explicitly 
for a given concept, the concept again has a fixed, well-defined meaning. Moreover, these 
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methods remain unsatisfactory for coping with context-dependency, handling exceptional 
cases, or for capturing increases in knowledge about the concept properties. ~,o 

When one looks at human concepts, one can see that most of them inherently lack precisely 
defined boundaries, and that their meaning is context-dependent. Although on the surface 
these properties can be viewed as undesirable, one can argue that they contribute to a 
cognitive economy of human knowledge representations (Michalski, 1987). In contrast to 
fuzzy set theory, our view is that this imprecision and context dependency can be more 
adequately captured by rules of inference and flexible concept matching than by a numerical 
set membership function. In other words, the imprecision and context-dependency has often 
a logical, rather than a probabilistic character. That is, to decide about the concept member- 
ship of an instance that is uncommon, borderline, or irregular in some sense, one usually ~ 
reasons using background knowledge, draws an analogy or perform induction, rather than 
performs a statistical analysis. 

Examples of human concepts are usually not all equivalent. They may be characterized 
by a degree of typicality in representing the concept. For example, a robin is usually viewed 
as a more typical bird than a penguin or an ostrich. The typicality can be characterized 
as the degree to which an instance shares the common concept properties. In addition, 
in different contexts, the same concept may have a vastly different meaning. For example, 
the concept "bird" may apply to a live, flying bird, a sculpture, a chick hatching out of 
the egg, or even an airplane. Thus, human concepts are flexible, as their boundaries have 
certain degree of fluidity, and can change with the context in which the concepts are used. -, 
It is clear that in order to learn such concepts, machine learning systems need to employ 
richer concept representations than are currently used. In view of the ubiquity of flexible 
concepts, developing adequate methods for learning them is clearly one of the fundamental : 
tasks for machine learning research. 

Our approach to learning such concepts is based on the idea of two-tiered representation, 
proposed by Michalski (1987). In this representation, the meaning of a concept is defined 
by two components, the base concept representation (BCR), and the inferential concept 
interpretation (ICI). The BCR defines explicitly the basic properties of the concept, while 
the ICI describes implicitly, through rules and matching procedures, the allowed modifica- 
tions of the explicit meaning and its extensions in different contexts. 

In the general formulation of the two-tiered representation, the "distribution" of the mean- 
ing between the two tiers is not fixed, but depends on the properties of the reasoning agent, ~ 
and the criteria for evaluating the quality of concept descriptions. For example, in the method 
described here, the first step of a leaning process produces a concept description in which 
the BCR is a complete and consistent characterization of all training examples. Such a " 
description, as shown experimentally, can be overly complex and perform poorly on new 
examples. Therefore, the second step optimizes this description according to a criterion 
measuring its "quality." Our experiments have shown that this optimized description, in 
addition to being substantially simpler, may also perform better in recognizing new concept 
examples, than the original complete and consistent description. In the application of the 
two-tiered method to modelling human concept representation, the Base Concept Represen- 
tation would describe the most typical, common, and intentional meaning of a concept, : 
while the Inferential Concept Interpretation would handle the exceptional or borderline 
cases, and context dependency (Michalski, 1990). 
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Early ideas, experiments and the first method for learning two-tiered concept represen- 
tations were presented in (Michalski, et al., 1986; Michalski, 1988; and Michalski, 1990). 
The method proposed there employed a simple form of description simplification, called 
TRUNC, which used only specialization as a description reduction operator. An intriguing 
result of that research was that the description's complexity was substantially reduced without 
affecting its performance on new examples. The effect was obtained by removing those 
parts of the complete and consistent description that covered only a small fraction of exam- 
ples (the so called light disjuncts, or light rules), and by applying a flexible matching pro- 
cedure for concept recognition. 

This paper extends and continues these early ideas. One important advance is the develop- 
ment of a heuristic double-level search procedure, called TRUNC-SG, which explores the 
space of two-tiered descriptions to derive a globally optimized description. The search em- 
ploys both generalization and specialization operators, and is guided by a new criterion, 
the general description quality measure (GDQ). This measure considers the accuracy of 
the description, the computational cost of both tiers--Base Concept Representation and 
Inferential Concept Interpretation, and its cognitive comprehensibility (Bergadano, et al., 
1988). By introducing such a general description quality measure one can view any form 
of concept learning as a process of modifying the input concept description in order to 
maximize a given description quality measure. In this characterization, the initial concept 
description may be in the form of positive examples, positive and negative examples, a 
complete and/or consistent concept description, a tentative description (e.g., supplied by 
a teacher), an abstract concept definition (as in the explanation-based learning), or a com- 
bination of these forms. 

Another difference between the present approach and previous research is that flexible 
matching is used not only in the recognition process, as in (Michalski, et al., 1986), but 
also in the leaming process, i.e., in searching for high "quality" concept descriptions. This 
feature also distinguishes the method from the related work described in (Bergadano & 
Giordana, 1989), which does not involve deductive reasoning in the learning phase, and 
evaluates the performance of generated descriptions solely on the basis of the coverage 
of examples. These earlier approaches may be compared to using hands in learning how 
to row a boat, and then using oars in the performance phase. 

The idea that learning is more effective if one uses the same instruments for learning 
and for the performance phases was also present in some incremental learning systems 
(e.g., Fisher 1987). The work described here represents also an important advance over 
tree-pruning techniques (e.g., Quinlan, 1987) which apply much more restrictive descrip- 
tion reduction operators and do not use any form of deductive matching or flexible inter- 
pretation of the learned descriptions. Other advances include the ability to take into con- 
sideration the typicality of training instances (when it is known), and the introduction of 
a rule base in the Inferential Concept Interpretation. 

The paper presents also a body of experimental results comparing the performance of 
the proposed method with several other methods, such as variants of exemplar-based learn- 
ing, decision tree learning, learning complete and consistent descriptions, and the earlier 
method using two-tiered representation based on the TRUNC procedure. 

The method proposed has been implemented in the POSEIDON 1 system, and experi- 
mentally applied to two different real-world problems: learning the concept of an acceptable 
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union contract, and learning voting patterns of Republicans and Democrats in the U.S. 
Congress. The experiments have confirmed the initial findings that the two-tiered represen- 
tation can substantially reduce the concept representation, and at the same time improve 
its predictive power. They also show that in the applications considered, the method pro- 
posed produced simpler and more accurate concept descriptions than other learning methods, 
such as simple variants of exemplar-based learning and decision tree learning with pruning. 

2. Two-tiered concept representation 

Traditional work on concept representation has assumed that the whole meaning of a con- " 
cept resides in a single stored structure, e.g., a semantic network, a logic-based description 
or a decision tree. Such a structure is expected to capture all relevant properties of the 
concept(s) and define the concept boundary (e.g., Collins & Quillian, 1972; Minsky, 1975; 
Smith & Medin, 1981; Sowa, 1984). In domains with a significant amount of noise, it may 
be advantageous that the concept representation is partially inconsistent and/or incomplete 
with regard to the given instances of the concept. The latter has been demonstrated by 
the work on pruning decision trees (e.g., Quinlan, 1987), and the HILLARY system (Iba, 
et al., 1988), and the work on two-tiered representation (Michalski, 1987; and this paper). 

In traditional approaches, the recognition of a concept instance is typically done by directly 
matching the instance description with the stored concept representation. Such matching 
may include comparing feature values in an instance with those in the concept description, 
or tracing links in a semantic network, but has not been assumed to involve any complex 
inferential processes. More recently, researchers working on exemplar-based reasoning (e.g., 
Bareiss, 1989; Kolodner, 1988 and Hammond, 1989) have recognized the need for using 
inference mechanisms to classify new instances. In these methods, however, the concept 
representation consists of stored individual examples (cases). Such a representation taxes 
memory, and makes matching concepts with instances more complex. The same objection 
applies to methods of exemplar-based learning that use slightly generalized cases, because 
the number of cases may still be large. 

In contrast to the above, the two-tiered representation has the capability of employing 
a general concept description (BCR), and an inference mechanism (ICI) to match the descrip- 
tion with instances. Thus, the concept representation can be simpler than the one that stores " 
individual examples, or their independent generalizations. The BCR can be viewed as a 
characterization of the central tendency, the most relevant properties, and the basic inten- 
tion behind the concept. ~ 

The Inferential Concept Interpretation handles special cases, exceptions 2 and context- 
dependency. It treats them either by extending the base concept representation (concept 
extension), or by specializing it (concept contraction). This process involves the background 
knowledge and relevant inference rules contained in the Inferential Concept Interpretation. 
Inference allows the recognition, extension or modification of the concept meaning accord- 
ing to its context. 

When an unknown entity is to be recognized, it is first matched against the Base Concept 
Representation. Then, depending on the outcome, the entity may be related to the con- 
cept's inferential extensions or contractions. A simple inferential matching can be merely 
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a probabilistic inference based on some measure of similarity, e.g., the flexible matching 
method (Michalski et al., 1986). Advanced matching may involve any kind of  inference-- 
deductive, analogical or inductive. 

Let us illustrate the idea of two-tiered representation using the concept of "chair?' A 
simple two-tiered representation of that concept is given below (for an example of a two- 
tiered chair description actually learned, see Bergadano, et al., 1988a). 

BCR : Superclass: A piece of furniture. 

Function: To seat one person. 

Structure: A seat supported by legs and a backrest attached from the side. 

Physicalproperties: The number of  legs is usually four. Often made of  wood. The 
_ height of the seat is usually about 14-18 inches from the end of the legs, etc. 

:~ ~ ~!~:. 

(BCR may also include a picture or a 3D model of typical chairs) 

I¢ I : Possible, variations of the properties in BCR: The number of legs can vary from one 
tO~ur .  The legs may be replaced by any support. The shape of the seat, the legs 
and the backrest, and the material of which they are made are irrelevant, as long 
as the function is preserved. The backrest may be very small or missing, etc. 

Variations: 

If  legs are replaced by wheels ~ type(chair) is wheelchair 

Chair without the backrest ~ type(chair) --- stool 

Chair with the armrests ~ type(chair) = armchair 

Context dependency: 

Context = museum exhibit ~ chair is not used for seating persons any more, but 
has all the physical characteristics of a chair. 

Context = toys ---' the size can be much smaller than stated in BCR. The chair does 
not serve for seating persons, but correspondingly small dolls. 

This simple example illustrates several important features of two-tiered representation. 
Commonly occurring cases of chairs directly satisfy the BCR, and the ICI is not involved. 
The recognition time can thus be reduced for common cases. The BCR is not the same 
as a description of  a prototype (e.g., Rosch & Mervis, 1975), as it can be a generalization 
characterizing different typical cases or be a set of different prototypes. The ICI does not 
represent only distortions or corruptions of  the prototype, but it can describe some radically 
different cases. When an entity does not satisfy the base representation of any relevant 
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concept (which concepts are relevant is indicated by the context of discourse), or satisfies 
the base representation of more than one concept, the ICI is involved. The ICI can be 
changed, upgraded or extended, without any change to Base Concept Representation. While 
the BCR-based recognition involves just direct mathing, the ICI-based recognition can, 
in general, involve a variety of transformations and any type of inference. 

The ideas of two-tiered representation are supported by research on the so-called transfor- 
mational model (Smith & Medin, 1981). In this model, matching object features with con- 
cept descriptions may transform object features into those specified in the concept descrip- 
tion. Such a matching is inferential. Some recent work in cognitive linguistics also seems 
to support the ideas of two-tiered representation. For example, Lakoff (1987), in his idealized 
cognitive models approach, stipulates that humans represent concepts as a structure, which 
includes a fixed part and mappings that modify it. The fixed part is a propositional struc- 
ture, defined relative to some idealized model. The mappings are metaphoric or metonymic 
transformations of the concept's meaning. 

As mentioned before, in the general two-tiered method, the distribution of the concept 
meaning between the Base Concept Representation and Inferential Concept Interpretation 
can vary, depending on the criterion of the concept description quality. For example, the 
Base Concept Representation can be just concept examples, and the Inferential Concept 
Interpretation can be a procedure for inferential matching as used in the cased-based reason- 
ing approach. Consequently, the case-based reasoning approach can be viewed conceptually 
as a special case of the general two-tiered representation method. 

2.L Concept representation language 

In the proposed method, the formalism used for concept representation is based on the 
variable-valued logic system VL~ (Michalski, 1975). This formalism allows to express simply 
and compactly any function that maps a set of vectors into a discrete set. Its advantage 
is that it provides a formally well-defined, and at the same time, both comprehensible and 
powerful mechanism for expressing complex logical relationships. The basic component 
of the representation is a VL1 elementary condition (formally called a selector), which is 
a relational expression: 

[L # R] 

where L is an attribute, R, called the referent, is a value or a disjunction of values from 
the domain of L, and # is one of the relational symbols =, < ,  > ,  < ,  _>, ;~. Such a 
condition is satisfied by an example, if the value of attribute L in this example is in relation 
# to R. For example, [blood type = A v O] expresses the statement that blood type is 
A or O. A conjunction of such elementary conditions is a lZL1 conjunctive statement (for- 
mally called a complex). For example, the expression [shape = circle v square] & [length 
> 2] & [color ~ red] is a VL1 conjunctive statement or a complex. The last elementary 
condition in this statement is satisfied by an example, if the attribute "color" in this exam- 
t~le takes the value that is not "red." 
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A disjunction of VL1 conjunctive statements is a VL1 DNF expression. An expression 
in which one VL1 conjunctive statement implies another is called a VLI rule. I f  a VL~ 
conjunctive statement, S, is a description of examples of class C, then this fact is equivalent 
to a rule S -~ [class = C]. For simplicity, from now on, a VL1 elementary condition is 
called a condition, a VL~ conjunctive statement with an implied class is called a rule, and 
a VL1DNF description of a class is called a ruleset for that class. Both, the base represen- 
tation, as well as the rules in the inferential interpretation of a concept are represented 
as (VL0 rulesets. 

2.2. Inferential Concept Interpretation: Flexible matching function 
"~ 

A part of the Inferential Concept Interpretation is flexible matching function, F, which is 
assumed to be given as the background knowledge of the learner. The function measures 
the degree of match between an event (example) and a concept description. In the method 
implemented, F maps events from the set E, and concept descriptions from the set D, into 
the degree of match from the interval [0.. 1]: 

F: E x D  ~ [0. .1]  

The value of F for an event e, and a concept description D, is defined as the probabilistic 
sum of F for its rules. Thus, if D consists of two rules, rl and r2, we have: 

F(e,D) = F(e, rl) + F(e, r2) - F(e, rl) × F(e, r2) 

A weakness of the probabilistic sum is that it is biased toward descriptions with many 
rules. If  a concept description D has a large number of rules, the value of F(e, D) may 
be close to 1, even if F(e, r) for each rule r, is relatively small (see Table 3 in Section 6). 
To avoid this effect, if the value of F(e, r) is below a certain threshold, then it is assumed 
to be 0. In POSEIDON, this problem does not occur, because concept descriptions are 
typically reduced to only few rules (see the TRUNC-SG procedure in Section 3). 

The degree of match, F(e, r) between an event e, and a rule r, is defined as the average 
of the degrees of fit for its constituent conditions, weighted by the proportion of positive 
examples to all examples covered by the rule: 

F(e,r) = I ~ i  F(e, ci)/nl × #rpos/(#rpos + •  #meg) 

where F(e, ci) is a degree of match between the event e and the condition ci in the rule r, 
n is the number of conditions in r, and #rpos and #meg are the number of positive exam- 
ples and the number of negative examples covered by r, respectively. 

The degree of match between an event and a condition depends on the type of the attri- 
bute in the condition. An attribute can be one of four types: nominal, structured-nominal, 
linear and structured-linear (Michalski & Stepp, 1983). Values of a structured-nominal 
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(linear) attribute are nodes of an unordered (ordered) generalization hierarchy. In an ordered 
hierarchy, the children nodes stemming from any parent node constitute a totally ordered set. 

In a nominal or structured-nominal condition, the referent is a single value or an inter- 
nal disjunction of values, e.g., [color = red v blue v green]. The degree of match is 1, 
if  such a condition is satisfied by an event, and 0 otherwise. In a linear or structured-linear 
condition, the referent is a range of values, or an internal disjunction of ranges, e.g., 
[weight = 1.. 3 v 6. .  9]. A satisfied condition returns the value of match 1. If  the condition 
is not satisfied, the degree of match is a decreasing function of the distance between the 
value and the nearest end-point of the interval. If  the maximum degree of match between 
an example and all the candidate concepts is smaller than a preset threshold, the result 
is "no match." 

2.3. Inferential Concept Interpretation: Deductive rules 

In addition to flexible matching, the Inferential Concept Interpretation includes a set of 
deductive rules that allow the system to recognize exceptions and context-dependent cases. 
For example, flexible matching allows an agent to recognize an old sequoia as a tree, although 
it does not match the typical size requirements. Deductive reasoning is required to recognize 
a tree without leaves (in the winter time), or to include in the concept of tree its special 
instance (e.g. a fallen tree). In fact, flexible matching is most useful to cover instances 
that are close to the typical case, while deductive matching is appropriate to deal with con- 
cept transformations necessary to include exceptions, or take into consideration the 
context-dependency. 

The deductive inference rules in the Inferential Concept Interpretation are expressed as 
Horn clauses. The inference process is implemented using the LOGLISP system (Robinson 
& Sibert, 1982). Numerical quantifiers and internal connectives are also allowed. They 
are represented in the annotated predicate calculus (Michalski, 1983). 

2.4. Types of  match 

The method recognizes three types of match between an event and a two-tiered description: 

1. Strict match: an event matches the Base Concept Representation exactly. In this case, 
the event is said to be S-covered. 

2. Flexible match: an event is not S-covered, but matches the Base Concept Representation 
through a flexible matching function. In this case, the event is said to be F-covered. 

3. Deductive match: the event is not F-covered, but it matches the concept by conducting 
a deductive inference using the Inferential Concept Interpretation rules. In this case, 
the event is said to be D-covered. (In general, this category could be extended to include 
also matching by analogical reasoning and induction; Michalski, 1989). 

The above concepts provide a basis for proposing a precise definition of classes of con- 
cept examples that are usually characterized only informally. Specifically, examples that 
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are S-covered are called representative examples; examples that are F-covered are called 
nearly-representative examples; and examples that are D-covered are called exceptions. 
As mentioned earlier, one of the major advances of the presented method over previous 
methods using two-tiered representation (e.g., Michalski, et al., 1986) is that the Inferen- 
tial Concept Interpretation includes not only a flexible matching procedure, but also infer- 
ence rules. Thus, using our newly introduced terminology, we can say that the method 
can handle not only representative or nearly representative examples, but also exceptions. 

3. An overview of  P O S E I D O N  

The ideas presented above have been implemented in a system for learning two-tiered descrip- 
tions, called POSEIDON. Table 1 summarizes the two basic phases in which the system 
learns the Base Concept Representation. The first phase generates a general consistent and 
complete concept description, and the second phase optimizes the description according 
to a given measure of description quality. 

3.1. Basic algorithm 

The complete and consistent description is determined by the AQ15 inductive learning pro- 
gram (Michalski, et al., 1986). The second phase improves this description by conducting 
a "double level" best-first search. This search is implemented by the TRUNC-SG proce- 
dure (SG symbolizes that the method uses both specialization and generalization operators). 
In this "double level" search, the first level is guided by the description quality measure, 
which ranks candidate descriptions (see Section 4). The second level search is guided by 
heuristics controlling the search operators to be applied to a given description. The search 
operators simplify the description by removing some of its components, or by modifying 
the arguments or referents of some of its predicates (see sec. 3.2). A general structure of 
the system is presented in Figure 1. 

Table 1. Basic phases in generating BCR in POSEIDON. 

Phase 1 
Given: 

Concept examples obtained from some source 
Relevant background knowledge 

Determine: 
Complete and consistent description of the concept 

Phase 2 
Given: 

Complete and consistent description of the concept 
A general description quality (GDQ) measure 
Typicality of examples (if available) 

Determine: 
The Base Concept Representation that maximizes GDQ. 
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Figure 1. Learning in the POSEIDON system. 

The search process is defined by: 

Search space: A tree structure, in which nodes are two-tiered concept descriptions 
(BCR + ICl) 

Operators: Condition removal, Rule removal, Referent modification (see Section 3.2). 
Goal: To determine a description that maximizes the general description quality 

criterion. 

The goal of the search is not necessarily to find an optimal solution, as this would require 
a combinatorial search. Rather, the system tries to maximally improve the given concept 
description by expanding only a limited number of nodes in the search tree. The nodes 
to be expanded are suggested by various heuristics discussed in Section 5.1. 

The BCR is learned from examples, and represented as a ruleset (as described in Sec- 
tion 2.2). The Inferential Concept Interpretation consists of two parts: a flexible matching 
function and a rule base. The rule base consists of rules that explain exceptional examples, 
and is acquired through an interaction with an expert. 

3.2. Operators for optimizing Base Concept Representation 

A description can be modified using three general operators: rule removal, condition removal 
and referent modification (i.e., a modification of the subset of attribute values that represents 
a condition). The rule removal operator removes one or more rules from a ruleset. This 
is a specialization operator because it leads to "uncovering" some examples. It is the reverse 
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of the "adding an alternative" generalization rule (Michalski, 1983). Condition removal 
(from a rule) is a generalization operator, as it is an instance of the "dropping condition" 
generalization rule. 

The referent modification operator changes the referent in a condition. Such changes 
can either generalize or specialize a description. Consequently, two more specific operators 
are def'med: condition extension, which generalizes the description, and condition contrac- 
tion, which specializes the description. 

To illustrate these two types of referent modification, consider the condition 

[size = 1 . .5  v 7] 

A referent modification that produces a condition 

[size = 1. .7]  

is a condition extension operator. If, however, the initial condition was 

[size ~ 1 . .5  v 7] 

then the same referent modification, i.e., the change to [size ~ 1..7], would represent 
a condition contraction operator. A referent modification (in the original condition) that 
produces a condition 

[size = 1. .5]  

is a condition contraction operator. Similarly, if the initial condition was [size ;~ 1.. 5 v 7], 
then the modification to [size ~ 1.. 5] would represent a condition extension operator. 
A summary of the effect of different operators on a description is given in Table 2. 

Thus, applying the above search operators can either specialize or generalize the given 
description. A generalized (specialized) description covers potentially a larger (smaller) 
number of training examples, which can be positive or negative. At any given search step, 
the algorithm chooses an operator on the basis of an evaluation of the changes in the coverage 
caused by applying the operator (Section 5.2). 

3.3. Learning the Inferential Concept Interpretation 

As indicated above, by applying a search operator (R_R, CR, CE or CC) to the current 
Base Concept Representation, one can make it either more general or more specific. If 

Table 2. Search operators and their effect on the description. 

Search Operator Type of Knowledge Modification 

Rule removal (RR) Specialization 
Condition removal ( C R )  Generalization 
Condition extension (CE) Generalization 
Condition contraction (CC) Specialization 
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the modified representation is more specific, some positive examples previously covered 
may cease to be S-covered. These examples may, however, be still covered by the existing 
Inferential Concept Interpretation (and thus would become F-covered or D-covered). On the 
other hand, if the modified base representation is more general than the original one, some 
negative examples, previously uncovered, may now become S-covered. They may, however, 
remain to be excluded by the existing Inferential Concept Interpretation rules. Consequently, 
two types of rules in the Inferential Concept Interpretation can be distinguished: those that 
cover positive examples left uncovered by the base representation ("positive exceptions"), 
and rules that eliminate negative examples covered by the base representation ("negative 
exceptions"). A problem then is how to acquire these rules. 

The rules can be supplied by an expert, inherited from higher level concepts, or learned 
from other knowledge. If the rules are supplied by an expert, they may not be operationally 
effective, but they can be made so through some form of analytic learning (e.g., Mitchell, 
et al., 1986; Prieditis & Mostow, 1987). If the rules supplied by an expert are too specific 
or not totally correct, they may be improved inductively (e.g., Michalski & Larson, 1978; 
Dietterich & Flann 1988; Mooney & Ourston, 1989). Thus, in general, learning the Infer- 
ential Concept Interpretation can be accomplished by different strategies, the same as learn- 
ing the Base Concept Representation. 

In the implemented method, the system identifies exceptions (i.e., examples not covered 
by the Base Concept Representation), and asks an expert for a justification (see sec. 5.2). 
The expert is required to express this justification in the form of rules. The search proce- 
dure, shown in Fig. 1, guides the process by determining examples that require justifica- 
tion. This way, the role of the program is to learn the "core" part of the concept from 
the supplied examples, and to identify the exceptional examples. The role of a teacher is 
to provide concept examples, and to justify why the examples identified by the learning 
system as exceptions are also members of the concept class. 

4. Quality of concept descriptions 

Concept descriptions are influenced by different factors and their combinations. Starting 
from that point, this section derives quality measures for concept descriptions. 

4.1. Factors influencing the description quality 

The learning method utilizes a general description quality measure that guides the search 
for an improved two-tiered description. The General Description Quality measure is influ- 
enced by three basic characteristics: the accuracy, the comprehensibility, and the cost. This 
section discusses these three components, and describes a method for combining them into 
a single measure. 

The accuracy represents the description's ability to produce correct classifications. The 
numbers of positive and negative examples covered by a description determine its degree 
of completeness and consistency, and are indicative of its predictive power. In order to 
achieve a high degree of completeness and consistency when learning from noisy input 
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examples, the system may produce overly complex and detailed descriptions. Such descrip- 
tions may strongly depend on the particular training set, and, consequently, may perform 
poorly in classifying future examples. For that reason, when learning from imperfect in- 
puts, it is often better to produce descriptions that are only partially complete and/or 
consistent. 

The comprehensibility of the acquired knowledge depends on subjective and domain- 
dependent criteria. If an intelligent system is supposed to give advice to humans, knowl- 
edge used by such a system should be comprehensible to human experts. A "black box" 
classifier is not satisfactory in such situations. Therefore, knowledge acquired by a learn- 
ing system should be related to terms, relations and concepts used by experts, and should 
not be too complex syntactically. This requirement is called the comprehensibility princi- 
ple (Michalski, 1983). There is no well established measure of description's comprehen- 
sibility, therefore we approximate it by using a measure of a representational simplicity 
of a description. Such a simplicity measure is determined by counting the number of oper- 
ators of different kinds involved: disjunctions, conjunctions, and the relations embedded 
in individual conditions. In the case of two-tiered representations, the proposed approxima- 
tion of the comprehensibility takes into account the operators occurring in both, the BCR 
and the ICI, and weighs the relative contribution of each part to the comprehensibility of 
the whole description. 

The third criterion, the description cost, captures the properties of the description related 
to its storage and its use (the computational complexity). Other things being equal, descrip- 
tions which are easier to store and easier to use for recognizing new examples are preferred. 
When evaluating the description cost, two characteristics are of primary importance. The 
first is the cost of measuring values of variables occurring in the description. In some appli- 
cation domains, e.g., in medicine, this is a very important factor. The second characteristic 
is the computation cost (time and space) of evaluating the description. Again, in some real- 
time applications, e.g., in speech or image recognition, there may be stringent constraints 
on the evaluation time. The cost and the comprehensibility of a description are frequently 
mutually dependent, but generally these are different criteria. 

The criteria described above need to be combined into a single evaluation measure that 
can be used to compare different concept descriptions. One solution is to have an algebraic 
formula that, given numeric evaluations for individual criteria, produces a number that 
represents their combined value. Such a formula may involve, e.g., a multiplication, weighted 
sum, maximum/minimum, or t-norrn/t-conorm of the component criteria (e.g., Weber, 
1983). Although such an approach is often appropriate, it also has significant disadvantages. 

First, it combines a set of heterogeneous evaluations into a single number, and the meaning 
of this final number is hard to understand for a human expert. Second, it usually forces 
the system to evaluate all the criteria for each description, even if it is sufficient to com- 
pare descriptions on the basis of just one or two most important ones. The latter situation 
occurs when one description is so much better than the other according to some important 
criterion, that it is not worth to even consider the alternatives. To overcome these problems, 
we use a combination of two measures, a lexicographic evaluation and a linear function- 
based evaluation, as described in the next section. 
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4.2. Combining individual factors into a single preference criterion 

Given a set of candidate descriptions, we use the General Description Quality criterion 
to select the "best" description. In POSEIDON, the General Description Quality consists 
of two measures, the lexicographic evaluation functional (LEF), and the weighed evalua- 
tion functional (WEF). The LEF, which is computationally less expensive than WEF, is 
used to rapidly focus on a subset of the most promising descriptions. The WEF is used 
to select the final description. A general form of a LEF (Michalski, 1983) is: 

LEF: <(Criterionl, ~'1), (Criterion2, T 2 )  , . . .  (Criterionk, rk)) 

where Criterion1, Criterion2, . . .  Criterionk are elementary criteria used to evaluate a de- 
scription, and rl,  r2, • ..  rk are corresponding tolerances, expressed in %. The criteria 
are applied to a description in order from the left to right (this order reflects their decreas- 
ing importance). At each step, all candidate descriptions whose score on a given criterion 
is within the tolerance range from the best scoring description on this criterion are con- 
sidered equivalent with respect to this criterion, and are kept on the CANDIDATE LIST; 
other descriptions are rejected. If  after applying some criterion, there is only one descrip- 
tion on the CANDIDATE LIST, this description is selected as the best. If  after applying 
all criteria, the CANDIDATE LIST has more than one description, a standard solution 
is to choose the description that scored highest on the first criterion. In POSEIDON, we 
chose another approach to the latter problem (see below). 

The LEF evaluation scheme is not affected by the problems of algebraic evaluation func- 
tions mentioned above. The importance of a criterion depends on the order in which it 
is evaluated in the LEF evaluation scheme, and on its tolerance. Each application of an 
elementary criterion reduces the CANDIDATE LIST, and thus the subsequent criterion 
needs to be applied only to a reduced set. This makes the evaluation process quite efficient. 
In POSEIDON, the default LEF consists of the three elementary criteria discussed above, 
i.e., accuracy, the representational simplicity and the computational complexity, specified 
in that order. The tolerances are parameters of the program, and are set by the user. 

While it is usually easy to determine the desired order of the criteria, it may be more dif- 
ficult to decide the tolerance for them. If the tolerance for some criterion is too small, the 
chances of using the remaining criteria decrease. I f  the tolerance is too large, the importance 
of the criterion is decreased. For this reason, the LEF measure in POSEIDON is applied 
with relatively large tolerances, so that all the elementary criteria are taken into account. If  
after applying the last criterion the CANDIDATE LIST has still several candidates, a weighed 
evaluation functional (WEF) is used to make the final choice. The WEF is a standard linear 
function of the elementary criteria. The description with the highest WEF is selected. 

Thus, the above approach uses a computationally efficient LEF to reduce the set of can- 
didates to a small set, and then applies a more complex measure to the remaining candidates. 

4.3. The role of typicality of examples 

Accuracy is a major criterion to determine the quality of a concept description. Current 
machine learning methods usually assume that the accuracy depends only on the number 
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of positive and negative examples covered by the description (training and/or testing). One 
can argue, however, that in evaluating accuracy one should take into consideration also the 
typicality of examples (Rosch & Mervis, 1975). If  two descriptions cover the same number 
of positive and negative examples, the one that covers more typical positive examples and 
less typical negative examples can be considered more accurate. 

For the above reason, we propose a measure of the degree of completeness and the degree 
of consistency of a description that takes into account the typicality of the examples. The 
typicality of examples can be approximated by the frequency of their occurrence. Alterna- 
tively, the teacher supplying the examples can be asked to assign the typicality to the ex- 
amples. If the typicality is not provided, the system makes the standard assumption that 
the typicality is the same for all examples. The degree of completeness of a description 
is proportional to the typicality of the positive events covered. The consistency of the descrip- 
tion is inversely proportional to the typicality of the negative events covered? 

In defining the completeness and consistency of a two-tiered description, other factors 
may be taken into account. One may postulate that a description should cover the typical 
examples explicitly, and non-typical ones implicitly. Thus, the typical examples are covered 
by the Base Concept Representation, and non-typical, or exceptional ones by the Inferential 
Concept Interpretation. In POSEIDON, the Base Concept Representation is inductively 
learned from examples provided by a teacher, and it is desirable that they are typical of 
the concept being learned. The Inferential Concept Interpretation rules are provided by 
a teacher. They are assumed to handle special or rare cases. An advantage of such an ap- 
proach is that the system learns a description of typical examples by itself, and the teacher 
needs to explain only the special cases. 

In view of the above, the explicitly-covered (strictly-covered, or S-COV) examples are 
assumed to contribute to the completeness of a description more than implicitly-covered, 
i.e., flexibly-covered (F-COV) or deductive inference rules-covered (D-COV) examples. 
These assumptions are reflected by weights Ws, wf, and wa used in the definition of com- 
pleteness and consistency described in the next section. 

4.4. General Description Quality measure 

This section defines the General Description Quality (GDQ) measure implemented in 
POSEIDON. To this end, we first define the typicality-based completeness, T COM- 
PLETENESS, and the typicality-based consistency, T CONSISTENCY, of a two-tiered 
concept description: 

T COMPLETENESS = 

EWs*Typicality(e +) + Ewf*Typicality(e +) + ~wa*Typicality(e +) 
e + ~ S-cov 3 + E F-cov e + ~ D-cov 

~ Typicality(e) 
e ~ POS 

T CONSISTENCY = 1 - 

~ws*Typicality(e-) + Ewf*Typicality(e-) + ~wd*Typicality(e- ) 
e-  E S-cov 3- ~ F-cov e-  ~ D-cov 

E Typicality(e) 
e E NEG 
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where POS and NEG are sets of positive and negative examples, respectively, that are covered 
by the two-tiered concept description; and Typicality(e) expresses the degree of typicality 
of e as a representative of  a given concept. Weights w s, wf, and Wd represent different 
significance of the type of coverage. They depend on certain thresholds reflecting the appro- 
priateness of  the type of coverage for the given degree of typicality: 

Ws: if Typicality(e) _> t2, then 1, else w 

we: if t2 _> Typicality(e) _> tl, then 1, else w 

Wd: if tl --> Typicality(e), then 1, else w 

where thresholds fl and t2 satisfy the relation 0 < tl < t2 < 1, and 0 < w < 1. The 
role of w is to weigh the examples that are covered in a manner (S, F or D) that is not 
compatible with their typicality. 

Using the terms of T_COMPLETENESS and T_CONSISTENCY, the description accuracy 

is defined as: 

A C C U R A C Y  = w l * T _ C O M P L E T E N E S S + w 2 * T _ C O N S I S T E N C Y  

where w~ + w2 = 1. The weights wl and w2 reflect the expert's judgement about the relative 
importance of completeness and consistency for the given problem. The default value of 
both is 0.5. 

A measure of comprehensibility of  a concept description is difficult to define. As men- 
tioned earlier, we approximate it by a representational simplicity, which is a reversal func- 
tion of representational complexity, defined as: 

vl * E C(op) + v 2 *  g C ( o p )  
opEBCR(dsp) opEICI(dsp) 

w h e r e  BCR(dsp) is the set of all operator occurrences in the BCR, and I C l ( d s p )  is the 
set of all operator occurrences in the ICI. C (o p ) ,  the complexity of an operator, is a real 
function that maps each operator symbol into a real number representing its complexity. 
The values of complexities of the operators are ordered as follows: 

C(interval) < C(internal disjunction) < C(=) < C ( <  > )  < C(&) < C(v) < C(implication). 

When the operator is a predicate, C increases with the number of the arguments of  the 
predicate. Parameters v 1 and v 2 are weights such that vl + v2 = 1. 

The Base Concept Representation is supposed to describe the general and easy-to-define 
meaning of the concept, while the Inferential Concept Interpretation is mainly used to handle 
rare or exceptional events. As a consequence, the Base Concept Representation should be 
easier to comprehend than the Inferential Concept Interpretation, and thus vl should be 
larger than v2. The computational complexity (or a cost) of a description depends on two 
oarts: 
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Measuring-Cost (MC)--the cost of measuring variables used in the concept description. 
Evaluation-Cost (EC)--the cost of evaluating the concept description. 

MC(description) = Z Z mc(v)/(/Pos/+ /Neg/) 
e(Pos+ Neg v~vars(e) 

ED(description) = ~ ec(e)/(/Pos/ + /Neg/) 
e ~ Pos 4- Neg 

where vars(e) is the set of all occurrences of variables used to evaluate a concept descrip- 
tion to classify the event e, mc(v) is the cost of measuring the values of the variable v, 
and ec(e) is the computational cost of evaluating the concept description to classify the 
event e. The latter depends on the computing time and/or on the number of operators in- 
volved in the evaluation. 

We now define the cost of a description: 

Cost(description) = ul*MC(description) + u2*EC(description) 

where u~ and ua are weights defining the relative importance of the measuring-cost and 
the evaluation-cost for a given problem. 

The definitions of the above measures together with the specification of the way they 
can be combined (sec. 4.2) define the general description quality. Various weights used 
in the measures are specified by the program's user to reflect the requirements of the prob- 
lem, or determined experimentally. For more details about the description quality measure 
see (Bergadano, et al., 1988). 

5. Learning by maximizing the concept description quality 

As mentioned before, learning a base representation of a concept is performed in two phases. 
In the first phase, a complete and consistent concept description is generated by inductive 
learning from examples. In the second phase, the obtained complete and consistent descrip- 
tion is optimized according to the general description quality criterion. In our approach, 
the first phase is done using the AQ15 learning program (Michalski, et al., 1986a). This 
section describes the second phase. 

5.1. Search heuristics for optimizing Base Concept Representation 

Optimizing BCR by a direct application of the General Description Quality measure is 
computationally expensive, because every newly generated description has to be matched 
flexibly against the complete set of training examples. To make the process more efficient, 
we have introduced a double-level search method. The first level uses a simple heuristic 
to determine which operator (RR, CR, CE or CC) is likely to improve the description, 
and the second level actually applies the operator, and evaluates the description using General 
Description Quality. 
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The first level applies the so-called Potential Accuracy Improvement heuristic (PAI). The 
PAI is a function of the change in the coverage of positive and negative examples by the 
description due to an operator application. Specifically: 

PAI = AP/TP - AN/TN 

where AP (AN) is the change in the number of positive (negative) examples that would 
be covered by the description after applying the operator, and TP (TN) is the total number 
of positive (negative) examples. For generalizing operators, SR and CE, AP and AN are 
non-negative, and for specializing operators, CR and CC, Ap and AN are non-positive. 

The advantage of the Potential Accuracy Improvement measure is that it can be computed 
much more efficiently than the General Description Quality. For every condition in the 
current description, a list of examples covered by it is maintained using bit vectors. The 
sets of examples covered by a ruleset (representing a complete description) is then obtained 
by intersection and union operations. The matching time can be improved further by also 
maintaining bit vectors for the examples covered by rules (the matching time trades off 
with the memory for storing the bit vectors). Note that computing the General Description 
Quality requires flexible matching, and thus cannot be done by an intersection and union 
operations on bit vectors. 

The above formula does not take into consideration the degree of reduction of the descrip- 
tion complexity caused by applying an operator. For example, removing a rule reduces 
complexity more than removing a condition. To account for this, POSEIDON assigns a 
higher weight (preference) to applying the RR operator (rule removal) than for applying 
the CR operator (condition removal). 

The condition removal operator generalizes the description, therefore, the description 
(ruleset) resulting from its application may cover some additional examples (positive or 
negative). Due to this, some rule(s) may become redundant. If the CR operation produces 
a rule that differs from another rule only in the value of attribute, the two rules may be 
merged into one, in which the attribute is related to the internal disjunction of values (this 
is a case of the so-called "refunion" operation; see Michalski & Stepp, 1983). For example, 
the rules [shape = circle]&[size = 2. .6] and [shape = square]&[size = 2. .6] can be 
replaced by single rule [shape = circle v square]&[size = 2. .6] .  

It is worth noting that in the case of operators RR and CR, the Potential Accuracy Im- 
provement heuristic can be simplified by using an approximation: 

PAI' = #P/TP - #N/TN 

where #p (#N) is the number of positive (negative) examples covered by the component 
(rule or condition) to be removed. Such a heuristic is very efficient because it needs to 
be computed only once for every condition and every rule in the initial description. This 
computation can be done before the search starts, and does not need to be repeated for 
every node in the search. 

The operator that produces the largest Potential Accuracy Improvement is chosen, and 
applied to the description under consideration. The descriptions so generated are then sub- 
jected to an evaluation by the General Description Quality criterion. 
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5.2. Search algori thm 

The search process is conducted according to the algorithm in Table 3: 

Table 3. The algorithm for optimizing a concept description. 

1. Identify in the search tree the best candidate description D 

(Initially, D is the complete and consistent description obtained by the AQ15 program in Phase 1, and then 
it is the highest rank description according to the General Description Quality criterion). 

2. Apply to D the operator, from among the operators: 

RRi: Remove the i-th rule from D. 
CRij: Remove the j-th condition from the i-th rule in D. 
CEij: Extend the referent of the j-th condition in the i-th rule in D. 
CCij: Contract the referent of the j-th condition in the i-th rule in D, 

that maximizes the Potential Accuracy Improvement measure. 

3. Compute the General Description Quality (GDQ) of the description obtained in step 2. If the GDQ is smaller 
than the GDQ of original D, then proceed to step 1. (When computing the description accuracy for GDQ, 
flexible matching is used). 

4. Ask an expert for an explanation of the exceptional examples, which are 

(a) the positive examples that cease to be covered, and 
(b) the negative examples that become covered. 

If an explanation is given, add the rules that make up the explanation to the Inferential Concept Interpretation, 
otherwise add to it the exceptional example(s). 

5. Update the GDQ value of the new node by taking into account the added Inferential Concept Interpretation. 

6. If the stopping criterion is satisfied, then STOP, otherwise proceed to step 1. 

Let us explain the motivation and individual steps of the algorithm. Step 1 chooses the 

node (description) for expansion on the best-first basis, that is, chooses the node with the 
highest General Description Quality. (This is not always an optimal choice, because "worse" 
nodes can sometimes lead to better descriptions after a number of  removals. Whether the 
search will behave in this manner will depend on the adequacy of the General Description 
Quality as the measure of concept quality). 

Step 2 chooses the "bes t"  search operator according to the Potential Accuracy Improve- 
ment heuristic, and applies it to the current description. Step 3 computes the General De- 
scription Quality of the new node. It should be noted that, in the General Description Quality 
measure, the typical examples covered directly by the base representation can weigh more 
than those covered through flexible matching. The examples covered by Inferential Concept 
Interpretation rules weigh more than the ones covered through flexible matching, but less 
than the ones covered by the Base Concept  Representation. 

Step 4 determines exceptional examples, and asks an expert for an explanation of them. 
I f  the explanation is provided, appropriate rules are added to the Inferential Concept Inter- 
pretation. These rules may extend or contract the Base Concept Representation. For exam- 
ple, the rule removal operator might uncover some positive examples, that were previously 
covered. In this case, new rules added to the Inferential Concept Interpretation would allow 
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the system to reason about such "special" positive examples, and explain why they should 
be classified as instances of the concept being learned. On the other hand, the condition 
removal operator might cause some negative examples to be covered. In this case, new 
Inferential Concept Interpretation rules would have to be added to contract the Base Con- 
cept Representation. 

An important issue concerning step 4 is when an explanation should be required from 
an expert ("explainer"). The problem is that in some cases the chosen operator may not 
be appropriate, because it leads to a very poor description. In such a case, it is not worth- 
while to ask an expert for an explanation, and search should continue in other direction. 
The method follows the following strategy. Suppose that N is the node (description) being 
expanded, and M is the node obtained after applying an operator (e.g., the condition re- 
moval). The effort to obtain an explanation is made only if the General Description Quality 
of M is "significantly" better than that of N (above a certain threshold). In this case, the 
explainer is given the General Description Quality evaluations of both descriptions, N and 
M, and asked for an explanation. These evaluations give the explainer a sense of impor- 
tance of the request. If the explainer cannot provide an explanation, the exceptional exam- 
pies are directly added to the Inferential Concept Interpretation. Step 5 updates the General 
Description Quality of the obtained two-tiered description by taking into consideration the 
added Inferential Concept Interpretation rules. Step 6 decides whether to stop or continue 
the search. The stopping criterion is satisfied when the number of nodes explored exceeds 
valuek/, or when the General Description Quality is not improved after the exploration 
of k2 nodes since the last improvement. The search parameters k /and  k2 have a default 
value, which is modifiable by the user. When the search stops, the best node found until 
this point defines the chosen two-tiered concept description. 

In conclusion, let's summarize the main difference between the above two-level search 
and the standard best-first search. The difference is that only one operator is applied to 
the (best-GDQ) node selected for expansion, rather than all available operators, as in the 
standard search. The operator applied is the "best" according to the PAI heuristic. Such 
a procedure helps to avoid generating low quality nodes, and thus makes unnecessary the 
computation of the General Description Quality for these nodes. Other operators are applied 
only if the results obtained along this branch of the search tree turn out to be unsatisfactory. 

5.3. An abstract example 

An abstract example of the search process is given in Figure 2. Individual nodes represent 
both components of a two-tiered description (Base Concept Representation and Inferential 
Concept Interpretation) generated at any given search step, and show. the coverage of train- 
ing examples by the description. The rectangular areas represent the coverage by the Base 
Concept Representation, and the curved lines denote the coverage by the Inferential Con- 
cept Interpretation. 

In the example, the accuracy is computed according to the formula presented in Section 
4, assuming that all examples have the same typicality. The initial description is represented 
by node 1. The BCR contains two rules represented by two rectangular areas, which cover 
five positive examples out of eight, and one negative example out of five. The Inferential 
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Figure 2. An illustration of the search process. 

Concept Interpretation extends this coverage by recognizing one more positive example. Next 
nodes correspond to descriptions obtained by an application of operators marking the branches 
of the search tree. For example, node 3 is obtained by eliminating condition C5 in the sec- 
ond rule of the initial description. The new description is more accurate because all positive 
examples are now covered, without changing the coverage of the negative examples. 

By truncating the first rule in node 3, node 5 is generated. The description no longer 
covers negative examples, and is simpler. This node is then accepted as the optimized descrip- 
tion resulting from the search. The other nodes lead to inferior concept representations 
with respect to General Description Quality, and are discarded. The quality has been com- 
puted with wl = we = o. 5. For simplicity, the cost is omitted, and the complexity of the 
Inferential Concept Interpretation is ignored. The complexity of the Base Concept Represen- 
tation is indicated by the number of rules and the number of conditions. 

6. Experiments 

Experiments tested the POSEIDON program, and compared its performance with that of 
three other methods: variants of exemplar-based learning, the method for learning consistent 
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and complete descriptions (as implemented in AQ15), the method for generating top rule 
descriptions (as described by Michalski et al, 1986), and the method for generating pruned 
decision trees (as implemented in the ASSISTANT program; Cestnik, Kononenko, & Bratko, 
1987). All these methods were applied to the same data from two problem domains. The 
learned descriptions were then tested on the same testing examples. 

The first domain concerned labor-management contracts, and the problem was to learn 
a general description that discriminates between acceptable and unacceptable contracts. 
The second domain concerned congressional voting records, and the problem was to char- 
acterize the voting behavior of Republicans and Democrats in the U.S. House of Represen- 
tatives. To describe the experiments, we start with a brief characterization of the data used. 

6.1. Experimental data 

Labor-management contracts 

The data regarding labor-management contracts were obtained from Collective Bargain- 
ing, a review of current collective bargaining issues published by the Department of Labor 
of the Government of Canada. The data describe labor-management contracts that were 
negotiated between various organizations and labor unions with at least 500 members. 

The raw data covered several economic sectors. Because the attributes describing indi- 
vidual contracts varied among different economic sectors, the experiments focused on only 
one sector: personal and business services. This sector includes unions representing hospital 
staff, teachers, university professors, social workers and certain classes of administrative 
personnel. The data involved multivalued attributes, and therefore the VL1 language was 
very suitable and directly applicable to these data. 

The data used in the experiments describe contracts concluded in the second half of 1987 
or the first half of 1988. Each contract is described by sixteen attributes, belonging to two 
main categories. One category concerns issues related to the salaries, e.g., pay increases 
in each year of the contract, the cost of living allowance, a stand-by pay, etc., and the sec- 
ond category concerns issues related to fringe benefits, e.g., different kinds of pension 
contributions, holidays, vacation, dental insurance, etc. Positive examples represent con- 
tracts that have been accepted by both parties. Negative examples represent contract pro- 
posals deemed unacceptable by one of the parties. The training set consisted of 18 positive 
and 9 negative examples of contracts; the testing set consisted of 19 positive and 11 nega- 
tive examples. 

Below is a typical example of an acceptable labor-management contract: 

Duration of the contract = 2 years 
Wage increase in the first year = 1.5% 
Wage increase in the second year = 3.5% 
Cost-of-living-allowance = unknown 
Hours of work/per week = 38 
Pension offer = none 
Stand-by pay = $0.12/hr 
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Shift differential = second shift is paid 25 % more than first shift 
Educational allowance is offered 
Holidays/per year = 11 days 
Vacation offer = better than average in the industry 
Long term disability insurance = offered by the employer 
50% dental insurance cost = covered by the employer 
Bereavement leave = available 
Employer-sponsored health plan = not mentioned 

The above description was represented as the following V L  1 rule: 

[Dur = 2][wagel = 1.5][Wage2 = 3.5][cola = unknown][Work-hours = 38] 
[Pension = none][Stby-pay = 12][Shift-diff = 25][Educ-allw = yes] 
[Holidays = ll][Vacation = better][lngtrm-disabil = true] [Dntl-ins = half] 
[Bereavement = yes][Empl-hlth-plan = unknown] 

:: > [contract = acceptable] 

(In the above rule, for simplicity, the conjunction is represented by concatenation). 

U.S. Congress voting record 

The data regarding the U.S. Congress voting record were the same as the ones used by 
Lebowitz (1987) in his experiments on conceptual clustering. The data represent the 1981 
voting records of  100 selected representatives (50 in the training set and 50 in the testing 
set). The problem was to learn descriptions discriminating between the voting record of 
Democrats and Republicans. Below is an example of the voting record of  a Democrat in 
the U.S. Congress: 

Draft  registration = no 

Ban aid to Nicaragua = no 

Cut expenditure on M X  missiles = yes  

Federal subsidy to nuclear  power  stations = yes 

Subsidy to nat ional  parks  in Alaska = yes 

Fair housing bill = yes 

Limi t  on PAC contributions = yes 

L imi t  on f o o d  stamp program = no 

Federal help to education = no 

State = north east  

Population = large 

Occupation = unknown 

Cut in Social Security spending = no 

Federal help to Chrysler Corp. = vote not  registered 
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6.2 A description of experiments 

For each problem domain, the experiments involved the following steps: 

1. Learning a complete and consistent description from the training examples (by the AQ15 
program). 

2. Determining the top rule description from the above description using the TRUNC 
method (Michalski, et al., 1986). 
Such a description consists of a single rule that covers the maximum number of positive 
examples among all other rules in the complete and consistent description. Such a descrip- 
tion is easy to determine, because the AQ15 generates rules together with measures indi- 
cating the number of examples covered totally and uniquely by each rule (i.e., the t-weight 
and u-weight, respectively; see below). In the experiments, one top rule description 
was generated for positive concept examples, and one for the negative examples (i.e., 
from a complete and consistent description of the negative examples). An instance was 
classified as belonging to a concept if it best matched the top rule description of positive 
examples, and was rejected if it matched the top rule description of the negative exam- 
ples. If both descriptions were matched with roughly the same degree, then the instance 
was classified as "no match." Learning the top rule description, and using it with flexi- 
ble matching, represents a simple, but important version of the two-tiered concept learn- 
ing approach (Michalski, 1990). 

3. Determining an optimized two-tiered description from the complete and consistent de- 
scription using the TRUNC-SG procedure. 

4. Determining descriptions of the given concepts using other methods, specifically, vari- 
ants of the exemplar-based learning approach, and the decision tree learning algorithm 
ASSISTANT. 

5. Testing the performance of all generated descriptions on the testing examples. 

To illustrate the difference between the complete and consistent descriptions, the top rule, 
and the optimized descriptions created by POSEIDON, figures below show a sample of 
these descriptions in the labor management domain. Figure 3 shows the complete and con- 
sistent description produced by AQ15. In the Figure, t represents the t-weight, which is 
the total number of examples covered by a rule, and u represents the u-weight, which is 
the number of examples uniquely covered by the rule. 

By selecting from each of the above descriptions the rule with the largest t-weight, top 
rule descriptions were obtained (Figure 4). 

By applying the method implemented in POSEIDON (the TRUNC-SG optimization of 
the complete and consistent description, and the ICI rule acquisition), the following opti- 
mized two-tiered description was obtained (Figure 5). 

During the BCR description optimization process, the system determined the training 
events that were incorrectly classified by the base representation. An expert was asked to 
formulate rules explaining these examples (the ICI rules in Figure 5). For example, the 
first ICI rule for an unacceptable contract (Figure 5) describes contracts with the wage 
increase in the first year lower than 3 %, and an even lower increase in the second year. 
In such circumstances, the holiday and vacation time do not matter, and the contract is 
classified as unacceptable (by the union). 
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[contract-duration >l]&[wage_incr_yr2 >3.0%]&[#holidays >i0]: 

or 
[wage_incr_yrl > 4.5%]: 
or 
[wage_incr_yrl > 4%] & [wage_incr_yr2 > 4.0%]: 
or 
[wage_incr_yrl > 4.5%] & [#holidays > 9]: 
or 
[wage_incr_yrl > 2%] & [vacation > average]: 

::> [Contract = acceptable] 

[wage_incr_yrl = 2..4%]&[#holidays < lO]&[vacation ~ average]: 

or 
[wage_incr_~vrl ~ 4.5%] & [wage_incr_.vr2 ~ 4.0%] & 
[holidays = 10] & [vacation = below_average v average]: 
or 
[duration = I] & [wage_incr_yrl < 4.0%] & [#holidays < lO]& 
[vacation = below average v average]: 
[wage_incr_yrl ~ 4.0%] & [wage_incr~yr2 ~ 3.0%] & 
[vacation = below_average v average]: 
or 
[duration = i] & [wage_incr_yrl ~ 4.0%]& 
[vacation = below_average v average]: 

or 
[wage_incr_yrl = 2.0%] & [wage_incr~yr2 ~ 3.0%]: 

::> [Contract = unacceptable] 

(t= ll,u=11) 

(t=4, u=4) 

(t=l,u=l) 

(t=l,u=l) 

(t=l,u=l) 

(t=3, u=3) 

(t=2, u=2) 

(t=l,u=l) 

(t=l,u=l) 

(t=l,u=l) 

(t=J,u=l) 

Ngure ~ The complete and consistentdescriptions generated by AQ~. 

BCR: 
[contract-duration >l]&[wage_incr_~vr2 >3%]&[#holidays >I0]: 

::> [Contract = acceptable] 

(t=ll,u=ll) 

[wage_incr_yrl = 2..4%]&[#holidays < lO]&[vacation ~ average]: 

::> [Contract = unacceptable] 

ICh Flexible matching 

Figu~ 4. The Topruledescr~tions genera~d by the TRUNC method. 

(t=3,u=3) 

As one can see, the optimized BCR descriptions are significantly simpler than the com- 
plete and consistent descriptions generated by AQ15. They also seem to represent the most 
important characteristics of the labor management contracts. Specifically, a contract is unac- 
ceptable when it offers a significant wage increase (the first two rules in Fig. 5), or it offers 
many holiday days, or the vacation time is above average. 

6.3. Results from testing POSEIDON and other methods 

As mentioned earlier, experiments tested POSEIDON and three other methods, specifically, 
variants of exemplar-based learning, the method for learning consistent and complete descrip- 
tions, a method for generating top rule descriptions, and a method for generating pruned 
decision trees. All of these methods were employed to learn a concept description from 
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BCR: 

[wage_incr_yrl > 4.5%] v 

[wage_incr_~vr2 > 3.0%] v 

[#holidays > 9] v 

[vacation period = above_average] 

::> [Contract = acceptable] 

[wage_incr~yrl ~ 4.0%] & [#holidays < 10]v 

[wage_incr_yr2 ~ 4.0%] & [vacation = below_average v average] v 

[#holidays < I0] v 

[duration = i] & [wage_incr_yrl ~ 4.0%]v 

[wage_incr_yr2 ~ 3.0%] 

::> [Contract = unacceptable] 

ICI: 

Flexible matching 

Deductive matching using rules: 

[wage_incr_yrl~5.5%]&[vacation < average] 

::> [Contract = acceptable] 
[wage_incr_yrl~3%]& [wage_incr_yr2 < wage_iner_yrl] 

::> [Contract = unacceptable] 
[wage_incr~yrl~3%]&[wage_incr~yr2~3%]&[hours_work~40]&[pension = empl_contr] 

::> [Contract = unacceptable] 

Figure 5. Optimized two-tiered descriptions obtained by POSEIDON. 

the same set of training examples. All the learned descriptions were then applied to the 
same testing examples. The performance was evaluated by counting the number of examples 
that were classified correctly, incorrectly, or unclassified. 

Tables 4 to 7 present the results of different experiments. Table 8 provides a summary 
of all results. In the tables, columns "Correct" and "Incorrect" specify the percentage 
of the testing events that were correctly and incorrectly classified, respectively. The column 
No__Match specifies the number unclassified examples (i.e., the examples that did not 
match any description to a sufficient degree). To provide an estimate of the complexity 
of descriptions learned, the tables also list the number of conditions and rules in each descrip- 
tion. In the case of pruned decision trees, the table lists the number of nodes and leaves 
(the number of leaves corresponds to the number of rules that can be directly determined 
from the decision tree). 

Experiment 1 (Table 4) tested a factual description, and variants of the examplar-based 
approach (1-, 3- and 5-nearest neighbor match). A factual description is a disjunction of 
all the training events, and, as such, is obviously complete and consistent with regard to 
the training set. The first part of Experiment 1 tested the factual description on the testing 
examples using the strict match method. In such a method, a testing example must match 
exactly one of the training examples to be classified. In this case, obviously, the descrip- 
tion had no predictive power. It produced No__Match answers for all testing examples of 
the labor contract data, and for 96/testing examples of the congressional voting data (two 
examples were the same in the training and testing sets). 
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Table 4. Results of experiment 1. 

Simple Exemplar-Based Description 

Labor-mgmt problem (Labor): 27 rules and 432 conditions 
Congress problem (Congress): 51 rules and 969 conditions 

Correct Incorrect No__Match 

Labor Congress Labor Congress Labor Congress 

Strict Match 
Training Set 100% 100% 0 % 0 % 0 % 0% 
Testing Set 0% 4% 0% 0% 100% 96% 

1-Nearest Neighbor 
Training Set 100% 100% 0% 0% 0% 0% 
Testing Set 77% 86% 23% 14% 0% 0% 

3-Nearest Neighbors 
Training Set 100% 100% 0% 0% 0% 0% 
Testing Set 83% 84% 17% 16% 0% 0% 

5-Nearest Neighbors 
Training Set 100% 100% 0% 0% 0% 0% 
Testing Set 80% 84% 20% 16% 0% 0% 

Subsequent parts of Experiment I tested the factual description using the k-nearest neigh- 
bor method with different k. The method involved determining k closest (best "fitting") 
learning examples to the one being classified, and assigning to the testing example the class 
of the majority of the closest examples. Such a method is equivalent to simple forms of 
exemplar-based learning. The 1-Nearest Neighbor row in the table lists results from apply- 
ing the factual description with a matching method somewhat similar to the one described 
in (Kibler & Aha, 1987). The only difference was that Kibler and Aha's method uses the 
maximum function for evaluating a ruleset (disjunction), while our flexible matching uses 
the probabilistic sum (Section 2.2). We also tested the method with k = 3 and 5. 

The second experiment (Table 5) used concept descriptions generated by AQI5 without 
truncation. Such descriptions are consistent and complete with regard to the training exam- 
ples, i.e., they classify all training examples 100% correct when using the strict matching 
method. The flexible matching method did not change this result. For the testing set, the 
number of correct classifications was relatively high (80-86 %), the same for the strict and 
flexible matching methods. Flexible matching made no difference, probably due to two 
factors. Firstly, the complete and consistent descriptions include many specific rules, leav- 
ing little space for the "no match" cases (3 %), in which flexible matching could help. 
Secondly, the descriptions consisted only of disjoint rules, as the program was run using 
the "disjoint cover" parameter. In such a situation, the "multiple match" cases do not occur, 
and flexible matching cannot help. 

The above results are similar to those obtained in the previous experiment, which used 
an exemplar-based approach (Table 4). The main difference is that the AQ descriptions are 
much simpler in terms of the number of rules and the number of conditions involved (11 vs. 
27 rules in the labor management problem, and 10 vs. 51 rules in the congress voting prob- 
lem). The simpler descriptions allow the system to be more efficient in the recognition mode. 
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Table 5. Results of experiment 2. 

Complete and Consistent Description (No truncation) 

Labor-mgmt problem (Labor): 11 rules and 28 conditions 
Congress problem (Congress): 10 rules and 32 conditions 

Correct Incorrect No__Match 

Labor Congress Labor Congress Labor Congress 

Strict Match 
Training Set 100% 100% 0% 0% 0% 0% 
Testing Set 80% 86% 17% 14% 3% 0% 

Flexible Match 
Training Set 100% 100% 0% 0% 0% 0% 
Testing Set 80% 86% 17 % 14 % 3 % 0 % 

Table 6. Results of experiment 3. 

The Top Rule Description (the TRUNC method) 

Labor-mgmt problem (Labor): 2 rules and 6 conditions 
Congress problem (Congress): 2 rules and 6 conditions 

Correct Incorrect N o ~ a t c h  

Labor Congress Labor Congress Labor Congress 

Strict Match 
Training Set 52% 62% 0% 0% 48% 38% 
Testing Set 63% 69% 7% 7% 30% 24% 

Flexible Match 
Training Set 81% 75% 19% 25% 0% 0% 
Testing Set 83% 85% 17% 15% 0% 0% 

The third experiment (Table 6) tested the top rule descriptions determined from the above 
complete and consistent descriptions. As shown in Table 6, the performance of these rules 
using flexible matching was comparable to that of the complete and consistent descriptions, 
as well as factual descriptions (compare with Tables 4 and 5). 

It may be surprising that the top rule descriptions performed better on the testing set 
than on the training set. This is due to the fact that the training set contained more excep- 
tions than the testing set. The system used the TRUNC method, in which the truncation 
process removes rules that cover all except the most typical training examples. 

The top rule descriptions consist of only one rule per concept, and therefore they are 
significantly simpler than the factual, and consistent and complete descriptions (they use 
only 2 vs. 11 vs. 27 rules in the Labor Management problem, and 2 vs. 10 vs. 51 rules 
in the Congress Voting problem). It is quite revealing that such simple rules performed 
as well as much more complex descriptions generated in previous methods. 

The fourth experiment (Table 7) tested optimized descriptions generated by POSEIDON, 
i.e., derived by the TRUNC-SG method. The descriptions were tested using flexible match- 
ing alone (Flexible Match), and in the combination with deductive matching (Deductive 
Match). 
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Table 7. Results of experiment 4. 

Optimized (POSEIDON) 

Labor-mgmt problem (Labor): 9 rules and 12 conditions 
Congress problem (Congress): 10 rules and 21 conditions 

Correct Incorrect No__Match 

Labor  Congress Labor  Congress Labor  Congress 

Strict Match 
Training Set 63% 84% 0% 0% 37% 16% 
Testing Set 43% 73% 3% 4% 54% 23% 

Flexible Match 
Training Set 85 % 100 % 0 % 0 % 15 % 0 % 
Testing Set 83% 92% 13% 8% 4% 0% 

Deductive Match 
Training Set 96% 96% 0% 4% 4% 0% 
Testing Set 90% 92% 10% 8% 0% 0% 

For comparison, the performance of these descriptions was also tested using strict match. 
The latter is rather an impractical combination. As expected, these descriptions used with 
strict matching gave relatively poor performance. 

The optimized descriptions (BCR) combined with deductive matching (ICI) gave the best 
performance (90-92 % correct). When used with only flexible matching, the performance 
was slightly lower. The descriptions are simpler than complete and consistent descriptions, 
although they include the Inferential Concept Interpretation rules. They are, of course, more 
complex than the top rule descriptions, which do not use any interpretation rules. 

For the Labor data, descriptions applied with deductive matching produced higher per- 
formance than when used with flexible matching only (90 vs. 83%). 4 For the Congress 
data problem, the performance was the same for the two matching methods. This is because 
deductive rules were acquired on the training set; in the specific testing set, the D-covered 
events were the same as F-covered ones. 

Table 8 summarizes the results of experiments, specifically, it compares the performance 
and complexity of descriptions generated by simple exemplar-based methods, the two-tiered 
descriptions generated by POSEIDON, and pruned decision trees generated by ASSISTANT 
(a descendant of the Quinlan's ID3 program; Cestnik, et al., 1987). ASSISTANT was ap- 
plied to the same learning and training data, which were used in the previous experiments 
(whose results were presented in Tables 4-7). The decision trees obtained by ASSISTANT 
w~re optimized using a tree-pruning mechanism (Cestnik, et al., 1987). This mechanism 
is compared with the TRUNC-SG method in the next section. 

The factual description was applied with the flexible matching function. The complexity 
of a rule-based description was measured by stating the number of rules (#Rules) and the 
number of conditions (#Conds). The complexity of a decision tree was measured by the 
number of leaves (#Leaves) and the number of nodes (#Nodes). The number of rules in 
a rule-based description can be taken as comparable with the number of leaves in a deci- 
sion tree, because for each leaf of the tree one can generate one rule by tracing the nodes 
from the root to the leaf. 
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Table 8. Summary of the results of testing descriptions generated by different methods. 

Labor Congress 

Simple exemplar-based method 
Performance (% Correct/% Incorrect) 

1-nearest neighbor 
3-nearest neighbor 
5-nearest neighbor 

Complexity (# Rules/# Conds) 

Pruned decision tree 
(ASSISTANT + PRUNING) 
Performance (% Correct/% Incorrect) 
Complexity (# Leaves/# Nodes) 

Complete and consistent description 
(AQ15 without rule truncation) 
Performance (% Correct/% Incorrect) 
Complexity (# Rules/# Conds) 

Top rule two-tiered description 
(AQ15 with rule truncation) 
Performance (% Correct/% Incorrect) 
Complexity (# Rules/# Conds) 

Optimized two-tiered description 
(POSEIDON) 
Performance (% Correct/% Incorrect) 
Complexity (# Rules/# Conds) 

77%/23% 86%/14% 
83%/17% 84%/16% 
80%/20% 84%/16% 

27/432 51/969 

86%/14% 87%/14% 
29/53 19/28 

80%/17% 87%/14% 
11/29 10/32 

83%/17% 85%/15% 
2/6 2/6 

90%/10% 92%/8% 
9/12 10/21 

aThe total performance does not sum up to 100% because of "no match" cases. 

In the above experiments, for both domain problems, the learning method implemented 
in POSEIDON produced descriptions that are simpler (except for the top rule descriptions), 
and also perform better on the testing data than other tested methods. Being simpler, these 
descriptions are also easier to understand, and have a lower evaluation cost. The meaning 
of the concept defined by such descriptions depends on the base representation (i.e., a 
TRUNC-SG optimized description learned from examples), and the inferential concept 
interpretation (consisting of an apriori defined flexible matching procedure and a set of 
deductive rules, formulated by the expert). 

Using rules in the inferential concept interpretation has an advantage that exceptional 
cases are easy to explain. In the current method, the system determines which examples 
are exceptional (those that are misclassified by the base representation). The expert analyzes 
them, and determines the rules for ICI. The top rule descriptions were significantly simpler 
than any other descriptions, but performed somewhat worse than the optimized description 
and the decision tree. Depending on the desired trade-off between the accuracy and simplic- 
ity, the top rule or the optimized description can be taken as the base representation of 
the concept being defined. 
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6.4. The role of parameters and related issues 

POSEIDON has many parameters which can be controlled by a user. On the surface, this 
might be considered as a disadvantage. In our view, a learning system that allows the user 
to explicitly modify parameters that affect learning processes (but which are not just method- 
dependent), is to be preferred over a system that does not explicitly define such parameters. 
The point is that in the latter systems these parameters are defined only implicitly, by the 
assumptions and the structure of the method. For example, many systems do not take into 
consideration the typicality of examples. In POSEIDON, this is equivalent to an assump- 
tion that the typicality of all examples is equal to the default value 1. As another example, 
consider the cost of measuring the value of attributes. If a learning program does not have 
parameters representing such costs, then this is equivalent to an assumption that all costs 
are the same (which in reality is often not true). By being able to control such learning 
parameters, the user can produce results that better fit the task at hand. For example, for 
some tasks, the accuracy of descriptions may be a decisive criterion, while for others the 
description simplicity may be of equal concern. 

An important problem to be investigated is the sensitivity of POSEIDON to its various 
parameters. While a comprehensive answer to this problem goes beyond the scope of this 
paper, we report below a preliminary sensitivity analysis regarding the parameters control- 
ling the trade-off between the description accuracy and simplicity. Such parameters are 
considered to have the most important effect on the performance of learned descriptions. 
Specifically, they are the tolerances in the lexicographic evaluation functional measuring 
the description quality (Sec. 4.2). To explain their role, let us briefly review the descrip- 
tion quality measure. This measure combines several criteria, such as the accuracy, the 
simplicity, and the cost. Each criterion is associated with a tolerance interval such that 
differences within this interval are not considered unimportant. Thus, if the tolerance inter- 
val of accuracy is very narrow, then the accuracy becomes the prevailing criterion in quality 
evaluation. On the other hand, if this tolerance interval is wide, the remaining criteria become 
more significant. 

An experiment was performed using the same Congress voting data, as used in experiments 
reported in Tables 4-7. The training set had 51 examples, while the testing set had 49 exam- 
pies. The concept to be learned was the voting record of Republicans in the U.S. Congress. 
The description tested in Table 7, had 10 rules and 21 conditions, and yielded the accuracy 
of 100% on the training set, and 92% on the testing set. The description was obtained 
using the accuracy tolerance (~'1) value equal .05. To determine the method's sensitivity 
to this parameter, the accuracy tolerance zl was set to values .55, .35, .02, .005, and for 
each value the description accuracy was measured. For the above accuracy tolerances, the 
system's performance on the testing set was 88%, 88%, 90%, and 92%, respectively. Thus, 
this experiment seems to indicate that the accuracy of the descriptions slowly grows with 
the narrowing of the tolerance interval on the accuracy in the description quality measure, 
which completely confirms an intuitive expectation. 

In general, when the accuracy tolerance interval is wide, the simplicity of the description 
assumes an important role, yielding performances close to the performance of the top rule 
in the two-tiered description. Intermediate values, such as the one used in the experiments 
presented in Table 8 (~'1 = 0.05) produced the best results, e.g., the performance of 92% 
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on the testing set from the Congress data. In the case of the narrow tolerance interval for 
accuracy, the simplicity has a lower impact on the quality of the description. An interesting 
topic for future research is to systematically investigate the influence of such parameter 
changes on the performance of the description. ~ 

Another issue that should be explored more in the future is the role of example typicality 
of learning examples. In the presented method, if the input examples are assigned typicality 
values, the generated base concept representation will tend to cover the most typical exam- 
pies, while the inferential concept interpretation will tend to cover less typical examples. 
A problem for future investigation is to determine the effect of the typicality on the overall 
quality of generated concept descriptions. When the typicality information is unavailable, 
the system itself will assign examples to different classes of typicality. The examples covered 
by the base representation are classified as typical, those covered by flexible matching as 
nearly-typical, and those covered by the deductive rules as non-typical. 6 An interesting ex- 
periment would be to compare such classifications with human classifications. Another 
interesting issue relates to the noise in the data. The preliminary analysis indicates that 
the proposed method has a significant ability for handling noisy data. Experiments show 
that noisy examples are usually covered by the "light" rules, i.e., rules that cover few ex- 
amples. By removing such rules from the description, the effect of noise can be significantly 
minimized (Zhang & Michalski, 1989). Future research should investigate these aspects 
of the method in greater detail. 

7. Related work 

The research presented here relates to various efforts on learning imprecise concepts, in 
particular, to learning methods generating pruned decision trees (e.g., Quinlan, 1987; 
Cestnik, et al., 1987; Fisher & Schlimmer, 1988). In these methods, a concept description 
is a single tree structure ("one tier") that is supposed to account for all concept instances. 
An unknown instance is classified by following the decision tree from the root to the leaf 
indicating the class. Because pruned decision trees do not cover some of the training exam- 
pies, and the recognition process does not use flexible matching, such trees must always 
produce some error on the training examples. This may not be significantly detrimental 
to the overall quality of the decision tree, however, as it avoids overfitting. 

The two-tiered method avoids overfitting by simplifying original descriptions, yielding 
base concept representations that, in the formal logical sense, are usually also incomplete 
and inconsistent. The two-tiered method, however, can compensate for the lack of coverage 
or for an excessive coverage of the first tier (BCR), by the application of the second tier 
(ICI). This can be done by flexible matching and/or deductive inference rules. The latter 
ones are normally unaffected by noise, because they depend on a deeper understanding 
of the domain. In addition, the presented method takes into consideration the typicality 
of the examples (if it is available). This feature gives the method an additional help for 
handling noisy examples. 

The method presented in (Quinlan, 1987) is based on a hill-climbing approach that first 
truncates conditions, and then rules. No search is performed, only one alternative trunca- 
tion is tried at every step. The final result might possibly be far from optimal. By avoiding 
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the search, such a procedure should, however, be significantly faster than the one imple- 
mented in POSEIDON. If the speed of learning and the simplicity of descriptions are of 
central importance, then the TRUNC method (that determines the top rule descriptions 
without search) should be applied rather than TRUNC-SG. In the same paper (Quinlan, 
1987), other methods for pruning decision trees are also described. Some of these methods 
require a separate testing set for the simplification phase, and others use the same training 
set that was used in creating the tree. The simplification phase in POSEIDON can also 
be done either using the original training set, or using a separate set of examples. 

The experiments by Fisher and Schlimmer (1988) on pruning decision trees use a statistical 
measure to determine the attributes to be pruned. Such measures require a rather large 
data sample, and thus do not apply well to small training sets. In the two-tiered approach, 
training events are analyzed logically, rather than statistically, both in the phase creating 
a complete and consistent description, and in the optimization phase. Consequently, the 
two-tiered approach seems to be more suited for learning from a relatively small number 
of examples. An interesting possibility for future research is to integrate a statistical measure, 
such as used by Fisher and Schlimmer, or other, in the process of rule learning and trun- 
cating with large data sets. 

The system developed by (Iba, et al., 1988) uses a trade-off measure that is somewhat 
similar to the general description quality (GDQ) measure proposed in this paper. Our GDQ 
measure considers more factors. Besides taking into account the typicality of the instances 
covered by the description, it considers different types of matching between an instance 
and a description. Moreover, the simplicity measured by GDQ depends not only on the 
number of rnles in the description as in (Iba, et al., 1988), but also on the different syntac- 
tic features in the description. 

The CN2 inductive algorithm (Clark & Niblett, 1989) uses a heuristic function to termi- 
nate search during rule construction. The heuristic is based on an estimate of the noise 
present in the data. Such pruning of the search space of inductive hypotheses results in 
rules that may not classify all the training examples correctly, but that perform well on 
testing data. CN2 can be viewed as an induction algorithm that includes pre-truncation, 
while the algorithm reported here is based on post-truncation. CN2 applies truncation during 
rule generation, and POSEIDON applies truncation after rule generation. The advantage 
of pre-truncation is efficiency of the learning process. On the other hand, such an approach 
has difficulty with identifying irrelevant conditions and redundant rules. 

The two-tiered method described here can also be viewed as a kind of constructive induc- 
tion in the sense of (Michalski, 1983). In fact, the whole learned description may include 
new terms, absent from the examples used for learning. This behavior is also encountered 
in several other systems (e.g. Sammut & Banerji, 1986; Drastal, Czako, & Raatz, 1989). 
However, constructive learning in POSEIDON is due to the second tier based on domain 
knowledge characterizing non-typical examples. This is different from using domain knowl- 
edge to rewrite or augment the whole training set (e.g., Rouveirol, 1991), or to generate 
new attributes by a data-driven approach (Bloedorn & Michalski, 1991), or a hypothesis- 
driven approach (Wnek & Michalski, 1991). 

The exemplar-based learning system PROTOS (Bareiss, 1989) is similar to POSEIDON 
in the sense that both systems use a sophisticated matching procedure--a knowledge-based 
matching of an event with a concept description and acquiring the matching knowledge 
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via explanations of training events provided by a teacher. There are, however, major differ- 
ences: 1) PROTOS stores exemplars as base concept descriptions, whereas POSEIDON 
generates simple and easy-to-understand generalizations as base concept descriptions, 
2) PROTOS uses domain knowledge in classifying all new cases, whereas POSEIDON 
uses Inferential Concept Interpretation rules only for classifying exceptions, 3) During the 
learning process, PROTOS asks the teacher for explanations for all exemplars, whereas 
POSEIDON only asks for explanations of exceptions. 

The problem of using some typicality measure of examples has not so far been given 
much attention in machine learning, although there were attempts in this direction. For 
example, Michalski and Larson (1978) introduced the idea of "outstanding representatives" 
of a concept to focus the learning process on the most significant examples. In cognitive 
science, the concept of typicality of examples has been studied extensively (e.g., Rosch & 
Mervis, 1975; Smith &Medin, 1981). The concept of two-tiered representation has naturally 
led us to the proposition of a precise definition of representative, nearly-representative and 
exceptional examples, namely, as those that are covered by the first tier, the second tier's 
procedure for flexible matching, and the second tier's inference rules, respectively (see 
Section 2.4). 

To summarize, there are several major differences between the method presented and 
related research described in the literature. First, the method has the ability to recover 
from the loss of coverage due to the description truncation by using the second tier. Spe- 
cifically, the procedures of flexible matching or deductive rules are used to cover examples 
not covered explicitly. As has been demonstrated experimentally, this ability often leads 
to a significant reduction of concept descriptions, and at the same time, to an improvement 
of their predictive power. Second, the description reduction is done by independently per- 
forming both generalization and specialization operators. Third, any part of the description 
may be truncated in the simplification process, not just only specific parts (as, e.g., in 
decision tree truncation). Fourth, the method is able to take into account the typicality 
of the examples. Finally, the method uses a general description quality measure, which 
takes into consideration a number of different aspects of a description. 

It may be informative to relate the presented two-tiered approach to some other machine 
learning approaches in terms of the type of concept representation and the kind of matching 
applied for classification. Table 9 below makes such a comparison. 

~ Summary and open problems 

The most significant aspect of the presented method is that it represents concepts in a two- 
tiered fashion, in contrast to traditional learning methods that represent concepts by a 

Table 9. A comparison of the two-tiered approach with simple inductive and 
exemplar-based methods. 

Simple Induction Exemplar-Based Two-Tiered 

Representation General Specific General 

Matching Precise Inferential Inferential 
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monolithical structure. In this representation, the first tier, the base concept representation 
(BCR), captures the explicit and common concept meaning, and the second tier, the infer- 
ential concept interpretation (ICI) defines allowable modifications of the base meaning and 
exceptions. Thus, typical concept instances match the BCR, and thus can be recognized 
efficiently. Such a two-tiered representation is particularly suitable for learning flexible 
concepts, i.e., concepts that lack precise definition and are context-dependent. 

In the POSEIDON system that implements the method, the BCR is learned in two steps. 
First, a complete and consistent description is learned by a conventional learning program 
(AQ15). Next, the description is optimized according to a general description quality meas- 
ure. This is done by a double-level search process that uses both generalization and special- 
ization operators. The General Description Quality takes into account not only properties 
of BCR, but also of ICI (by measuring the complexity and accuracy of the total descrip- 
tion). The ICI has two components: one specifies a flexible matching function, and the 
second specifies inference rules for handling exceptions and context-dependency. The ICI 
rules can be of two types. The rules of the first type extend the meaning of the concept, 
while the rules of the second type contract this meaning. The first type rules are employed 
when an instance is neither covered by the BCR (not S-covered), nor by the flexible match- 
ing function (not F-covered). The second type of rules are used when an unknown instance 
covers a base representation of more than one concept, or when concept membership has 
to be confirmed. In both cases, the rules are used deductively. An advantage of using rules 
for matching over other matching methods is that they can serve as an explanation why 
a given instance does or does not belong to the concept. 

The experimental results have strongly supported the hypothesis that two-tiered concept 
descriptions can be simpler and easier to understand than "single-tier" descriptions. Two- 
tiered descriptions also perform better. For example, the two-tiered descriptions obtained 
for the acceptable labor managements contracts gave a performance of over 90% correct 
using only about 9 rules. In contrast, the best performance of a simple exemplar based 
method gave the 80% correct predictions on new examples and used 27 rules, and the cor- 
responding pruned decision tree performed at 86 %, and had 29 leaves (each of which may 
be viewed as corresponding to one rule). The system also performed better than the previous 
method based on the TRUNC procedure in terms of the performance (80%), but at the 
cost of a more complex concept description. In addition, two-tiered descriptions are relatively 
easy to understand, and can easily represent an explicit domain knowledge. 

The presented method is different in several significant ways from the earlier method 
of learning two-tiered representations (Michalski, et al., 1986). The flexible matching pro- 
cedure is used not only in the testing phase, but also in the learning phase. In addition 
to a flexible matching function, the method employs rules for extending or contracting the 
concept meaning. The earlier TRUNC method used only one specialization operator (rule 
removal), while TRUNC-SG employed in POSEIDON uses two generalization and two 
specialization operators. The price for that is that the new method is significantly more 
complex. 

There are many interesting problems for future research. Some of them were indicated 
previously, in particular, in section 6.4. Among especially interesting and important prob- 
lems is how to integrate the description optimization phase with the initial description gen- 
eration phase (done by AQ). The first step in this direction is currently being investigated. 
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In it, the two processes share the same heuristics and the same measure of description 
quality. The next step is to directly generate the target descriptions. Another problem for 
future research is how to learn second tier rules from examples. In the initial method devel- 
oped by (Plante & Matwin, 1990), the inferential concept interpretation rules are learned 
by a chunking process in the situations when multiple explanations of (positive or negative) 
training events are provided. 

Future research should also address the application of constructive induction (Michalski, 
1983) in the process of learning flexible concepts. In constructive induction, background 
knowledge is used to construct new attributes and higher level descriptions. As a result, 
produced descriptions can capture the salient features of the concept, and can be simpler 
and more comprehensible. The ideas of constructive induction seem to be very relevant 
to the method proposed. For example, through constructive induction the system may be 
able to fold several rules into a single one, or prevent the removal of relevant rules. 

The current system does not address the problem of dynamically emerging hierarchies 
of concepts. The system only learns one concept at a time, and concepts do not change 
or split as new examples become available. Another open issue is the ability of the system 
to reorganize itself. The distribution of knowledge between the Base Concept Representa- 
tion and the Inferential Concept Interpretation should be determined by the performance 
of the system on large testing sets. If it turns out, for instance, that some inferential concept 
interpretation rules are used very often, then they could be compiled into the base represen- 
tation. Further research is needed on the role and importance of different parameters used 
in the method, and on the trade-offs that they can control. 

This paper has focused on learning attributional descriptions, that is, descriptions that 
characterize entities by attributes, and thus do not represent their structural properties. An 
important topic for future research is to develop methods for learning two-tiered structural 
descriptions. A simple solution would be to replace the AQI5 program by a version of 
INDUCE (e.g., Michalski, 1983) for learning the initial complete and consistent descrip- 
tion. The basic search procedure would essentially be the same, but would deal with a 
more complex knowledge representation. Such a representation would allow additional de- 
scription modification operators. Also, the computation of the general quality of descrip- 
tions would require modification, and flexible matching would need to be extended to handle 
structural concept descriptions. 

As practical problems frequently require only attributional descriptions, and the method 
presented is domain-independent, POSEIDON has the potential to be useful for concept 
learning and knowledge acquisition in a wide range of applications. 
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Notes 

1. The system is named after POSEIDON, the Greek god of the sea, which represent fluidity and changing aspects 
of nature. 

2. The term "exceptions" is used here in its colloquial meaning. In section 3.4, the term is given a precise meaning. 
3. When negative examples are instances of another concept, as is often the case, their typicality is understood 

as the typicality of being members of that other concept. 
4. This difference, for the labor data, is not X2 significant. Nevertheless, we think that there are other reasons 

to prefer deductive matching over flexible matching. Deductive classification is based on rules and knowledge- 
based inference, and is therefore easier to understand by humans. The rules may be modified locally, while 
changing the flexible matching function is difficult and produces uncontrolled, global consequences. In other 
words, examples that are correctly recognized through ICI deductive rules are also explained ipso facto in 
terms of domain knowledge. The same cannot be said of examples correctly recognized by flexible matching, 
which is a knowledge-independent distance measure. To reflect this, the GDQ measure assigns a higher score 
to a description with deductive matching than with flexible matching. 

5. In our experiment, for small values of r~ = 0.02 and .005, which emphasize the role of accuracy in the measured 
quality of a description, the performance on the testing set was close or equal to the performance obtained 
for r~ = 0.05, and higher than performance of 86% for AQ15 in Table 8. The reason is that in the last two 
experiments, as well as in the original experiment in Table 8, it was always possible to find a description that 
was simpler than the one produced by AQ15, but still 100 % correct on the training data. Therefore, by giving 
more importance to accuracy, the simpler description was preferred, and better performance on the test set 
was obtained. 

6. This three-way classification of the examples is, in fact, a simple method of learning typicality. A similar 
feature is available in Cobweb (Fisher, 1987). On the other hand, if the typicality information is available, 
it is used by POSEIDON to improve the quality of the learned description. 
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