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Abstract. In this paper we demonstrate how weighted majority voting with multiplicative weight updating 
can be applied to obtain robust algorithms for learning binary relations. We first present an algorithm that 
obtains a nearly optimal mistake bound but at the expense of using exponential computation to make each 
prediction. However, the time complexity of our algorithm is significantly reduced from that of previously 
known algorithms that have comparable mistake bounds. The second algorithm we present is a polynomial time 
algorithm with a non-optimal mistake bound. Again the mistake bound of our second algorithm is significantly 
better than previous bounds proven for polynomial time algorithms. 

A key contribution of our work is that we define a "non-pure" or noisy binary relation and then by exploiting 
the robustness of weighted majority voting with respect to noise, we show that both of our algorithms can 
learn non-pure relations. These provide the first algorithms that can learn non-pure binary relations. 

Keywords: on-line learning, mistake-bounded leaming, weighted majority voting, noise tolerance, binary 
relation 

1. I n t r o d u c t i o n  

In this paper  we demonst ra te  how weighted  majori ty  vot ing with mul t ip l ica t ive  weight  

updating can be applied to obtain robust  a lgori thms for learning binary relations. Fo l low-  

ing Goldman,  Rives t  and Schapire  (1993), a binary relation is defined be tween  two sets 

of  objects,  one o f  cardinali ty n and the other  of  cardinali ty m.  For  all possible  pairings 

of  objects, there is a predicate  relat ing the two sets of  variables that is ei ther true (1) 

er  false (0). The  relat ion is represented as an n x rn matr ix  M of  bits, whose  (r, j )  

entry is 1 i f  and only if  the relat ion holds be tween the corresponding e lements  of  the two 

sets. Furthermore,  there a r e a  l imited number  of  object  types. Namely,  the matr ix M is 

restricted to have  at most  k dist inct  row types among  its n rows. (Two rows are of  the 

same type if  they agree in all columns.)  This restriction is satisfied wheneve r  there are 

only k types of  identical  objects in the set of  n objects being considered in the relation. 

We study the p rob lem of  learning binary relations under the standard on-l ine (or in- 

cremental)  learning mode l  (Li t t les tone 1989; Lit t lestone 1988). The learning session 

consists of  a sequence  o f  trials. In each trial, the learner taust predict  the value  of  some 
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unknown matrix entry that has been selected by the adversary 1. After predicting, the 
learner receives the value of the matrix entry in question as feedback. If the prediction 
disagrees with the feedback, then we say the learner has made a mistake. The learn- 
ing session continues until the learner has predicted each matrix entry. The goal of the 
learner is to make as few prediction mistakes as possible. 

One could view each row as a point in {0, 1} ~ and each row type of a binary relation 
as a cluster of points in {0, 1} m that are distance zero from each other. Initially, the 
learner knows nothing about how the points may be clustered, yet as the learning session 
proceeds the learner must infer both how the points are clustered (since this will be 
essential in reducing the mistakes) and the value of the m bits defining each cluster. We 
thus use the term cluster rather than row type when talking about the grouping of the 
rows. 

One contribution of this paper is a formal definition for the problem of learning binary 
relations in which the clusters are not "pure" in that two rows in the same cluster may 
not be exactly the same. In other words, we remove the requirement that all points in a 
cluster are distance zero from each other. Thus even if the target matrix were known there 
remains an interesting clustering problem that one could address, namely, what clustering 
achieves the optimal tradeoff between the nnmber of clusters and the distances between 
the points in the clusters. Of course, our learning algorithm must perform the clustering 
in an on-line manner while also predicting the values of unknown matrix entries. By 
viewing the problem of learning binary relations under this more general formulation, we 
achieve two important goals. First, such a modification in the definition of the learning 
problem much better matches the motivation provided by Goldman, Rivest, and Schapire 
(1993). Second, we can greatly reduce the mistake bounds obtained under the original 
formulation of Goldman et al. since now a group of rows that have slight differences can 
be viewed as a single cluster rather than having each row as its own cluster. In addition, 
the final weights of the second algorithm we present may be used to obtain a solution to 
the problem of how to cluster the rows of the target matrix. 

A second contribution of this paper is two new algorithms (both based on weighted 
majority voting with multiplicative weight updating) to learn both pure and non-pure 
binary relations. Weighted majority voting provides a simple and effective method for 
constructing a learning algorithm .A that is provided with a pool of "experts", one of 
which is known to perform weil, hut A does not know which one. Associated with 
each expert is a weight that gives ./t's confidence in the accuracy of that expert. When 
asked to make a prediction, A predicts by combining the votes from its experts based 
on their associated weights. When an expert suggests the wrong prediction, A passes 
that information to the given expert and reduces its associated weight. In this work, we 
use a multiplicative weight updating scheme to adjust the weights. Namely, the weight 
associated with each expert that mispredicts is multiplied by some weight 0 _</3 < 1. By 
selecting/3 > 0 this algorithm is robust against noise in the data. This robust nature of 
weighted majority voting enables us to apply our algorithms to the problem of learning 
non-pure relations by viewing discrepancies between the rows in the same cluster as 
noise. 
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When using weighted majority voting there is a tradeoff between the number of experts 
(i.e. the number of weights being combined) and the computation time needed to make 
each prediction. Our first algorithm applies a weighted majority scheme with km/k! 
weights to the problem of learning binary relations. We show that the mistake bound of 
this algorithm nearly matches the information theoretic lower bound. While the compu- 
tation time needed to make each prediction is exponential, it is still significantly reduced 
from that used by the halving algorithm (Barzdin & Freivald, 1972; Littlestone 1988; 
Angluin 1988) 2. In out second algorithm we apply a weighted majority voting scheme 
that uses only a polynomial number of weights and thus can make each prediction in 
polynomial time. While the mistake bound proven for this algorithm is not near optimal, 
with respect to what can be obtained with unlimited computation, it is significantly better 
than previous bounds obtained by polynomial time algorithms. We first present and ana- 
lyze our two algorithms for the problem of learning pure binary relations. We then show 
how to exploit the robustness of weighted majority voting, to generalize both of these 
algorithms to obtain the first known algorithms for learning non-pure binary relations. 

Our second algorithm has two novel features that required the use of a new method 
for analyzing the mistake bound. This algorithm runs n copies of a weighted majority 
voting scheme in parallel where in each trial only one of the n copies is active. However, 
all n copies share weights and thus cooperatively work to learn the target relation. 
Another unusual property of out voting scheine is that all experts begin with incomplete 
information and thus do not always know how to make each prediction. Furthermore, 
the prediction an expert would make for any given matrix entry can change over time. 
(In fact, initially no experts will know how to vote for any matrix entry.) As the learning 
session proceeds all experts monotonically gain information and thus know how to vote 
more orten. Thus to bound the number of mistakes made by our second algorithm, we 
taust determine the minimum rate at which information is being gained across the n 
copies of our voting scheme. 

The remainder of this paper is organized as follows. In the hext section, we discuss 
the halving algorithm and the particular weighted majority voting scheine, WMG, that 
we apply. In Section 3 we present out two different algorithms for applying WMG to the 
problem of learning a binary relation. In Section 4 we formally define the problem of 
learning non-pure binary relations, and demonstrate how the robust nature of WMG can 
be exploited to handle such noise. In Section 5 we present out main result. Namely, we 
provide a technique that enables us to prove an upper bound on the number of mistakes 
made by out polynomial-time algorithm for learning non-pure binary relations. Finally, 
in Section 6 we close with some concluding remarks. 

2. Preliminaries 

In the noise-free setting, if the learner has unlimited computation time then the halving 
algorithm (Barzdin & Freivald, 1972; Littlestone 1988; Angluin 1988) typically performs 
very well. The halving algorithm predicts according to the majority of the relations that 
are consistent with the completed trials, and thus each mistake halves the number of 
remaining relations. Since the number of binary'relations is at most 2kmk~/k! the 
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standard halving algorithm makes at most 

lg(2Æ~k~/k!) = k m  + n l g k -  Igk! 

_< k m  + ~ lg k - k lg(Æ/~) 

= k m + ( n - k )  l g k + k l g e  

mistakes 3. The halving algorithm can be viewed as keeping 2kmkn/k !  weights, one 
weight per possible binary relation. Initially, all weights start at 1, and whenever a 
binary relation becomes inconsistent with the current partial matrix, its weight is set to 
0. To make a prediction for a given matrix entry, each binary relation votes according 
to its bit in that entry. Since the halving algorithm predicts according to the majority of 
consistent relations (i.e. those with weight 1), each mistake halves the total weight in 
the system. Since the initial weight is 2kmk'~/k[ and the final weight is at least 1, at 
most k m  + (n - k) lg k + k lg e mistakes can occur. 

Observe that the time used to make each prediction is linear in the number of weights. 
Thus we are interested in algorithms that use a small number of weights in representing 
their hypotheses. The algorithms we present update the weights according to a variant 
of the weighted majority algorithm of Littlestone and Warmuth (1989) called WMG. We 
view WMG as a node that is connected to each expert (or input) by a weighted edge. The 
inputs are in the interval [0, 1]. An input x of weight w votes with weight x w  for 1 and 
with weight (1 - x ) w  for 0. The node "combines" the votes of the inputs by determining 
the total weight qo (respectively qa) placed on 0 (respectively 1) and predicts with the 
bit corresponding to the larger of the two totals (and for the sake of discreteness with 1 
in case of a tie). After receiving feedback of what the prediction should have been, for 
each input, the fraction of the weight placed on the wrong bit is multiplied by/3, where 
/3 C [0, 1). Thus the weight w of an input x becomes (1 - x + x/3)w if the feedback is 
0 and ((1 - x)/3 + x ) w  if the feedback is 1. If /3 = 0 then the total weight halves in 
each trial in which the node makes a mistake and we obtain an analysis like that of the 
halving algorithm. 

3. Our Algorithms For Applying WMG 

In this section we describe two different methods for applying WMG to the problem of 
learning a binary relation. The first algorithm uses one node and km/k! weights. Thus 
the number of weights is still exponential but lower than the number of weights used by 
the halving algorithm by a multiplicative factor of 2 km. For this case, the analysis is 
straighfforward, and for the noise-free case, the bounds achieved are nearly optimal with 
respect to the known information-theoretic lower bound. The purpose of this algorithm 
is to show what is possible when computational resources are cheap. In the second 
algorithm we use one hode for each of the n rows and one weight for each pair of rows 
(i.e. (~) weights). Proving bounds for the second algorithm is much more involved and 
is the focus of the paper. The bounds obtained are non-optimal when compared to those 
obtained when computation time is not a concern. However, our bounds are significantly 
better than previous bounds obtained by a polynomial algorithm. 
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kn/k! partitions 

Figure 1. This figure illustrates how the voting works in our first algorithm. In this example k = 2. We use 
the two degrees of shading to indicate how the rows of the matrices are partitioned. Thus on the fight we have 
shown the partially known matfix under three different partitions. Just to the left of each partition we show 
its vote for the unknown matrix entry. Recall that a partition voting with 1/2 can be viewed as a vote of 1 
with half of its weight and a rote of 0 with half of its weight. So the overall prediction made in this example 
is 1 if and only if w 2 / 2  + . . .  + w k ~  /k! > Wl  -}- w 2 / 2  -k . . . .  
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We now describe our two algorithms in more detail. In the first algorithm we use 
one weight per partition of the n rows into at most k clusters (i.e. kn /k !  weights). 
Initially all weights are set to 1. To make a prediction for a new matrix entry, each 
partition votes as follows: If a column of the cluster to which the new entry belongs has 
already been set then vote with the value of this bit; otherwise, vote with 1/2 causing 
the weight to be split between the votes of 0 and 1. Our algorithm predicts according 
to the weighted majority of these rotes (see Figure 1). Recall that after receiving the 
feedback WMG multiplies the fractions of the weights that were placed on the wrong 
bit by/3.  By selecting /3 = 0, the weight of partitions that predict incorrectly (and are 
thus inconsistent with the partial matrix) are set to zero and the weights of all partitions 
that split their vote are halved. 

After all entries of the target matrix are known, the correct partition has weight at least 
2 - k m  since it never predicted incorrectly, and split its vote at most k m  times. Since 
the initial weight is kn/k! ,  we obtain the mistake bound of k m  + (n - k) lg k + k lg e 
just as for the halving algorithm. (Actually, orte can show that when /3 = 0 then the 
first algorithm simulates the halving algorithm with k~/k!  weights instead of 2kmk~/k!  
weights). Note that the mistake bound of this algorithm is essentially optimal since 
Goldman, Rivest, and Schapire (1993) prove an information-theoretic lower bound of 
k m  + (1% - k)[ lg kJ mistakes. While this algorithm has assumed that an upper bound 
on h is known, if no such bound is provided the standard doubling trick can be applied. 
Namely, the learner begins with an estimate, /~ = 1, as an upper bound for k. If  the 
algorithm fails (i.e. makes too many mistakes) then /~ is doubled and the process in 
repeated. Once k _> k the algorithm will succeed. Observe that the final value k I of 

will be less than 2k. Also, since k is growing ~ an exponential rate, the computation 
time and mistakes made during the iteration with k = k f  dominates the other runs. More 
specifically the number of  mistakes made by this variation for k unknown is at most 

lg kf 

Z 
/=0 

(2im + ni - i2 i + 2 i lg e) 

1% 
= 2 k f m  + -~ lg/eX (lg ky + 1)(2/of(lg/of - 1) + 2) + 2kl  lg e 

< 2/¢fra + 2( lg /of  + 1) 2 - 2/¢f( lgkf  - 1) + 2 k f l g e  

1% 
<_ 4 k m +  ~ ( l g k  + 2) 2 - 2 k l g k  + 4k( lge  + 1) 

= o ( k ~  + 1% lg 2 k - k lg k) = o ( k m  + (1% lg k - k) lg k) 

n 

where the first step uses the equality ~ i2 i = 2n+l (n  - 1) + 2. 
i=0 

In our second algorithm we use one weighted majoritY node per row of the matrix, and 
one edge between each pair of nodes. Thus, unlike the first algorithm, no knowledge of 
k is needed. Let err' (and e<r)  denote the (undirected) edge between the node for row 
r and the node for row r ' ,  and let w(e) denote the weight of edge e. The node for row 
r dictates the predictions for all entries in row r. So the nodes, in some sense, partition 
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Figure 2. This figure illustrates how predictions are made in our second algorithm. The weighted majority 
node corresponding to row r (heavily shaded) is used to predict Mrj. The predictions of the inputs coming 
from the nodes are shown. So for this example the shaded node predicts 1 if w l / 2  + w2 > w l / 2  + w3 + w4 
and oredicts 0 otherwise. 
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the learning problem among themselves. Assume M~j is the next value to predict. To 
make its prediction, the node for row r combines the votes of the n - 1 inputs from 
column j of matrix M. Each node r ~ ¢ r votes with the weight w(er<)  for the bit at 
M<j. If the bit M«j is unknown (corresponding to its vote being 1/2) then the weight 
is split between the two votes (see Figure 2). If a mistake occurs then only the n - 1 
weights connected to node r a r e  adjusted using a multiplicative weight update scheme 4. 
Thus we are running n copies of WMG in parallel, where in each trial only one of the 
copies makes a prediction. We show that this parallel composition of weighted majority 
style algorithm "learns" in the sense that if there are few clusters in the matrix then 
the algorithms eventually cooperate to make few mistake altogether. This holds even if 
the adversary gets to choose in what order the entries of the matrix M are uncovered 5. 
Also note that the final weight between two nodes can be used to partition the rows 
into clusters so that one obtains a good tradeoff between the number of clusters and the 
distances within each cluster. Namely, clusters should be formed of rows for which the 
weight between all pairs is sufficiently high. 

In Section 5 we provide a technique to adapt the worst-case mistake bounds proven 
for the weighted majority algorithm WMG to this parallel application. As a corollary to 
our main theorem, we show that when ~ = 0, our second algorithm obtains a mistake 

bound of km + min { ~  lge, n ~ }  using only (2) weights. Here k is the size 

of the smallest partition consistent with the whole matrix. The best previous bound for 
a polynomial algorithm was /cm + nv / (k  - 1)m (Goldman, Rivest & Schapire, 1993). 
An interesting aspect of our problem, besides its parallel nature, is that when node r is 
to predict for entry M~j, not all other n - 1 entries in the j-th column may have been 
uncovered. Such unknown ("sleeping") entries are naturally set to 1/2, leading to split 
votes. 

There are many relatives of the basic weighted majority algorithm that we could use 
within our two algorithms such as a probabilistic variant due to Vovk (1990) (see also 
Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire and Warmuth (1993)). Also the Vee 
algorithm of Kivinen and Warmuth (1994) handles inputs and predictions in [0,1] and the 
algorithm of Littlestone, Long and Warmuth (1991) has small square loss against the best 
convex combination of the inputs. (Incidentally all these on-line prediction algorithms 
have multiplicative weight updates in common.) We chose the simplest setting for 
showing the usefulness of our method: the entries of the matrix are binary and the 
predictions must be deterministic. 

4. A Generalization: Non-Pure Relations 

A key contribution of this paper is showing how the robust nature of WMG enables us to 
solve an important generalization of the problem of learning binary relations with noisy 
data. To motivate this problem we briefly review the allergist example given by Goldman, 
Rivest, and Schapire (1993). Consider an allergist with a set of patients to be tested for 
a given set of allergens. Each patient is either highly aIlergic, mildly allergic, or not 
allergic to any given allergen. The allergist may use either an epicutaneous (scratch) test 
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Learn-Relation(O _< 7 < 1) 

For all r ,r '  such that (r  ¢ r ' )  init ial ize w(e~<) = 1 
In each trial do the fol lowing four parts: 
1. Receive a matrix entry Mrj for prediction 
2. Produce a prediction as follows 

For each row r' ¢ r 
If  Mr,j  is not  known then row r '  predicts that Mrj  = 1/2 
If M<j = 1 then row C predicts that Mrj = 1 
If  Mr,j = 0 then row r predicts that Mrj = 0 

Let Ro be the set of  all rows that predict Mrj = 0 
Let R1 be the set of  all rows that predict Mrj = 1 
Let Wo = }-~~r'e/~o w(er r , )  
Let W1 = ~~ ' eÆ1 w(e~<) 
If W1 _> Wo predict 1 
Else predict 0 

3. Receive correct value for M~j 
4. If the predict ion of the algorithm was wrong then update the weights as follows 

For each r '  ¢ r 

If  row r '  made  a correct prediction then let w(e~«) +-- (2 - 7 )w(e~<)  

Else if row r' predicted incorrectly then ler w ( e r r ' )  +-- 3 'w(er r ' )  

Figure 3. Our polynomial prediction algorithm for learning binary relations. Note that in the for loops of Steps 
2 and 4, one could just look at rows for which w(e~~,) > 0. Also we obtain the same mistake bound if the 
update in Step 4 is pefformed at each step regardless of whether a mistake occurred. 
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in which the patient is given a fairly low dose of the allergen, or an intradermal (under 
the skin) test in which the patient is given a larger dose of the allergen. What options 
does the allergist have in testing a patient for a given allergen? He/she could just perform 
the intradermal test (option 0). Another option (option 1) is to perform an epicutaneous 
test, and if it is not conclusive, then perform an intradermal test. Which option is best? 
If  the patient has no allergy or a mild allergy to the given allergen, then option 0 is best, 
since the patient need not return for the second test. However, if the patient is highly 
allergic to the given allergen, then option 1 is best, since the patient does not experience 
a bad reaction. The allergist's goal here is to minimize the number of  prediction mistakes 
in choosing the option to test each patient for each allergen. Although Goldman et al. 
explore several possible methods for the selection of the presentation order, here we only 
consider the standard worst-case model in which an adversary determines the order in 
which the patient/allergen pairs are presented. 

This example makes an assumption that is a clear oversimplification. Namely, they 
assume that there are a common set of  "allergy types" that occur often and that most 
people fit into one of these allergy types. Thus the allergy types become the clusters 
of the matrix. However, while it is true that often people have very similar allergies, 
there are not really pure allergy types. In other words, it is unreasonable to assume that 
all rows in the same cluster are identical but rather they are just close to each other. 
Without this flexibility one may be required to have most patient's allergies correspond 
to a distinct allergy type. Henceforth, we refer to the original formulation of the problem 
of learning binary relations in which all clusters are "pure" as learning pure relations. 

We propose the following generalization of the problem of learning binary relations 
that we refer to as learning non-pure relations. For any column c of  bits, let N0(c) be 
the number of zeros in c. Likewise, let .A/'I (c) be the number of ones in c. Suppose that 
the rows of the matrix are partitioned into a set of  k clusters p = { S ~ , . . . ,  Sk}. Let 
S] denote the j th  column of the cluster (or submatrix) S< For each cluster we define a 
distance measure 

m 

d(S{) = Z min{Afo(S] ) ,H l (S ] )}  
j= l  

In other words, think of defining a center point for partition S i by letting the value of 
column j in this center be the majority vote of the entries in S}. Then d(S i) is just the 

sum over all rows s in S ~ of the Hamming distance between s and this center point. 
We define the noise of partition p, c~p, as 

m 

ap= Z d(Si)= Z Z m i n { N ' ° ( S } ) ' A f l ( S J  )}' 
S i Ep S i Ep j=l 

and the size of partition p, kp, as the number of  clusters in partition p. For each cluster 
77% 

i and column j ,  we define ~i,j : min{N'0(Sj ) ,N ' t (S})} ,  and 6i = ~ j = l  5<j. Thus 

O~p = E i = I  (~i = Z-.-Ji=l A-~j=l ~ i , j .  Due to the robust nature of  WMG, we can use both 
algorithms to learn non-pure relations by simply using a non-zero update factor/3. 
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We now discuss both of our algorithms when applied to the problem of learning non- 
pure relations and give bounds for each. The key to our approach is to view minor 
discrepancies between rows in the same cluster as noise. This greatly reduces the mistake 
bounds that one can obtain when using the original formulation of Goldman, Rivest, and 
Schapire (1993) by reducing the number of clusters. The robust nature of the weighted 
majority algorithm enables us to handle noise. 

To demonstrate our basic approach, we now show that our first algorithm (i.e. the one 
using kn/k! weights) can learn a non-pure relation by making at most 6 

{ (~- k)lnk + k + ~~1~ } } 
min kpm + ap + in ~ 

1+~ 

(1) 

mistakes in the worst case, where 0 _</3 < 1 is the update factor, and the minimum is 
taken over all partitions p of size at most k and kp denotes the size and C~p the noise of 
partition p. 

In the noisy case the first algorithm still uses a single copy of the weighted majority 
algorithm with one weight for each of the k'~/k! partitions. (See Figure 4 for the complete 
algorithm.) Assume Mrj is the hext value to predict. Then a particular partition predicts 
with the majority of all already set entries from column j of rows in the same group 
as row r in the partition. In case of a tie the paltition predicts with 1/2. (Note that in 
the noise-free setting all entries known in a given partition for a given column must be 
the same.) Finally, a partition with weight w and prediction x votes with xw for 1 and 
(1 - x)w for 0. The Algorithm WMG totals the votes for 0 and for 1 and predicts with 
the bit of the larger total (with 1 in case of atie). 

When a partition predicts incorrectly, its weight is multiplied by /3. A partition that 
splits its vote has its weight multiplied by (1 + /3)/2. (Half of its weight remains 
unchanged and the other half is multiplied by/3.) Finally, since WMG votes in agreement 
with at least half of the weight in the system, when a mistake occurs, at least half of the 
weight is multiplied by /3 (and the rest is unchanged). Thus for each trial in which a 
mistake occurs the total weight after the trial is at most (1 + fl)/2 times the total weight 
before the trial. We now argue that a partition p predicts incorrectly at most C~p times 
and splits its vote at most kpm + ee v times. To see this consider what happens in column 
j of cluster i. The number of wrong predictions is at most cSi,j (i.e. the number of 
minority bits) and the number of ties at most 1 + ~Si,j. Thus the number of times partition 

kp m 

p predicts incorrectly is at most ~ ~ ~Si,j = C~p, and the number of times partition p 
i=1  j = l  

kp rn 

splits its rote is at most ~ ~-~~(1 + 5~,j) = kpm + C~p. 
i=1 j = l  

weight in the system is at least/3~p (l+_____~ß)Æpm+c~p. Since Thus it follows that the final 

the initial weight in the system is k'~/kl and for each trial in which a mistake occurs the 
total weight after the trial is at most (1 +/3) /2  times the total weight before the trial, we 
ger the following inequality for the total number of mistakes #: 
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Slow-Learn-Relation(0 _</3 < 1) 

For 1 < i < kn/k! ,  initialize wi = 1 
In each trial do the following four parts: 
1. Receive a matrix entry Mrj  for prediction 
2. Produce a prediction as follows 

For I < i < kn /k !  
Let R be the set of rows in the same group as row r under partition i 
Let No be the number of rows from R where column j is known to be a 0 
Let N1 be the number of rows from R where column j is known to be a 1 
If  N1 = No then partition i predicts that Mrd = 1/2 
If N1 > No then partition i predicts that Mr i = 1 
Else partition i predicts that M~j = 0 

Let Ro be the set of all partitions that predict Mr 9 = 0 
Let R1 be the set of all partitions that predict M w = 1 

Let Wo = ~ i e R o  wi + ~ieR-(RoUR~) Wi/2 

Let W1 = ~ieR~ w~ + ~ieR-(RoUR~) wi /2  
If  W1 > Wo predict 1 
Else predict 0 

3. Receive correct value for M~~ 
4. If  the prediction of the algorithm was wrong then update the weights as follows 

For 1 < i < kn/k!  
If  partition i made a prediction of 1/2 then let ws e-  w i / 2  +/3 • w~/2 
If  partition i made an incorrect prediction (of 0 or 1) then let w~ ~- ws •/3 

Figure 4. Our algorithm that uses kn/k! weights to obtaln an nearly optimal algorithm for learning binary 
relations. We would obtain the same mistake bound if Step 4 is performed at each step regardless of whether 
a mistake occurred. 
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Solving for tt gives the bound given in Equation (1). 
An interesting modification of our first algorithm would be to consider all rows in 

the same group as row r and then predict with the number of l ' s  already known in 
column j divided by the total number of known entries in column j (i.e. a prediction of 
N1/(No + N1) using the notation of Figure 4). We did not use this rule because it is 
harder obtain a lower bound on the final weight in the system. 

Finally, by applying the results of Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, 
and Warmuth (1993) we can tune/3 as a function of an upper bound c~ on the noise. 

LEMMA 1 (Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire & Warmuth, 1993) 
For any real value z > 0 or z = oc, 

z 2 + in a z2 
g(z) < l + z + - -  

21n 2 -- 21n2 '  l+g(z)  

1 and g ( ~ )  = O. where 9(z) = 1+2z+ 2~~2 

THEOREM 1 For any positive integers k and e~, the first algorithm with 

~:~(«~~ ~,~~~+~)oa~esa~~o~~ 
{kpm + 3C~p -4- 2V/c~((n - k) l nk  + k) + (n - k ) l g k  + k l g e }  min 

mistakes, where the minimum is taken over all partitions p whose size kp is at most k 
and whose noise O~p is at most ~. 

Proof:  Sincec~p_<c~and In / 2 1 n ~  > 1 f o r / 3 E [ 0 , 1 ) , i t f o l l o w s t h a t  

1 (n - k) in k + k + C~p in 

(tn~ ) 
In 2 + 209 + 2C~p 2 1 

1+~ 2 In ( 1 )  
< ( n - k ) l n k + k  l n ?  1 
- i n  2 + 20~p + 2c~ 2 I+Z 2 in I+Z 

( z 2  + l n ~ ' ~  i ( n - k )  l n k + k  
= 2o~ 2 1 n ~  J + 2ap - 2o~, where z = 

So by applying Lemma 1 with and fl = g@) to the bound (1) we obtain a worst-case 
mistake bound of 

min  h p m + ~ p + 2  c ~ p + ~ / a ( ( n - k )  l n k + k ) +  21n2 

in  2 

( n -  k) l n k  + k 
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: min {kprn + 3C~p + 2V/Ct((n - k ) l n k  + k ) +  ( n -  k ) l g k  + k l g e }  

for our first algorithm, where the minimum is taken over all partitions p of size at most 
with noise at most c~, and kp denotes the size and c~p the noise of partition p. 

For the above tuning we needed an upper bound for both the size and the noise of the 
partition. If  an upper bound for only one of the two is known, then the standard doubling 
trick can be used to guess the other. This causes only a slight increase in the mistake 
bound (see Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth (1993)). 
Note that in the above mistake bound there is a subtle tradeoff between the noise Ctp and 
size kp of a partition p. 

Recall that when this first algorithm is applied in the noise-free case that it essentially 
matches the information-theoretic lower bound. An interesting question is whether or 
not it can be shown to be essentially optimal in the case of learning non-pure relations. 

As we show in the next section (Theorem 3), when using the second algorithm for 
[earning non-pure relations, our algorithm makes at most 

{ h p m  13mn21gk+4c~pmn (1- -~n) +mni24cm (1- -~n) lnk min ~ + 

mistakes in the worst case, where the minimum is taken over all partitions p, and kp 
denotes the size and C~p the noise of partition p where kp < k and C~p _< c~. 

5. Algorithm Two: A Polynomial-time Algorithm 

In this section we analyze our second algorithm, Learn-Relation, when applied to learning 
non-pure relations. (Recall that Learn-Relation is shown in Figure 3.) The mistake bound 
of Theorem 2 obtained for this algorithm is larger than the mistake bound of the first 
algorithm. However this algorithm uses only (~) weights as opposed to exponentially 
many. 

We begin by giving an update that is equivalent to the one used in W M G  (Littlestone 
& Warmuth, 1989). Recall that in W M G  if x is the prediction of an input with weight w, 
then i f the  feedback is the bit p then w is multiplied by 1 - (1 - / 3 ) ] x  - pl for/3 E [0, 1). 
I f /3  = 3,/(2 - ~,), then for our application the update of WMG can be summarized as 
follows 

• If  a node predicts correctly (so, ]x - pl = 0) its weight is not changed. 

• If  a node makes a prediction of 1/2 then its weight is multiplied by 1/(2  - 3,). 

• If  a node predicts incorrectly (so, ]x - Pt = 1) then its weight is multiplied by 
~/(2 - ~). 
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In the new update all factors in the above algorithm are simply multiplied by (2 - "y). 
This update is used in our Algorithm Learn-Relation('y) since it leads to simpler proofs. 
Because voting is performed by a weighted majority vote, the predictions made by the 
two schemes are identical. In order to use the analysis technique of Littlestone and 
Warmuth we must obtain a lower bound for the final weight in the system. However, 
using WMG the weight in the system is decreased by nodes that do not predict, and thus 
we would have to compute an upper bound on the total number of  times that this occurs. 
Thus to simplify the analysis, we have modified the update scheme (i.e. at each step we 
multiplied all weights by (2 - 3/)) so that the weights of nodes that do not predict remain 
unchanged. 

5.1. The Analysis 

In this section we compute an upper bound on the number of  mistakes made by Learn- 
Relation. os ô~£ 

We begin with some preliminaries. Ler fzx = -~~ , fyy = °~I õ-Uv' and fzy = . A 
function f : N --+ ~ is concave (respectively convex) over an interval D of N if for 
all x E D, fxx(x) <_ 0 (fxz(X) > 0). In our analysis we repeatedly use the following 
variants of Jensen's inequality. Ler f be a function from ~ to N that is concave over 
some interval D of N. Let q E JV', and let x l , x 2 , . .  ,Xq E D. Then 

q q 

xi = U ~ E f ( x i )  <_ qf (U/q) .  
i = 1  i = 1  

Furthermore, if f is monotonically increasing over the interval D then the following 
holds: 

q q 

x i < U  » E f ( x i )  < q f ( U / q ) .  
i = 1  i = 1  

Likewise, let f be a function from N to ~ that is convex over some interval D of ~. 
Let q E .A/, and let x l , x 2 , . . X q  E D. Then 

q q 

x~ = U ~ E f ( x i )  > qf (U/q) .  
i = 1  i = 1  

We also use Jensen's inequality when applied to a function over two variables. A 
function f : ~ x ~ ~ N is concave over an interval Dx x Dy of N x ~ if for all x E D:~ 

and y E Dy, fxz < 0, fyv _< 0, and fxxfyy - (f~y)2 >_ O. Let f be a function from 
× N to ~ that is concave over some interval Dx × D u of N x N. Let q E N', and let 

x l ,x2 ,  . . ,Xq c Dz and Yl,Y2, . . ,Yq E Dy. Then 

q 

i = 1  

q q 

= Uz and ~ Yi = Uy ~ ~ f ( x i ,  Yi) <- qf (Uz/q ,  Uy/q). 
i = 1  i = 1  
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We now give an overview of the proof of our main result along with several key 
lemmas that are used in the proof. Let p be any partition of size kp and noise c~p. We 
note that the partition p is fixed throughout the analysis. Furthermore quantities such 
as g, Fi, ~~ (defined below) depend implicitly on p. Let # denote the total number of 
mistakes made by the learner, and let #i denote the number of mistakes that occur when 

kp 
the learner is predicting an entry in a row of cluster i. (Thus, ~ i = l  #i = #-) Let ni be 

kp 
the number of rows in cluster i. (So n = ~ i = l  nj.) Let A be all (~) edges and the set 
g contain all edges connecting two rows of the same cluster. We further decompose g 
into g l , . . - ,  gkp where gi contains all edges connecting two rows in the same cluster i 

n~(n~-l) When making an erroneous prediction for M~j, we of p. Observe tha t /gd  = 2 • 
define the force of the mistake to be the number of rows in the same cluster as row r 
for which column j was known when the mistake occurred. Ler Fi be the sum of the 
forces of all mistakes made when predicting an entry in a row of cluster i. 

Recall that the noise of  a partition p is defined as 

O~p 

m 

d(S~) = E E min{Af°(S~)'N'l(S~ )} = 
S i Cp S ~ Cp J=  1 

~ ~  kp 

i=1  j = l  i=1  

We now define Ji to be the number of times that a weight in gi is multiplied by 3" 
when making a prediction for an entry in cluster i. That is, Ji  is the total number of 
times, over all trials in the learning session in which a mistake occurs, where an entry in 
cluster i incorrectly predicts the value of an entry in cluster i (voting with all its weight). 

We now give the key lemma used in our main proof. For ease of  exposition, let 

2 and b = l g ( 2 - ' ~ ' ~  = a = lg(2 - 3`) = lg l--4-fi l g~ .  
\ ' Y 2  

LEMMA 2 For each i < i < kp, 

1 Fi = b j i  + - ~-~" 

eE/~ 

Proof:  We begin by noting that, if C~p = 0, then J~ = 0 and the number of times some 
weight in gi is multiplied by (2 - 7) equals Fi. Thus, in the noise-free case, it follows 
that ( 2 - 7 )  Fz = [IeeE, w(e). When C~p > 0, then Fi is the number of times some weight 
in gi is multiplied by either (2 - 3') or 7. Since the number of times some weight in gi 
is multiplied by 3' is Ji we have that 

= H ~(~). 
eßg~ 

Taking logarithms of both sides we obtain the stated result. []  

Note that if ni = 1 then Ji = Igi[ = Ei = 0. The proof of  our main theorem uses 
Lemma 2 as its starting point. We first obtain (Lemma 4) a lower bound for F~ that 
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depends on the total number of  mistakes, #i, made by our algorithm when making a 
prediction for an entry in cluster i. Next we must determine the maximum amount by 
which the "noisy" entries of the submatrix S i cause the weights in gi to be "weakened" 
(i.e. multiplied by "7) instead of  being "strengthened" (i.e. multiplied by ( 2 -  "7)) as 
desired. In Lemma 5 we show how Ji can be upper bounded in terms of 6i, the noise 
within cluster i. Finally in Lemma 7 we obtain an upper bound for the sum of the 
logarithms of  the weights. We do this by observing that the total weight in the system 
never increases and then use the convexity of the logarithm function. The proof of 
our main theorem essentially combines all the lemmas and uses an additional convexity 
argument for combining the contributions from all clusters. 

We now obtain a lower bound for Fi. In order to obtain this lower bound, it is crucial 
to first obtain an upper bound on the number of mistakes for a given cluster and given 
force. This quantity characterizes the rate at which the weighted-majority nodes are 
gaining information. 

LEMMA 3 For each cluster r and force f there are at most m mistakes of  force f .  

Proof:  We use a proof by contradiction. Suppose that for cluster i the learner makes 
m + 1 force f mistakes. Then there must be two mistakes that occur for the same 
column. Suppose the first of these mistakes occurs when predicting Mrj  and the second 
occurs when predicting M « j  where both rows r and r '  are in cluster i. However, 
after making a force f mistake when predicting Mr j  that entry is known and thus the 
force of the M « j  mistake taust be at least f + 1 giving the desired contradiction. 

We now compute a lower bound for the force of  the mistakes made when predicting 
entries in cluster i. 

L E M M A  4 For any 1 < i < kp, 

F i > m a x  # i - m ,  2m 2 " 

Proof:  We proceed by showing that both expressions above are lower bounds for Fi. 
Ler {x) ~ denote a sequence containing the symbol x repeated m times. Let ~ri denote 
the sum of the first #i elements of the sequence (0)~(1)~(2)  ~ . .  -. From Lemma 3 it 
follows that Fi _> cri. Thus, clearly our first lower bound 

Fi > #i - m 

follows since all but m mistakes have force at least one. 
We now compute a more sophisticated lower bound on cri. Ler s(x) z = ~~:~ k = 

z(~+l) Using the structure illustrated in Figure 5 it is easily seen that 
2 " 

F{ > m s([~] -1)- (m[~]-#O (U~] -I) 
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0 0 0 - . .  0 

1 1 1 --- 1 

[ 1-2 .-- [ 1-2 

[~ I - I  ... [~I-1 I 

• t 

Figure 5. FirSt/zi elements of the sequence (0) m {1) m (2) m .... 

= ( [ - - ~ 1 -  1 ) ( # i -  2 [ - - ~ ]  ) 

P~ #4 (1 - d)dm 
- + 

2m 2 2 
> #2 #i 

- 2 m  2 '  

where d = I ~ ]  - ~m and the last inequality follows from the observation that 0 _< d < 1. 
This completes the proof of  the lemma. • 

Observe that the simple linear bound is a better lower bound only for m < #i < 2m. 
Next, we capture the relationship between Ji  and the noise within cluster i of the 

partition to obtain an upper bound for Ji. 

LEMMA 5 For 1 < i < kp, 

Ji < 6~ni 52 
770," 

Proof: For ease of exposition, we assume that for each cluster i and column j ,  the 
majority of the entries in S~, are 1. Thus 6~,j is exactly the number of 0's in Sj.  Observe 

that for every known 0 entry in @, the quantity Ji  is increased by one whenever the 

learner makes a prediction error when predicting the value of an entry in S} that is a 1. 

Thus, in the worst case, each of the 6i,j entries in S~ that are 0 could cause Ji to be 

incremented for each of the n~ - 5i,j entries in S~ that are 1. Thus, 

J~ < E 6i,i (ni - ~i,i) = 6ini - 5 ?  - -  7 . , ,  3 • 

j=l j=l 
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m V Since x 2 is convex, it follows that Ej=I 52~,3" -- > ~ "  This completes the proof of  the 
lemma. • 

Next we obtain an upper bound on the sum of the logarithms of the weights of  a set 
of  edges from .4. A key observation used to prove this upper bound is that the overall 
weight in the system never increases. Therefore, since the initial weight in the system 
is n(n  - 1)/2 we obtain the following lemma. 

LEMMA 6 Throughout the learning session for any `4~ C .4, 

E w(e) < n(n- 1____~) 
- 2 

e E . A '  

Proof:  In trials where no mistake occurs the total weight of all edges ~~e , a  w(e) 
clearly does not increase. Assume that a mistake occurs in the current trial. Ignore 
all weights that are not updated. Of the remaining total weight W that participates in 
the update let c be the fraction that was placed on the correct bit and 1 - c be the 
fraction placed on the incorrect bit. The weight placed on the correct bit is multiplied 
by 2 - 3' and the weight placed on the incorrect bit by 3". Thus the total weight of  all 
edges that participated in the update is (c(2 - 3") + (1 - c)~/)W at the end of  the trial. 
Since the latter is increasing in c and c < 1/2 whenever a mistake occurs, we have 

2-~ ~ ) W  = W that the total of  all weights updated in the current trial is at most ( - 7 -  + "y 
at the end of the trial. We conclude that the total weight of all edges also does not 
increase in trials where a mistakes occurs. Finally since A I C `4, the result follows. 

LEMMA 7 Throughout the learning session for any `4i C_ `4, 

tgw(e) _< IA'llg 21A'------~ 
eEA' 

Proof- This result immediately follows from Lemma 6 and the concavity of  the 10g 
function. • 

We are now ready to prove our main result. 

THEOREM 2 For all/3 E [0, 1), Algorithm Learn-Relation when using the parameter 
28 

7 = T ~  makes at most 

T-~~) lg 3rnn21gkp+2C~p(mn-ap)lg-~ 
min kpm + min ~ lg e + 

- -  -"2" - ~ 2 lg ~ lg 

mistakes in learning a binary-relation where the outside minimum is taken over all 
partitions p, and kp denotes the size and ap the noise of partition p. 



264 G O L D M A N  A N D  W A R M U T H  

Proof:  Let p be any partition of size kp and noise O~p. We begin by noting that for any 
m cluster i and column j in partition p, (Si,j <_ nil2 and thus (5i = ~ j = l  ~i,j _< nim/2. 

Let $1 = {i I n~ = 1}, and Sz = {i I n~ _> 2}. Clearly the total number of mistakes, #, 
can be expressed as 

# =  Z P i +  ~ # i .  
iES1 iES2 

Recall that in Lemma 4 we showed that F.i > #i - m. Observe that if ni = 1 then 
Fi = 0, and thus it follows that ~iEs~ #i <_ ISltm. As shown below, ~ i e s 2  #i is 
bounded from above by a function of  the form IS2[m + x where x is some positive 
quantity. Thus 

iES1 iES2 

Since it is easily seen that the value of x is maximized when IS2t = n, we will assume 
throughout the remainder of  this section that ni > 2 for all i. 

As we have discussed, the base of our proof is provided by Lemma 2. We then apply 
Lemmas 4, 5 and 7 to obtain an upper bound on the number of mistakes made by 
Learn-Relation. 

We now proceed independently with the two lower bounds for Fi given in Lemma 4. 
Applying Lemma 2 with the first lower bound for Fi given in Lemma 4, summing over 
the clusters in p, and solving for # yields, 

kp b kp 
# = ~ . i  <_ ]~pm + -- Z a 

i = 1  i = 1  

From Lemma 5 we know that 

the function n~i - ~ is concave. 
kp 

~ i = l  ~i = C~p, we obtain: 

kp 2 O~p 
J~ < nc~p 

i = l  - -  k p m  

+ i Z l g  (2) 
a 

eEg  

67 ~ 
Ji ~ ~iTZi -- N ~ ~in -- -m" I t  i s  easily v e r i f i e d  t h a t  

Thus, combining Jensen's inequality with the fact that 

- (3) 

In addition, by applying Lemma 7 with .A t = g we obtai~ . . . .  at: 

n(n - I) Zlg ( )_<ICllg 2qE--7-- 
eE£ 

Next observe that the function z lg ~ is concave and obtains its maximum value at 

,~(~-i). Thus we obtain that X - -  2e 

Eeilg ~(n - i) < n(n- i) Ige 
21g ~ - 2--e-" (4) 
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Finally by combining Inequalities (2), (3), and (4) we obtain that: 

#<kpm+ b ( a pPm ) n(n-1)  lge b ( a ß )  n21ge 
- n - + - -  < k v m +  - n + - - - -  - a a P  2a e - a a P  - 2 a  e 

proving our first bound on #. 
We now proceed by combining Lemma 2 with the more sophisticated second lower 

bound for Fi given in Lemma 4 to obtain: 

#i 

2m 2 - a eE£i 

Next we apply Lemma 7 with ..4' = £i to obtain: 

n(n - 1) 
E lgw(e) < IC~llg 2lgi ~ 
eE£~ 

Applying this above inequality, the inequality ~ _< v/-ä + v/b, and Inequality (5) 
yields 

m /2bmji  2m E m 2 
#i -< ~ - + V -  ä -  + a ¢~c, l g w ( e ) +  

-< -2 + «~ + Ir~l lg 21«~----5- + 

~ ~ /  1igel lg n(n - 1) _< ~ + Ji + ~ 2bc~---7- 

Ne×t we apply Lomma 5 and the fact that I&l = ~~(~~ - i ) / 2  ___ ~~/2,  aod theù ~um 
over the kp clusters in p to obtain: 

[.t < kprr~ + ~irt i -- 6i + n i  lg 
- -  v a / =  1 ~ 2-b 

n ( n -  1) 
~{(~{ - 1 )  

¢ 67 n? n(n--1) As shown in the appcndix, the function f(~i, n~) = 5ini - -~ + ~-~ lg ~~(n~-l) is 
kp kp concavefor ni_> 2 and 5~ < nim/2. Since ~ i = l n i  = n and ~~=16i = ap, wccan 

thus apply Jensen's inequality to obtain: 

# 
< k~~+~~V~ v ~  + ~~ 

= G m + v - - ä -  P a n - G  (6) 
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Observe that n >_ kp, and furthermore if n = kp then at most n m  mistakes can 
occur and the upper bound of  the theorem trivially holds. Thus without limiting the 
applicability of  our result we can assume that n >_ kp + 1 which in turn implies that 
n-1 < kp. Thus we can further simplify Inequality (6) to obtain: n-kp  - -  

~/ 3 2 2bm OLp 
# < k p m +  ä m n  lg k p +  a e e p ( n - - ~ )  

I 1 
3ran z lg kp + 2 a p ( m n  - ap) lg 

= kpm + lg 2 
1+/3 

thus giving us our second bound on #. 
The above analysis was performed for any partition p E P.  Thus taking the minimum 

over all partitions in P we get the desired result. • 

As when applying the weighted majority algorithm to a noise-free setting, notice that 
we obtain the best performance by selecting 3' = 0 (respectively/3 = 0). Thus we obtain 
the following corollary for the case of  learning pure relations. 

COROLLARY 1 For the case o f  learning pure relations where C~p = c~ = O, the algorithm 
Learn-Relation with 7 = 0 learns a pure k-binary-relation making at most 

~~+min{~l~~~~} 
mistakes in the worst-case. 

We now apply the results of  Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and 
Warmuth (1993) to tune/3 for the more general case in which the relation is not pure. 

THEOREM 3 For any positive integers k and c~, Algorithm Learn-Relation when using 
23 / 3ran 2 In k 7 = ~-4--~' where/3 = 9(z)  and z = V 2 ~ _ - - ~ ) ,  makes at most 7 

mistakes, where the minimum is taken over all partitions p whose size kp is at most k 
and whose noise c~p is at most a.  

Before proving the theorem, we give a graphical example to help provide a feel for 
how this function grows, and we look at its application to a special case. In Figure 6 we 
plot the mistake bound given in Theorem 3 for the special case in which m = n = 1000 
and /~p = k = 50. We look at how the given mistake bound grows as ap = c~ ranges 
from 0 to 10,000 (so up to 10% of the entries are noisy). It is important to remember 
that the given plot shows the provable upper bound on the number of  mistakes made by 
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Figure 6. This figure provides a graphical  example  for the mistake bound  of  Theorem 3. We have plotted 
o~ = a p  on the x-axis ,  and the value of  our upper  bound  on the mistakes is on the y-axis .  In this plot 
m = n = 1000  and k = kp = 50. Observe  that there are 1 , 0 0 0 , 0 0 0  predictions made,  and when there is 
no noise (i.e. c~ = 0) our upper  bound  on the mistakes is 180,  121. 

Learn-Relation (over the 1 ,000,000 predictions) - - t h e  actual number of mistakes could 
be lower. 

Before proving the theorem, we look at one special case. If partition p is such that 
ap = n, then the number of mistakes is at most 

kpm + 13mn2 lg k + 4ran 2 + mn2 2~/-~]--~. 

Proof  of  Theo rem 3: From Theorem 2 we know that for all/3 C [0, 1), our algorithm 

makesatmostmin{kpm+~/3mn21gkp+2c~p(mn-~~)lg} } lg ~ mistakes where the mini- 

mum is taken over all partitions p and h p  denotes the size and c~p the noise of partition 
p. 

Assume that the partition p has the property that kp _< k and C~p _< c~. Observe 

( l n { ) / ( 2 1 n l + - ~ )  > t for /3 ~ [0,1). Furthermore, since 2 c ~ p ( m n - c @  < that 

2ce(mn - ce) for C~p < a < ~-~, it follows that 

3ran 2 lg k + 2c~p(mn - o9) lg -~ 

ig 2 
I+~ 
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3mn21nk +4c~p(mn-c~p)+4c~(mn-c~) ( ln~ ) 
- -  2 1 < 2 2 In 1+/3 in I+Z 

: - \ - - + - 

V/ 3mn 2 In k where z = 2~(~-~)"  So by applying Lemma 1 with and /3 = g(z) we obtain the 

worst-case mistake bound s given in the theorem. • 

In addition to presenting their algorithm to make at most k m +  nv/(k - 1)m mistakes, 
Goldman, Rivest, and Schapire (1989) present an information-theoretic lower bound for 
a class of algorithms that they call row-filter algorithms. They say that an algorithm A 
is a row-filter algorithm if A makes its prediction for Mrj strictly as a function of j and 
all entries in the set of rows consistent with row r and defined in column j. For this 
class of algorithms they show a lower bound to f~(nvZm ) for m > n on the number of 
mistakes that any algorithm must make. Recently, William Chen (1991) has extended 
their proof to obtain a lower bound of f ~ ( n ~ )  for m > n lg k. Observe that Learn- 
Relation is not a row-filter algorithm since the weights stored on the edges between the 
rows allows it to use the outcome of previous predictions to aid in its prediction for 
the current trial. Nevertheless, a simple modification of the projective geometry lower 
bound of Goldman, Rivest, and Schapire (1989) can be used to show an f~(nv/--m) 
lower bound for m > n on the number of prediction mistakes by our algorithm. Chen's 
extension of the projective geometry argument to incorporate k does not extend in such a 
straightforward manner; however, we conjecture that his lower bound can be generalized 
to prove that the mistake-bound we obtained for Learn-Relation is asymptotically tight. 
Thus to obtain a better algorithm, more than pairwise information between rows may be 
needed in making predictions. 

6. Concluding Remarks 

We have demonstrated that a weighted majority voting algorithm can be used to learn a 
binary relation even when there is noise present. Our first algorithm uses exponentially 
many weights. In the noise-free case this algorithm is essentially optimal. We believe 
that by proving lower bounds for the noisy case (possibly using the techniques developed 
by Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth (1993)) one can 
show that the tuned version of the first algorithm (Theorem 1) is close to optimal in the 
more general case as well. 

The focus of our paper is the analysis of our second algorithm that uses a polynomial 
number of weights and thus can make predictions in polynomial time. In this algorithm 
a number of copies of our algorithm divide the problem among themselves and learn the 
relation cooperatively. 

It is surprising that the parallel application of on-line algorithms using multiplicative 
weight updates can be used to do some non-trivial clustering with provable perfor- 
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mance (Theorem 3). Are there other applications where the clustering capability can be 
exploited? For the problem of learning binary relations the mistake bound of the poly- 
nomial algorithm (second algorithm) which uses (2) weights is still far away from the 
mistake bound of the exponential algorithm (first algorithm) which uses U'/k! weights. 
There seems to be a tradeoff between efficiency (number of weights) and the quality of 
the mistake bound. One of the most fascinating open problem regarding this research 
is the following: Is it possible to significantly improve our mistake bound (for either 
learning pure or non-pure relations) by using say O(n  3) weights? Or can one prove, 
based on some reasonable complexity theoretic or cryptographic assumptions, that no 
polynomial-time algorithm can perform significantly better than our second algorithm? 
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Appendix 

{ 67 n? n(n--1) We now demonstrate that the function f(6i, n~) = 6ini - -~ + -~ß lg ~~(n~-]) is con- 

cave for ni _> 2 and 6~ <_ nim/2.  
For ease of exposition we let x = 6i and y = ni. We taust now show that fzz  _< 0, 

fyy <_ O, and fxz fyy  - (fxy) 2 >_ O. 
It is easily verified that: 

_ _  n(n - 1) 
f== ( f (x ,y))3 + ~ lg y ( y ~  _< O. 

It can also be verified that fyy can be expressed such that the denominator of  fyy is 

16b2(ln 2)2 (y _ 1)2(f (x ,  y))3, 

and the numerator is 

f~y = - 4 y 3 ( y - 1 ) - y 2 - 4 b 2 x 2 ( l n 2 ) 2 ( y - 1 ) 2 -  

( ~ ( 4 y  2 - 7~ + 2) - ± ( 6 y  2 - 10y + 3)~ - 4bx ln 2 
\ m / n(n-l)(2y2(2y2 i) 8bln ) l n y ( y  1) - 4 y +  + m 2 Z 2 ( Y -  1)2 " 

It is easily shown that 2y 2 - 4y + 1 > 0 for y > 2. Observe that y(4y 2 - 7y + 2) - 
~ ( 6 y  2 - 10y + 3) > 0 when 

f ~~2 _ 7y + 2 2: 
- m  \ 6 y  2 l O y + 3 / "  

| 
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Furthermore,  for y >_ 2 

@2 _ 7y + 2 4 1 
> - > -  

6y 2 - 1 0 y + 3  - 7 2 

and thus it suffices to have x _< y m / 2  which is the case. 
Finally,  it can be verified that f x x f y y  - ( fxy)2  is 

n(r~--l) (Q. 2 ) y2 4y(y - 1) + 1 + b m  In 2 + 2bray In 2(y - 2) + 2 in ~(-N-sTy_~ ) ,_y - 4y + 1) 
>_0 

16b 2 (In 2) 2 (y - 1)2re(f  (x, y))4  

for  y _ >  2. 

T h i s  c o m p l e t e s  t h e  p r o o f  t h a t  f ( x ,  y) is  c o n c a v e  o v e r  t he  d e s i r e d  i n t e r v a l .  

Notes 

1. The adversary, who tries to maximize the learner's mistakes, knows the learner's algorithm and has unlimited 
computing power. 

2. The halving algorithm is described in more detail in Section 2. 

3, Throughout this paper we let lg denote the base 2 logarithm and In the natural logarithm. Euler's constant 
is denoted by e. 

4. The same result holds if one performs the updates after each trial. 

5. A version of this second algorithm is described in detail in Figure 3. For the sake of simplicity it is 
parameterized by an update the factor 3' = 2~ / (1  + ~) instead of/3. See Section 5 for a discussion of 
this algorithm called Learn-Relation(7). 

6. We can obtain a bound of half of (1) by either letting the algorithm predict probabilistically in {0, 1} 
or deterministically in the interval [0, 1] (Cesa-Bianchi, Freund, Helmbold, Haussler & Schapire 1993; 
Kivinen & Warmuth, 1994). In the case of probabilistic predictions this quantity is an upper bound for 
the expected number of mistakes. And in the case of deterministic predictions in [0, 1], this quantity is 
an upper bound on the loss of the algorithm (where the loss is just the sum over all trials of the absolute 
difference between the prediction and the correct value). 

7. Recall that 9(z) = 1 1 + 2 z + 2 ~  2 and 9(ee)  = 0. 

8. Again, we can obtain improvements of a factor of 2 by either letting the algorithm predict probabilistically 
in {0, 1} or deterministically in the interval [0, 1] (Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire & 
Warmuth, 1993; Kivinen & Warmuth, 1994). 
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