
Machine Leaming, 20, 245-271 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Binary Relations Using Weighted
Majority Voting *

SALLY A. GOLDMAN
Dept. of Computer Science, Washington University, St. Louis, MO 63130

sg@cs.wustl.edu

MANFRED K. WARMUTH manfred@cs.ucsc.edu
Dept. of Computer and Information Sciences, University of California, Santa Cruz, CA 95064

Editor: David Haussler

Abstract. In this paper we demonstrate how weighted majority voting with multiplicative weight updating
can be applied to obtain robust algorithms for learning binary relations. We first present an algorithm that
obtains a nearly optimal mistake bound but at the expense of using exponential computation to make each
prediction. However, the time complexity of our algorithm is significantly reduced from that of previously
known algorithms that have comparable mistake bounds. The second algorithm we present is a polynomial time
algorithm with a non-optimal mistake bound. Again the mistake bound of our second algorithm is significantly
better than previous bounds proven for polynomial time algorithms.

A key contribution of our work is that we define a "non-pure" or noisy binary relation and then by exploiting
the robustness of weighted majority voting with respect to noise, we show that both of our algorithms can
learn non-pure relations. These provide the first algorithms that can learn non-pure binary relations.

Keywords: on-line learning, mistake-bounded leaming, weighted majority voting, noise tolerance, binary
relation

1. I n t r o d u c t i o n

In this paper we demonst ra te how weighted majori ty vot ing with mul t ip l ica t ive weight

updating can be applied to obtain robust a lgori thms for learning binary relations. Fo l low-

ing Goldman, Rives t and Schapire (1993), a binary relation is defined be tween two sets

of objects, one o f cardinali ty n and the other of cardinali ty m. For all possible pairings

of objects, there is a predicate relat ing the two sets of variables that is ei ther true (1)

er false (0). The relat ion is represented as an n x rn matr ix M of bits, whose (r, j)

entry is 1 i f and only if the relat ion holds be tween the corresponding e lements of the two

sets. Furthermore, there a r e a l imited number of object types. Namely, the matr ix M is

restricted to have at most k dist inct row types among its n rows. (Two rows are of the

same type if they agree in all columns.) This restriction is satisfied wheneve r there are

only k types of identical objects in the set of n objects being considered in the relation.

We study the p rob lem of learning binary relations under the standard on-l ine (or in-

cremental) learning mode l (Li t t les tone 1989; Lit t lestone 1988). The learning session

consists of a sequence o f trials. In each trial, the learner taust predict the value of some

* The first author was supported in part by NSF grant CCR-91110108 and NSF National Young Investigator
Grant CCR-9357707 with matching funds provided by Xerox Corporation, Palo Alto Research Center and
WUTA. The second author was supported by ONR grant NO0014-91-J-1162 and NSF grant IRI-9123692.

246 GOLDMAN AND WARMUTH

unknown matrix entry that has been selected by the adversary 1. After predicting, the
learner receives the value of the matrix entry in question as feedback. If the prediction
disagrees with the feedback, then we say the learner has made a mistake. The learn-
ing session continues until the learner has predicted each matrix entry. The goal of the
learner is to make as few prediction mistakes as possible.

One could view each row as a point in {0, 1} ~ and each row type of a binary relation
as a cluster of points in {0, 1} m that are distance zero from each other. Initially, the
learner knows nothing about how the points may be clustered, yet as the learning session
proceeds the learner must infer both how the points are clustered (since this will be
essential in reducing the mistakes) and the value of the m bits defining each cluster. We
thus use the term cluster rather than row type when talking about the grouping of the
rows.

One contribution of this paper is a formal definition for the problem of learning binary
relations in which the clusters are not "pure" in that two rows in the same cluster may
not be exactly the same. In other words, we remove the requirement that all points in a
cluster are distance zero from each other. Thus even if the target matrix were known there
remains an interesting clustering problem that one could address, namely, what clustering
achieves the optimal tradeoff between the nnmber of clusters and the distances between
the points in the clusters. Of course, our learning algorithm must perform the clustering
in an on-line manner while also predicting the values of unknown matrix entries. By
viewing the problem of learning binary relations under this more general formulation, we
achieve two important goals. First, such a modification in the definition of the learning
problem much better matches the motivation provided by Goldman, Rivest, and Schapire
(1993). Second, we can greatly reduce the mistake bounds obtained under the original
formulation of Goldman et al. since now a group of rows that have slight differences can
be viewed as a single cluster rather than having each row as its own cluster. In addition,
the final weights of the second algorithm we present may be used to obtain a solution to
the problem of how to cluster the rows of the target matrix.

A second contribution of this paper is two new algorithms (both based on weighted
majority voting with multiplicative weight updating) to learn both pure and non-pure
binary relations. Weighted majority voting provides a simple and effective method for
constructing a learning algorithm .A that is provided with a pool of "experts", one of
which is known to perform weil, hut A does not know which one. Associated with
each expert is a weight that gives ./t's confidence in the accuracy of that expert. When
asked to make a prediction, A predicts by combining the votes from its experts based
on their associated weights. When an expert suggests the wrong prediction, A passes
that information to the given expert and reduces its associated weight. In this work, we
use a multiplicative weight updating scheme to adjust the weights. Namely, the weight
associated with each expert that mispredicts is multiplied by some weight 0 _</3 < 1. By
selecting/3 > 0 this algorithm is robust against noise in the data. This robust nature of
weighted majority voting enables us to apply our algorithms to the problem of learning
non-pure relations by viewing discrepancies between the rows in the same cluster as
noise.

LEARNING BINARY RELATIONS 247

When using weighted majority voting there is a tradeoff between the number of experts
(i.e. the number of weights being combined) and the computation time needed to make
each prediction. Our first algorithm applies a weighted majority scheme with km/k!
weights to the problem of learning binary relations. We show that the mistake bound of
this algorithm nearly matches the information theoretic lower bound. While the compu-
tation time needed to make each prediction is exponential, it is still significantly reduced
from that used by the halving algorithm (Barzdin & Freivald, 1972; Littlestone 1988;
Angluin 1988) 2. In out second algorithm we apply a weighted majority voting scheme
that uses only a polynomial number of weights and thus can make each prediction in
polynomial time. While the mistake bound proven for this algorithm is not near optimal,
with respect to what can be obtained with unlimited computation, it is significantly better
than previous bounds obtained by polynomial time algorithms. We first present and ana-
lyze our two algorithms for the problem of learning pure binary relations. We then show
how to exploit the robustness of weighted majority voting, to generalize both of these
algorithms to obtain the first known algorithms for learning non-pure binary relations.

Our second algorithm has two novel features that required the use of a new method
for analyzing the mistake bound. This algorithm runs n copies of a weighted majority
voting scheme in parallel where in each trial only one of the n copies is active. However,
all n copies share weights and thus cooperatively work to learn the target relation.
Another unusual property of out voting scheine is that all experts begin with incomplete
information and thus do not always know how to make each prediction. Furthermore,
the prediction an expert would make for any given matrix entry can change over time.
(In fact, initially no experts will know how to vote for any matrix entry.) As the learning
session proceeds all experts monotonically gain information and thus know how to vote
more orten. Thus to bound the number of mistakes made by our second algorithm, we
taust determine the minimum rate at which information is being gained across the n
copies of our voting scheme.

The remainder of this paper is organized as follows. In the hext section, we discuss
the halving algorithm and the particular weighted majority voting scheine, WMG, that
we apply. In Section 3 we present out two different algorithms for applying WMG to the
problem of learning a binary relation. In Section 4 we formally define the problem of
learning non-pure binary relations, and demonstrate how the robust nature of WMG can
be exploited to handle such noise. In Section 5 we present out main result. Namely, we
provide a technique that enables us to prove an upper bound on the number of mistakes
made by out polynomial-time algorithm for learning non-pure binary relations. Finally,
in Section 6 we close with some concluding remarks.

2. Preliminaries

In the noise-free setting, if the learner has unlimited computation time then the halving
algorithm (Barzdin & Freivald, 1972; Littlestone 1988; Angluin 1988) typically performs
very well. The halving algorithm predicts according to the majority of the relations that
are consistent with the completed trials, and thus each mistake halves the number of
remaining relations. Since the number of binary'relations is at most 2kmk~/k! the

248 GOLDMAN AND WARMUTH

standard halving algorithm makes at most

lg(2Æ~k~/k!) = k m + n l g k - Igk!

_< k m + ~ lg k - k lg(Æ/~)

= k m + (n - k) l g k + k l g e

mistakes 3. The halving algorithm can be viewed as keeping 2kmkn/k ! weights, one
weight per possible binary relation. Initially, all weights start at 1, and whenever a
binary relation becomes inconsistent with the current partial matrix, its weight is set to
0. To make a prediction for a given matrix entry, each binary relation votes according
to its bit in that entry. Since the halving algorithm predicts according to the majority of
consistent relations (i.e. those with weight 1), each mistake halves the total weight in
the system. Since the initial weight is 2kmk'~/k[and the final weight is at least 1, at
most k m + (n - k) lg k + k lg e mistakes can occur.

Observe that the time used to make each prediction is linear in the number of weights.
Thus we are interested in algorithms that use a small number of weights in representing
their hypotheses. The algorithms we present update the weights according to a variant
of the weighted majority algorithm of Littlestone and Warmuth (1989) called WMG. We
view WMG as a node that is connected to each expert (or input) by a weighted edge. The
inputs are in the interval [0, 1]. An input x of weight w votes with weight x w for 1 and
with weight (1 - x) w for 0. The node "combines" the votes of the inputs by determining
the total weight qo (respectively qa) placed on 0 (respectively 1) and predicts with the
bit corresponding to the larger of the two totals (and for the sake of discreteness with 1
in case of a tie). After receiving feedback of what the prediction should have been, for
each input, the fraction of the weight placed on the wrong bit is multiplied by/3, where
/3 C [0, 1). Thus the weight w of an input x becomes (1 - x + x/3)w if the feedback is
0 and ((1 - x)/3 + x) w if the feedback is 1. If /3 = 0 then the total weight halves in
each trial in which the node makes a mistake and we obtain an analysis like that of the
halving algorithm.

3. Our Algorithms For Applying WMG

In this section we describe two different methods for applying WMG to the problem of
learning a binary relation. The first algorithm uses one node and km/k! weights. Thus
the number of weights is still exponential but lower than the number of weights used by
the halving algorithm by a multiplicative factor of 2 km. For this case, the analysis is
straighfforward, and for the noise-free case, the bounds achieved are nearly optimal with
respect to the known information-theoretic lower bound. The purpose of this algorithm
is to show what is possible when computational resources are cheap. In the second
algorithm we use one hode for each of the n rows and one weight for each pair of rows
(i.e. (~) weights). Proving bounds for the second algorithm is much more involved and
is the focus of the paper. The bounds obtained are non-optimal when compared to those
obtained when computation time is not a concern. However, our bounds are significantly
better than previous bounds obtained by a polynomial algorithm.

LEARNING BINARY RELATIONS 2 4 9

~,~,.

kn/k! partitions

Figure 1. This figure illustrates how the voting works in our first algorithm. In this example k = 2. We use
the two degrees of shading to indicate how the rows of the matrices are partitioned. Thus on the fight we have
shown the partially known matfix under three different partitions. Just to the left of each partition we show
its vote for the unknown matrix entry. Recall that a partition voting with 1/2 can be viewed as a vote of 1
with half of its weight and a rote of 0 with half of its weight. So the overall prediction made in this example
is 1 if and only if w 2 / 2 + . . . + w k ~ /k! > Wl -}- w 2 / 2 -k

250 GOLDMAN AND WARMUTH

We now describe our two algorithms in more detail. In the first algorithm we use
one weight per partition of the n rows into at most k clusters (i.e. kn /k ! weights).
Initially all weights are set to 1. To make a prediction for a new matrix entry, each
partition votes as follows: If a column of the cluster to which the new entry belongs has
already been set then vote with the value of this bit; otherwise, vote with 1/2 causing
the weight to be split between the votes of 0 and 1. Our algorithm predicts according
to the weighted majority of these rotes (see Figure 1). Recall that after receiving the
feedback WMG multiplies the fractions of the weights that were placed on the wrong
bit by/3. By selecting /3 = 0, the weight of partitions that predict incorrectly (and are
thus inconsistent with the partial matrix) are set to zero and the weights of all partitions
that split their vote are halved.

After all entries of the target matrix are known, the correct partition has weight at least
2 - k m since it never predicted incorrectly, and split its vote at most k m times. Since
the initial weight is kn/k! , we obtain the mistake bound of k m + (n - k) lg k + k lg e
just as for the halving algorithm. (Actually, orte can show that when /3 = 0 then the
first algorithm simulates the halving algorithm with k~/k! weights instead of 2kmk~/k!
weights). Note that the mistake bound of this algorithm is essentially optimal since
Goldman, Rivest, and Schapire (1993) prove an information-theoretic lower bound of
k m + (1% - k)[lg kJ mistakes. While this algorithm has assumed that an upper bound
on h is known, if no such bound is provided the standard doubling trick can be applied.
Namely, the learner begins with an estimate, /~ = 1, as an upper bound for k. If the
algorithm fails (i.e. makes too many mistakes) then /~ is doubled and the process in
repeated. Once k _> k the algorithm will succeed. Observe that the final value k I of

will be less than 2k. Also, since k is growing ~ an exponential rate, the computation
time and mistakes made during the iteration with k = k f dominates the other runs. More
specifically the number of mistakes made by this variation for k unknown is at most

lg kf

Z
/=0

(2im + ni - i2 i + 2 i lg e)

1%
= 2 k f m + -~ lg/eX (lg ky + 1)(2/of(lg/of - 1) + 2) + 2kl lg e

< 2/¢fra + 2(lg /of + 1) 2 - 2/¢f(lgkf - 1) + 2 k f l g e

1%
<_ 4 k m + ~ (l g k + 2) 2 - 2 k l g k + 4k(lge + 1)

= o (k ~ + 1% lg 2 k - k lg k) = o (k m + (1% lg k - k) lg k)

n

where the first step uses the equality ~ i2 i = 2n+l (n - 1) + 2.
i=0

In our second algorithm we use one weighted majoritY node per row of the matrix, and
one edge between each pair of nodes. Thus, unlike the first algorithm, no knowledge of
k is needed. Let err' (and e<r) denote the (undirected) edge between the node for row
r and the node for row r ' , and let w(e) denote the weight of edge e. The node for row
r dictates the predictions for all entries in row r. So the nodes, in some sense, partition

LEARNING BINARY RELATIONS 251

J
i~iiii:iii~i~ ~

w l i~:~iii~!::~il ¸̧~ i

r : : : I

l 0 iii!!
0 1

w3 1

M

Figure 2. This figure illustrates how predictions are made in our second algorithm. The weighted majority
node corresponding to row r (heavily shaded) is used to predict Mrj. The predictions of the inputs coming
from the nodes are shown. So for this example the shaded node predicts 1 if w l / 2 + w2 > w l / 2 + w3 + w4
and oredicts 0 otherwise.

252 GOLDMAN AND WARMUTH

the learning problem among themselves. Assume M~j is the next value to predict. To
make its prediction, the node for row r combines the votes of the n - 1 inputs from
column j of matrix M. Each node r ~ ¢ r votes with the weight w(er<) for the bit at
M<j. If the bit M«j is unknown (corresponding to its vote being 1/2) then the weight
is split between the two votes (see Figure 2). If a mistake occurs then only the n - 1
weights connected to node r a r e adjusted using a multiplicative weight update scheme 4.
Thus we are running n copies of WMG in parallel, where in each trial only one of the
copies makes a prediction. We show that this parallel composition of weighted majority
style algorithm "learns" in the sense that if there are few clusters in the matrix then
the algorithms eventually cooperate to make few mistake altogether. This holds even if
the adversary gets to choose in what order the entries of the matrix M are uncovered 5.
Also note that the final weight between two nodes can be used to partition the rows
into clusters so that one obtains a good tradeoff between the number of clusters and the
distances within each cluster. Namely, clusters should be formed of rows for which the
weight between all pairs is sufficiently high.

In Section 5 we provide a technique to adapt the worst-case mistake bounds proven
for the weighted majority algorithm WMG to this parallel application. As a corollary to
our main theorem, we show that when ~ = 0, our second algorithm obtains a mistake

bound of km + min { ~ lge, n ~ } using only (2) weights. Here k is the size

of the smallest partition consistent with the whole matrix. The best previous bound for
a polynomial algorithm was /cm + nv / (k - 1)m (Goldman, Rivest & Schapire, 1993).
An interesting aspect of our problem, besides its parallel nature, is that when node r is
to predict for entry M~j, not all other n - 1 entries in the j-th column may have been
uncovered. Such unknown ("sleeping") entries are naturally set to 1/2, leading to split
votes.

There are many relatives of the basic weighted majority algorithm that we could use
within our two algorithms such as a probabilistic variant due to Vovk (1990) (see also
Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire and Warmuth (1993)). Also the Vee
algorithm of Kivinen and Warmuth (1994) handles inputs and predictions in [0,1] and the
algorithm of Littlestone, Long and Warmuth (1991) has small square loss against the best
convex combination of the inputs. (Incidentally all these on-line prediction algorithms
have multiplicative weight updates in common.) We chose the simplest setting for
showing the usefulness of our method: the entries of the matrix are binary and the
predictions must be deterministic.

4. A Generalization: Non-Pure Relations

A key contribution of this paper is showing how the robust nature of WMG enables us to
solve an important generalization of the problem of learning binary relations with noisy
data. To motivate this problem we briefly review the allergist example given by Goldman,
Rivest, and Schapire (1993). Consider an allergist with a set of patients to be tested for
a given set of allergens. Each patient is either highly aIlergic, mildly allergic, or not
allergic to any given allergen. The allergist may use either an epicutaneous (scratch) test

LEARNING BINARY RELATIONS 253

Learn-Relation(O _< 7 < 1)

For all r ,r ' such that (r ¢ r ') init ial ize w(e~<) = 1
In each trial do the fol lowing four parts:
1. Receive a matrix entry Mrj for prediction
2. Produce a prediction as follows

For each row r' ¢ r
If Mr,j is not known then row r ' predicts that Mrj = 1/2
If M<j = 1 then row C predicts that Mrj = 1
If Mr,j = 0 then row r predicts that Mrj = 0

Let Ro be the set of all rows that predict Mrj = 0
Let R1 be the set of all rows that predict Mrj = 1
Let Wo = }-~~r'e/~o w(er r ,)
Let W1 = ~~ ' eÆ1 w(e~<)
If W1 _> Wo predict 1
Else predict 0

3. Receive correct value for M~j
4. If the predict ion of the algorithm was wrong then update the weights as follows

For each r ' ¢ r

If row r ' made a correct prediction then let w(e~«) +-- (2 - 7)w(e~<)

Else if row r' predicted incorrectly then ler w (e r r ') +-- 3 'w(er r ')

Figure 3. Our polynomial prediction algorithm for learning binary relations. Note that in the for loops of Steps
2 and 4, one could just look at rows for which w(e~~,) > 0. Also we obtain the same mistake bound if the
update in Step 4 is pefformed at each step regardless of whether a mistake occurred.

254 GOLDMAN AND WARMUTH

in which the patient is given a fairly low dose of the allergen, or an intradermal (under
the skin) test in which the patient is given a larger dose of the allergen. What options
does the allergist have in testing a patient for a given allergen? He/she could just perform
the intradermal test (option 0). Another option (option 1) is to perform an epicutaneous
test, and if it is not conclusive, then perform an intradermal test. Which option is best?
If the patient has no allergy or a mild allergy to the given allergen, then option 0 is best,
since the patient need not return for the second test. However, if the patient is highly
allergic to the given allergen, then option 1 is best, since the patient does not experience
a bad reaction. The allergist's goal here is to minimize the number of prediction mistakes
in choosing the option to test each patient for each allergen. Although Goldman et al.
explore several possible methods for the selection of the presentation order, here we only
consider the standard worst-case model in which an adversary determines the order in
which the patient/allergen pairs are presented.

This example makes an assumption that is a clear oversimplification. Namely, they
assume that there are a common set of "allergy types" that occur often and that most
people fit into one of these allergy types. Thus the allergy types become the clusters
of the matrix. However, while it is true that often people have very similar allergies,
there are not really pure allergy types. In other words, it is unreasonable to assume that
all rows in the same cluster are identical but rather they are just close to each other.
Without this flexibility one may be required to have most patient's allergies correspond
to a distinct allergy type. Henceforth, we refer to the original formulation of the problem
of learning binary relations in which all clusters are "pure" as learning pure relations.

We propose the following generalization of the problem of learning binary relations
that we refer to as learning non-pure relations. For any column c of bits, let N0(c) be
the number of zeros in c. Likewise, let .A/'I (c) be the number of ones in c. Suppose that
the rows of the matrix are partitioned into a set of k clusters p = { S ~ , . . . , Sk}. Let
S] denote the j th column of the cluster (or submatrix) S< For each cluster we define a
distance measure

m

d(S{) = Z min{Afo(S]) ,H l (S])}
j= l

In other words, think of defining a center point for partition S i by letting the value of
column j in this center be the majority vote of the entries in S}. Then d(S i) is just the

sum over all rows s in S ~ of the Hamming distance between s and this center point.
We define the noise of partition p, c~p, as

m

ap= Z d(Si)= Z Z m i n { N ' ° (S }) ' A f l (S J)}'
S i Ep S i Ep j=l

and the size of partition p, kp, as the number of clusters in partition p. For each cluster
77%

i and column j , we define ~i,j : min{N'0(Sj) ,N ' t (S})} , and 6i = ~ j = l 5<j. Thus

O~p = E i = I (~i = Z-.-Ji=l A-~j=l ~ i , j . Due to the robust nature of WMG, we can use both
algorithms to learn non-pure relations by simply using a non-zero update factor/3.

LEARNING BINARY RELATIONS 255

We now discuss both of our algorithms when applied to the problem of learning non-
pure relations and give bounds for each. The key to our approach is to view minor
discrepancies between rows in the same cluster as noise. This greatly reduces the mistake
bounds that one can obtain when using the original formulation of Goldman, Rivest, and
Schapire (1993) by reducing the number of clusters. The robust nature of the weighted
majority algorithm enables us to handle noise.

To demonstrate our basic approach, we now show that our first algorithm (i.e. the one
using kn/k! weights) can learn a non-pure relation by making at most 6

{ (~- k)lnk + k + ~~1~ } }
min kpm + ap + in ~

1+~

(1)

mistakes in the worst case, where 0 _</3 < 1 is the update factor, and the minimum is
taken over all partitions p of size at most k and kp denotes the size and C~p the noise of
partition p.

In the noisy case the first algorithm still uses a single copy of the weighted majority
algorithm with one weight for each of the k'~/k! partitions. (See Figure 4 for the complete
algorithm.) Assume Mrj is the hext value to predict. Then a particular partition predicts
with the majority of all already set entries from column j of rows in the same group
as row r in the partition. In case of a tie the paltition predicts with 1/2. (Note that in
the noise-free setting all entries known in a given partition for a given column must be
the same.) Finally, a partition with weight w and prediction x votes with xw for 1 and
(1 - x)w for 0. The Algorithm WMG totals the votes for 0 and for 1 and predicts with
the bit of the larger total (with 1 in case of atie).

When a partition predicts incorrectly, its weight is multiplied by /3. A partition that
splits its vote has its weight multiplied by (1 + /3)/2. (Half of its weight remains
unchanged and the other half is multiplied by/3.) Finally, since WMG votes in agreement
with at least half of the weight in the system, when a mistake occurs, at least half of the
weight is multiplied by /3 (and the rest is unchanged). Thus for each trial in which a
mistake occurs the total weight after the trial is at most (1 + fl)/2 times the total weight
before the trial. We now argue that a partition p predicts incorrectly at most C~p times
and splits its vote at most kpm + ee v times. To see this consider what happens in column
j of cluster i. The number of wrong predictions is at most cSi,j (i.e. the number of
minority bits) and the number of ties at most 1 + ~Si,j. Thus the number of times partition

kp m

p predicts incorrectly is at most ~ ~ ~Si,j = C~p, and the number of times partition p
i=1 j = l

kp rn

splits its rote is at most ~ ~-~~(1 + 5~,j) = kpm + C~p.
i=1 j = l

weight in the system is at least/3~p (l+_____~ß)Æpm+c~p. Since Thus it follows that the final

the initial weight in the system is k'~/kl and for each trial in which a mistake occurs the
total weight after the trial is at most (1 +/3) /2 times the total weight before the trial, we
ger the following inequality for the total number of mistakes #:

256 GOLDMAN AND W A R M U T H

Slow-Learn-Relation(0 _</3 < 1)

For 1 < i < kn/k! , initialize wi = 1
In each trial do the following four parts:
1. Receive a matrix entry Mrj for prediction
2. Produce a prediction as follows

For I < i < kn /k !
Let R be the set of rows in the same group as row r under partition i
Let No be the number of rows from R where column j is known to be a 0
Let N1 be the number of rows from R where column j is known to be a 1
If N1 = No then partition i predicts that Mrd = 1/2
If N1 > No then partition i predicts that Mr i = 1
Else partition i predicts that M~j = 0

Let Ro be the set of all partitions that predict Mr 9 = 0
Let R1 be the set of all partitions that predict M w = 1

Let Wo = ~ i e R o wi + ~ieR-(RoUR~) Wi/2

Let W1 = ~ieR~ w~ + ~ieR-(RoUR~) wi /2
If W1 > Wo predict 1
Else predict 0

3. Receive correct value for M~~
4. If the prediction of the algorithm was wrong then update the weights as follows

For 1 < i < kn/k!
If partition i made a prediction of 1/2 then let ws e- w i / 2 +/3 • w~/2
If partition i made an incorrect prediction (of 0 or 1) then let w~ ~- ws •/3

Figure 4. Our algorithm that uses kn/k! weights to obtaln an nearly optimal algorithm for learning binary
relations. We would obtain the same mistake bound if Step 4 is performed at each step regardless of whether
a mistake occurred.

LEARNING BINARY RELATIONS 257

Solving for tt gives the bound given in Equation (1).
An interesting modification of our first algorithm would be to consider all rows in

the same group as row r and then predict with the number of l ' s already known in
column j divided by the total number of known entries in column j (i.e. a prediction of
N1/(No + N1) using the notation of Figure 4). We did not use this rule because it is
harder obtain a lower bound on the final weight in the system.

Finally, by applying the results of Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire,
and Warmuth (1993) we can tune/3 as a function of an upper bound c~ on the noise.

LEMMA 1 (Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire & Warmuth, 1993)
For any real value z > 0 or z = oc,

z 2 + in a z2
g(z) < l + z + - -

21n 2 -- 21n2 ' l+g(z)

1 and g (~) = O. where 9(z) = 1+2z+ 2~~2

THEOREM 1 For any positive integers k and e~, the first algorithm with

~:~(«~~ ~,~~~+~)oa~esa~~o~~
{kpm + 3C~p -4- 2V/c~((n - k) l nk + k) + (n - k) l g k + k l g e } min

mistakes, where the minimum is taken over all partitions p whose size kp is at most k
and whose noise O~p is at most ~.

Proof: Sincec~p_<c~and In / 2 1 n ~ > 1 f o r / 3 E [0 , 1) , i t f o l l o w s t h a t

1 (n - k) in k + k + C~p in

(tn~)
In 2 + 209 + 2C~p 2 1

1+~ 2 In (1)
< (n - k) l n k + k l n ? 1
- i n 2 + 20~p + 2c~ 2 I+Z 2 in I+Z

(z 2 + l n ~ ' ~ i (n - k) l n k + k
= 2o~ 2 1 n ~ J + 2ap - 2o~, where z =

So by applying Lemma 1 with and fl = g@) to the bound (1) we obtain a worst-case
mistake bound of

min h p m + ~ p + 2 c ~ p + ~ / a ((n - k) l n k + k) + 21n2

in 2

(n - k) l n k + k

258 GOLDMAN AND WARMUTH

: min {kprn + 3C~p + 2V/Ct((n - k) l n k + k) + (n - k) l g k + k l g e }

for our first algorithm, where the minimum is taken over all partitions p of size at most
with noise at most c~, and kp denotes the size and c~p the noise of partition p.

For the above tuning we needed an upper bound for both the size and the noise of the
partition. If an upper bound for only one of the two is known, then the standard doubling
trick can be used to guess the other. This causes only a slight increase in the mistake
bound (see Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth (1993)).
Note that in the above mistake bound there is a subtle tradeoff between the noise Ctp and
size kp of a partition p.

Recall that when this first algorithm is applied in the noise-free case that it essentially
matches the information-theoretic lower bound. An interesting question is whether or
not it can be shown to be essentially optimal in the case of learning non-pure relations.

As we show in the next section (Theorem 3), when using the second algorithm for
[earning non-pure relations, our algorithm makes at most

{ h p m 13mn21gk+4c~pmn (1- -~n) +mni24cm (1- -~n) lnk min ~ +

mistakes in the worst case, where the minimum is taken over all partitions p, and kp
denotes the size and C~p the noise of partition p where kp < k and C~p _< c~.

5. Algorithm Two: A Polynomial-time Algorithm

In this section we analyze our second algorithm, Learn-Relation, when applied to learning
non-pure relations. (Recall that Learn-Relation is shown in Figure 3.) The mistake bound
of Theorem 2 obtained for this algorithm is larger than the mistake bound of the first
algorithm. However this algorithm uses only (~) weights as opposed to exponentially
many.

We begin by giving an update that is equivalent to the one used in W M G (Littlestone
& Warmuth, 1989). Recall that in W M G if x is the prediction of an input with weight w,
then i f the feedback is the bit p then w is multiplied by 1 - (1 - / 3)] x - pl for/3 E [0, 1).
I f /3 = 3,/(2 - ~,), then for our application the update of WMG can be summarized as
follows

• If a node predicts correctly (so,]x - pl = 0) its weight is not changed.

• If a node makes a prediction of 1/2 then its weight is multiplied by 1/(2 - 3,).

• If a node predicts incorrectly (so,]x - Pt = 1) then its weight is multiplied by
~/(2 - ~).

L E A R N I N G B I N A R Y R E L A T I O N S 259

In the new update all factors in the above algorithm are simply multiplied by (2 - "y).
This update is used in our Algorithm Learn-Relation('y) since it leads to simpler proofs.
Because voting is performed by a weighted majority vote, the predictions made by the
two schemes are identical. In order to use the analysis technique of Littlestone and
Warmuth we must obtain a lower bound for the final weight in the system. However,
using WMG the weight in the system is decreased by nodes that do not predict, and thus
we would have to compute an upper bound on the total number of times that this occurs.
Thus to simplify the analysis, we have modified the update scheme (i.e. at each step we
multiplied all weights by (2 - 3/)) so that the weights of nodes that do not predict remain
unchanged.

5.1. The Analysis

In this section we compute an upper bound on the number of mistakes made by Learn-
Relation. os ô~£

We begin with some preliminaries. Ler fzx = -~~ , fyy = °~I õ-Uv' and fzy = . A
function f : N --+ ~ is concave (respectively convex) over an interval D of N if for
all x E D, fxx(x) <_ 0 (fxz(X) > 0). In our analysis we repeatedly use the following
variants of Jensen's inequality. Ler f be a function from ~ to N that is concave over
some interval D of N. Let q E JV', and let x l , x 2 , . . ,Xq E D. Then

q q

xi = U ~ E f (x i) <_ qf (U/q) .
i = 1 i = 1

Furthermore, if f is monotonically increasing over the interval D then the following
holds:

q q

x i < U » E f (x i) < q f (U / q) .
i = 1 i = 1

Likewise, let f be a function from N to ~ that is convex over some interval D of ~.
Let q E .A/, and let x l , x 2 , . . X q E D. Then

q q

x~ = U ~ E f (x i) > qf (U/q) .
i = 1 i = 1

We also use Jensen's inequality when applied to a function over two variables. A
function f : ~ x ~ ~ N is concave over an interval Dx x Dy of N x ~ if for all x E D:~

and y E Dy, fxz < 0, fyv _< 0, and fxxfyy - (f~y)2 >_ O. Let f be a function from
× N to ~ that is concave over some interval Dx × D u of N x N. Let q E N', and let

x l ,x2 , . . ,Xq c Dz and Yl,Y2, . . ,Yq E Dy. Then

q

i = 1

q q

= Uz and ~ Yi = Uy ~ ~ f (x i , Yi) <- qf (Uz/q , Uy/q).
i = 1 i = 1

260 GOLDMAN AND WARiVIUTH

We now give an overview of the proof of our main result along with several key
lemmas that are used in the proof. Let p be any partition of size kp and noise c~p. We
note that the partition p is fixed throughout the analysis. Furthermore quantities such
as g, Fi, ~~ (defined below) depend implicitly on p. Let # denote the total number of
mistakes made by the learner, and let #i denote the number of mistakes that occur when

kp
the learner is predicting an entry in a row of cluster i. (Thus, ~ i = l #i = #-) Let ni be

kp
the number of rows in cluster i. (So n = ~ i = l nj.) Let A be all (~) edges and the set
g contain all edges connecting two rows of the same cluster. We further decompose g
into g l , . . - , gkp where gi contains all edges connecting two rows in the same cluster i

n~(n~-l) When making an erroneous prediction for M~j, we of p. Observe tha t /gd = 2 •
define the force of the mistake to be the number of rows in the same cluster as row r
for which column j was known when the mistake occurred. Ler Fi be the sum of the
forces of all mistakes made when predicting an entry in a row of cluster i.

Recall that the noise of a partition p is defined as

O~p

m

d(S~) = E E min{Af°(S~)'N'l(S~)} =
S i Cp S ~ Cp J= 1

~ ~ kp

i=1 j = l i=1

We now define Ji to be the number of times that a weight in gi is multiplied by 3"
when making a prediction for an entry in cluster i. That is, Ji is the total number of
times, over all trials in the learning session in which a mistake occurs, where an entry in
cluster i incorrectly predicts the value of an entry in cluster i (voting with all its weight).

We now give the key lemma used in our main proof. For ease of exposition, let

2 and b = l g (2 - ' ~ ' ~ = a = lg(2 - 3`) = lg l--4-fi l g~ .
\ ' Y 2

LEMMA 2 For each i < i < kp,

1 Fi = b j i + - ~-~"

eE/~

Proof: We begin by noting that, if C~p = 0, then J~ = 0 and the number of times some
weight in gi is multiplied by (2 - 7) equals Fi. Thus, in the noise-free case, it follows
that (2 - 7) Fz = [IeeE, w(e). When C~p > 0, then Fi is the number of times some weight
in gi is multiplied by either (2 - 3') or 7. Since the number of times some weight in gi
is multiplied by 3' is Ji we have that

= H ~(~).
eßg~

Taking logarithms of both sides we obtain the stated result. []

Note that if ni = 1 then Ji = Igi[= Ei = 0. The proof of our main theorem uses
Lemma 2 as its starting point. We first obtain (Lemma 4) a lower bound for F~ that

LEARNING BINARY RELATIONS 261

depends on the total number of mistakes, #i, made by our algorithm when making a
prediction for an entry in cluster i. Next we must determine the maximum amount by
which the "noisy" entries of the submatrix S i cause the weights in gi to be "weakened"
(i.e. multiplied by "7) instead of being "strengthened" (i.e. multiplied by (2 - "7)) as
desired. In Lemma 5 we show how Ji can be upper bounded in terms of 6i, the noise
within cluster i. Finally in Lemma 7 we obtain an upper bound for the sum of the
logarithms of the weights. We do this by observing that the total weight in the system
never increases and then use the convexity of the logarithm function. The proof of
our main theorem essentially combines all the lemmas and uses an additional convexity
argument for combining the contributions from all clusters.

We now obtain a lower bound for Fi. In order to obtain this lower bound, it is crucial
to first obtain an upper bound on the number of mistakes for a given cluster and given
force. This quantity characterizes the rate at which the weighted-majority nodes are
gaining information.

LEMMA 3 For each cluster r and force f there are at most m mistakes of force f .

Proof: We use a proof by contradiction. Suppose that for cluster i the learner makes
m + 1 force f mistakes. Then there must be two mistakes that occur for the same
column. Suppose the first of these mistakes occurs when predicting Mrj and the second
occurs when predicting M « j where both rows r and r ' are in cluster i. However,
after making a force f mistake when predicting Mr j that entry is known and thus the
force of the M « j mistake taust be at least f + 1 giving the desired contradiction.

We now compute a lower bound for the force of the mistakes made when predicting
entries in cluster i.

L E M M A 4 For any 1 < i < kp,

F i > m a x # i - m , 2m 2 "

Proof: We proceed by showing that both expressions above are lower bounds for Fi.
Ler {x) ~ denote a sequence containing the symbol x repeated m times. Let ~ri denote
the sum of the first #i elements of the sequence (0)~(1)~(2) ~ . . -. From Lemma 3 it
follows that Fi _> cri. Thus, clearly our first lower bound

Fi > #i - m

follows since all but m mistakes have force at least one.
We now compute a more sophisticated lower bound on cri. Ler s(x) z = ~~:~ k =

z(~+l) Using the structure illustrated in Figure 5 it is easily seen that
2 "

F{ > m s([~] -1)- (m[~]-#O (U~] -I)

262 GOLDMAN AND WARMUTH

0 0 0 - . . 0

1 1 1 --- 1

[1-2 .-- [1-2

[~ I - I ... [~I-1 I

• t

Figure 5. FirSt/zi elements of the sequence (0) m {1) m (2) m

= ([- - ~ 1 - 1) (# i - 2 [- - ~])

P~ #4 (1 - d)dm
- +

2m 2 2
> #2 #i

- 2 m 2 '

where d = I ~] - ~m and the last inequality follows from the observation that 0 _< d < 1.
This completes the proof of the lemma. •

Observe that the simple linear bound is a better lower bound only for m < #i < 2m.
Next, we capture the relationship between Ji and the noise within cluster i of the

partition to obtain an upper bound for Ji.

LEMMA 5 For 1 < i < kp,

Ji < 6~ni 52
770,"

Proof: For ease of exposition, we assume that for each cluster i and column j , the
majority of the entries in S~, are 1. Thus 6~,j is exactly the number of 0's in Sj. Observe

that for every known 0 entry in @, the quantity Ji is increased by one whenever the

learner makes a prediction error when predicting the value of an entry in S} that is a 1.

Thus, in the worst case, each of the 6i,j entries in S~ that are 0 could cause Ji to be

incremented for each of the n~ - 5i,j entries in S~ that are 1. Thus,

J~ < E 6i,i (ni - ~i,i) = 6ini - 5 ? - - 7 . , , 3 •

j=l j=l

L E A R N I N G B I N A R Y R E L A T I O N S 263

m V Since x 2 is convex, it follows that Ej=I 52~,3" -- > ~ " This completes the proof of the
lemma. •

Next we obtain an upper bound on the sum of the logarithms of the weights of a set
of edges from .4. A key observation used to prove this upper bound is that the overall
weight in the system never increases. Therefore, since the initial weight in the system
is n(n - 1)/2 we obtain the following lemma.

LEMMA 6 Throughout the learning session for any `4~ C .4,

E w(e) < n(n- 1____~)
- 2

e E . A '

Proof: In trials where no mistake occurs the total weight of all edges ~~e , a w(e)
clearly does not increase. Assume that a mistake occurs in the current trial. Ignore
all weights that are not updated. Of the remaining total weight W that participates in
the update let c be the fraction that was placed on the correct bit and 1 - c be the
fraction placed on the incorrect bit. The weight placed on the correct bit is multiplied
by 2 - 3' and the weight placed on the incorrect bit by 3". Thus the total weight of all
edges that participated in the update is (c(2 - 3") + (1 - c)~/)W at the end of the trial.
Since the latter is increasing in c and c < 1/2 whenever a mistake occurs, we have

2-~ ~) W = W that the total of all weights updated in the current trial is at most (- 7 - + "y
at the end of the trial. We conclude that the total weight of all edges also does not
increase in trials where a mistakes occurs. Finally since A I C `4, the result follows.

LEMMA 7 Throughout the learning session for any `4i C_ `4,

tgw(e) _< IA'llg 21A'------~
eEA'

Proof- This result immediately follows from Lemma 6 and the concavity of the 10g
function. •

We are now ready to prove our main result.

THEOREM 2 For all/3 E [0, 1), Algorithm Learn-Relation when using the parameter
28

7 = T ~ makes at most

T-~~) lg 3rnn21gkp+2C~p(mn-ap)lg-~
min kpm + min ~ lg e +

- - -"2" - ~ 2 lg ~ lg

mistakes in learning a binary-relation where the outside minimum is taken over all
partitions p, and kp denotes the size and ap the noise of partition p.

264 G O L D M A N A N D W A R M U T H

Proof: Let p be any partition of size kp and noise O~p. We begin by noting that for any
m cluster i and column j in partition p, (Si,j <_ nil2 and thus (5i = ~ j = l ~i,j _< nim/2.

Let $1 = {i I n~ = 1}, and Sz = {i I n~ _> 2}. Clearly the total number of mistakes, #,
can be expressed as

= Z P i + ~ # i .
iES1 iES2

Recall that in Lemma 4 we showed that F.i > #i - m. Observe that if ni = 1 then
Fi = 0, and thus it follows that ~iEs~ #i <_ ISltm. As shown below, ~ i e s 2 #i is
bounded from above by a function of the form IS2[m + x where x is some positive
quantity. Thus

iES1 iES2

Since it is easily seen that the value of x is maximized when IS2t = n, we will assume
throughout the remainder of this section that ni > 2 for all i.

As we have discussed, the base of our proof is provided by Lemma 2. We then apply
Lemmas 4, 5 and 7 to obtain an upper bound on the number of mistakes made by
Learn-Relation.

We now proceed independently with the two lower bounds for Fi given in Lemma 4.
Applying Lemma 2 with the first lower bound for Fi given in Lemma 4, summing over
the clusters in p, and solving for # yields,

kp b kp
= ~ . i <_]~pm + -- Z a

i = 1 i = 1

From Lemma 5 we know that

the function n~i - ~ is concave.
kp

~ i = l ~i = C~p, we obtain:

kp 2 O~p
J~ < nc~p

i = l - - k p m

+ i Z l g (2)
a

eEg

67 ~
Ji ~ ~iTZi -- N ~ ~in -- -m" I t i s easily v e r i f i e d t h a t

Thus, combining Jensen's inequality with the fact that

- (3)

In addition, by applying Lemma 7 with .A t = g we obtai~ at:

n(n - I) Zlg ()_<ICllg 2qE--7--
eE£

Next observe that the function z lg ~ is concave and obtains its maximum value at

,~(~-i). Thus we obtain that X - - 2e

Eeilg ~(n - i) < n(n- i) Ige
21g ~ - 2--e-" (4)

LEARNING BINARY RELATIONS 265

Finally by combining Inequalities (2), (3), and (4) we obtain that:

#<kpm+ b (a pPm) n(n-1) lge b (a ß) n21ge
- n - + - - < k v m + - n + - - - - - a a P 2a e - a a P - 2 a e

proving our first bound on #.
We now proceed by combining Lemma 2 with the more sophisticated second lower

bound for Fi given in Lemma 4 to obtain:

#i

2m 2 - a eE£i

Next we apply Lemma 7 with ..4' = £i to obtain:

n(n - 1)
E lgw(e) < IC~llg 2lgi ~
eE£~

Applying this above inequality, the inequality ~ _< v/-ä + v/b, and Inequality (5)
yields

m /2bmji 2m E m 2
#i -< ~ - + V - ä - + a ¢~c, l g w (e) +

-< -2 + «~ + Ir~l lg 21«~----5- +

~ ~ / 1igel lg n(n - 1) _< ~ + Ji + ~ 2bc~---7-

Ne×t we apply Lomma 5 and the fact that I&l = ~~(~~ - i) / 2 ___ ~~/2, aod theù ~um
over the kp clusters in p to obtain:

[.t < kprr~ + ~irt i -- 6i + n i lg
- - v a / = 1 ~ 2-b

n (n - 1)
~{(~{ - 1)

¢ 67 n? n(n--1) As shown in the appcndix, the function f(~i, n~) = 5ini - -~ + ~-~ lg ~~(n~-l) is
kp kp concavefor ni_> 2 and 5~ < nim/2. Since ~ i = l n i = n and ~~=16i = ap, wccan

thus apply Jensen's inequality to obtain:

< k~~+~~V~ v ~ + ~~

= G m + v - - ä - P a n - G (6)

266 GOLDMAN AND WARMUTH

Observe that n >_ kp, and furthermore if n = kp then at most n m mistakes can
occur and the upper bound of the theorem trivially holds. Thus without limiting the
applicability of our result we can assume that n >_ kp + 1 which in turn implies that
n-1 < kp. Thus we can further simplify Inequality (6) to obtain: n-kp - -

~/ 3 2 2bm OLp
< k p m + ä m n lg k p + a e e p (n - - ~)

I 1
3ran z lg kp + 2 a p (m n - ap) lg

= kpm + lg 2
1+/3

thus giving us our second bound on #.
The above analysis was performed for any partition p E P. Thus taking the minimum

over all partitions in P we get the desired result. •

As when applying the weighted majority algorithm to a noise-free setting, notice that
we obtain the best performance by selecting 3' = 0 (respectively/3 = 0). Thus we obtain
the following corollary for the case of learning pure relations.

COROLLARY 1 For the case o f learning pure relations where C~p = c~ = O, the algorithm
Learn-Relation with 7 = 0 learns a pure k-binary-relation making at most

~~+min{~l~~~~}
mistakes in the worst-case.

We now apply the results of Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and
Warmuth (1993) to tune/3 for the more general case in which the relation is not pure.

THEOREM 3 For any positive integers k and c~, Algorithm Learn-Relation when using
23 / 3ran 2 In k 7 = ~-4--~' where/3 = 9(z) and z = V 2 ~ _ - - ~) , makes at most 7

mistakes, where the minimum is taken over all partitions p whose size kp is at most k
and whose noise c~p is at most a.

Before proving the theorem, we give a graphical example to help provide a feel for
how this function grows, and we look at its application to a special case. In Figure 6 we
plot the mistake bound given in Theorem 3 for the special case in which m = n = 1000
and /~p = k = 50. We look at how the given mistake bound grows as ap = c~ ranges
from 0 to 10,000 (so up to 10% of the entries are noisy). It is important to remember
that the given plot shows the provable upper bound on the number of mistakes made by

L E A R N I N G B I N A R Y R E L A T I O N S 267

325000

300000

275000

250000

225000

200000

, , , , i , , , , i , , , , i , , , , i , , , , I

2000 4000 6000 8000 i0000

Figure 6. This figure provides a graphical example for the mistake bound of Theorem 3. We have plotted
o~ = a p on the x-axis , and the value of our upper bound on the mistakes is on the y-axis . In this plot
m = n = 1000 and k = kp = 50. Observe that there are 1 , 0 0 0 , 0 0 0 predictions made, and when there is
no noise (i.e. c~ = 0) our upper bound on the mistakes is 180, 121.

Learn-Relation (over the 1 ,000,000 predictions) - - t h e actual number of mistakes could
be lower.

Before proving the theorem, we look at one special case. If partition p is such that
ap = n, then the number of mistakes is at most

kpm + 13mn2 lg k + 4ran 2 + mn2 2~/-~]--~.

Proof of Theo rem 3: From Theorem 2 we know that for all/3 C [0, 1), our algorithm

makesatmostmin{kpm+~/3mn21gkp+2c~p(mn-~~)lg} } lg ~ mistakes where the mini-

mum is taken over all partitions p and h p denotes the size and c~p the noise of partition
p.

Assume that the partition p has the property that kp _< k and C~p _< c~. Observe

(l n {) / (2 1 n l + - ~) > t for /3 ~ [0,1). Furthermore, since 2 c ~ p (m n - c @ < that

2ce(mn - ce) for C~p < a < ~-~, it follows that

3ran 2 lg k + 2c~p(mn - o9) lg -~

ig 2
I+~

268 GOLDMAN AND WARMUTH

3mn21nk +4c~p(mn-c~p)+4c~(mn-c~) (ln~)
- - 2 1 < 2 2 In 1+/3 in I+Z

: - \ - - + -

V/ 3mn 2 In k where z = 2~(~-~)" So by applying Lemma 1 with and /3 = g(z) we obtain the

worst-case mistake bound s given in the theorem. •

In addition to presenting their algorithm to make at most k m + nv/(k - 1)m mistakes,
Goldman, Rivest, and Schapire (1989) present an information-theoretic lower bound for
a class of algorithms that they call row-filter algorithms. They say that an algorithm A
is a row-filter algorithm if A makes its prediction for Mrj strictly as a function of j and
all entries in the set of rows consistent with row r and defined in column j. For this
class of algorithms they show a lower bound to f~(nvZm) for m > n on the number of
mistakes that any algorithm must make. Recently, William Chen (1991) has extended
their proof to obtain a lower bound of f ~ (n ~) for m > n lg k. Observe that Learn-
Relation is not a row-filter algorithm since the weights stored on the edges between the
rows allows it to use the outcome of previous predictions to aid in its prediction for
the current trial. Nevertheless, a simple modification of the projective geometry lower
bound of Goldman, Rivest, and Schapire (1989) can be used to show an f~(nv/--m)
lower bound for m > n on the number of prediction mistakes by our algorithm. Chen's
extension of the projective geometry argument to incorporate k does not extend in such a
straightforward manner; however, we conjecture that his lower bound can be generalized
to prove that the mistake-bound we obtained for Learn-Relation is asymptotically tight.
Thus to obtain a better algorithm, more than pairwise information between rows may be
needed in making predictions.

6. Concluding Remarks

We have demonstrated that a weighted majority voting algorithm can be used to learn a
binary relation even when there is noise present. Our first algorithm uses exponentially
many weights. In the noise-free case this algorithm is essentially optimal. We believe
that by proving lower bounds for the noisy case (possibly using the techniques developed
by Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth (1993)) one can
show that the tuned version of the first algorithm (Theorem 1) is close to optimal in the
more general case as well.

The focus of our paper is the analysis of our second algorithm that uses a polynomial
number of weights and thus can make predictions in polynomial time. In this algorithm
a number of copies of our algorithm divide the problem among themselves and learn the
relation cooperatively.

It is surprising that the parallel application of on-line algorithms using multiplicative
weight updates can be used to do some non-trivial clustering with provable perfor-

LEARNING BINARY RELATIONS 269

mance (Theorem 3). Are there other applications where the clustering capability can be
exploited? For the problem of learning binary relations the mistake bound of the poly-
nomial algorithm (second algorithm) which uses (2) weights is still far away from the
mistake bound of the exponential algorithm (first algorithm) which uses U'/k! weights.
There seems to be a tradeoff between efficiency (number of weights) and the quality of
the mistake bound. One of the most fascinating open problem regarding this research
is the following: Is it possible to significantly improve our mistake bound (for either
learning pure or non-pure relations) by using say O(n 3) weights? Or can one prove,
based on some reasonable complexity theoretic or cryptographic assumptions, that no
polynomial-time algorithm can perform significantly better than our second algorithm?

Aeknowledgments

We thank William Chen and David Helmbold for pointing out flaws in earlier versions
of this paper. We also thank the anonymous referees for their comments.

Appendix

{ 67 n? n(n--1) We now demonstrate that the function f(6i, n~) = 6ini - -~ + -~ß lg ~~(n~-]) is con-

cave for ni _> 2 and 6~ <_ nim/2.
For ease of exposition we let x = 6i and y = ni. We taust now show that fzz _< 0,

fyy <_ O, and fxz fyy - (fxy) 2 >_ O.
It is easily verified that:

_ _ n(n - 1)
f== (f (x ,y))3 + ~ lg y (y ~ _< O.

It can also be verified that fyy can be expressed such that the denominator of fyy is

16b2(ln 2)2 (y _ 1)2(f (x , y))3,

and the numerator is

f~y = - 4 y 3 (y - 1) - y 2 - 4 b 2 x 2 (l n 2) 2 (y - 1) 2 -

(~ (4 y 2 - 7~ + 2) - ± (6 y 2 - 10y + 3)~ - 4bx ln 2
\ m / n(n-l)(2y2(2y2 i) 8bln) l n y (y 1) - 4 y + + m 2 Z 2 (Y - 1)2 "

It is easily shown that 2y 2 - 4y + 1 > 0 for y > 2. Observe that y(4y 2 - 7y + 2) -
~ (6 y 2 - 10y + 3) > 0 when

f ~~2 _ 7y + 2 2:
- m \ 6 y 2 l O y + 3 / "

|

270 GOLDMAN AND W A R M U T H

Furthermore, for y >_ 2

@2 _ 7y + 2 4 1
> - > -

6y 2 - 1 0 y + 3 - 7 2

and thus it suffices to have x _< y m / 2 which is the case.
Finally, it can be verified that f x x f y y - (fxy)2 is

n(r~--l) (Q. 2) y2 4y(y - 1) + 1 + b m In 2 + 2bray In 2(y - 2) + 2 in ~(-N-sTy_~) ,_y - 4y + 1)
>_0

16b 2 (In 2) 2 (y - 1)2re(f (x, y))4

for y _ > 2.

T h i s c o m p l e t e s t h e p r o o f t h a t f (x , y) is c o n c a v e o v e r t he d e s i r e d i n t e r v a l .

Notes

1. The adversary, who tries to maximize the learner's mistakes, knows the learner's algorithm and has unlimited
computing power.

2. The halving algorithm is described in more detail in Section 2.

3, Throughout this paper we let lg denote the base 2 logarithm and In the natural logarithm. Euler's constant
is denoted by e.

4. The same result holds if one performs the updates after each trial.

5. A version of this second algorithm is described in detail in Figure 3. For the sake of simplicity it is
parameterized by an update the factor 3' = 2~ / (1 + ~) instead of/3. See Section 5 for a discussion of
this algorithm called Learn-Relation(7).

6. We can obtain a bound of half of (1) by either letting the algorithm predict probabilistically in {0, 1}
or deterministically in the interval [0, 1] (Cesa-Bianchi, Freund, Helmbold, Haussler & Schapire 1993;
Kivinen & Warmuth, 1994). In the case of probabilistic predictions this quantity is an upper bound for
the expected number of mistakes. And in the case of deterministic predictions in [0, 1], this quantity is
an upper bound on the loss of the algorithm (where the loss is just the sum over all trials of the absolute
difference between the prediction and the correct value).

7. Recall that 9(z) = 1 1 + 2 z + 2 ~ 2 and 9(ee) = 0.

8. Again, we can obtain improvements of a factor of 2 by either letting the algorithm predict probabilistically
in {0, 1} or deterministically in the interval [0, 1] (Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire &
Warmuth, 1993; Kivinen & Warmuth, 1994).

References

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2(4): pp. 319-342.
Barzdin, J. & Freivald, R. (1972). On the prediction of general recursive functions. Soviet Mathematics

Doklady, 13: pp. 1224-1228.
Cesa-Bianchi, N., Freund, Y., Helmbold, D., Haussler, D., Schapire, R. & Warmuth, M. (1993). How to

use expert advice. Proceedings of the Twenty Fifth Annual ACM Symposium on Theory of Computing, pp.
382-391.

Chert, W. (1992). Personal communication.
Goldman, S., Rivest, R. & Schapire, R. (1993). Learning binary relations and total orders. SIAM Journal of

Computing, 22(5): pp. 1006-1034.

LEARNING BINARY RELATIONS 271

Kivinen, J. & and Warmuth, M. (1994) Using Experts for Predicting Continuous Outcomes. Computational
Learning Theory: Eurocolt "93 pp. 109-120, Oxford University Press, Oxford, ISBN 0-19-853492-2.

Littlestone, N. (1988) Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine
Learning, 2(4): pp. 285-318.

Littlestone, N. (1989) Mistake Bounds and Logarithmic Linear-threshold Learning algorithms. PhD thesis, U.
C. Santa Cruz.

Littlestone, N., Long, P. & Warmuth, M. (1991) On-line learning of linear functions. Proceedings of the
Twenty Third Annual ACM Symposium on Theory of Computing, pp. 465-475. To appear in Journal oJ
Computational Complexiß'.

Littlestone, N. & Warmuth, M. (1994) The weighted majority algorithm. Information and Computation, 108(2):
pp. 212-261.

Vovk, V. (1990) Aggregating strategies. Proceedings of the Third Annual Workshop on Computational Learning
Theory, pp. 371-383. Morgan Kaufmann.

Received January 17, 1994
Accepted November 15, 1994

Final Manuscript January 25, 1995

