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Abstract. An incremental categorization algorithm is described which, at each step, assigns the next instance 
to the most probable category. Probabilities are estimated by a Bayesian inference scheme which assumes that 
instances are partitioned into categories and that within categories features are displayed independently and prob- 
abilistically. This algorithm can be shown to be an optimization of an ideal Bayesian algorithm in which predic- 
tive accuracy is traded for computational efficiency. The algorithm can deliver predictions about any dimension 
of a category and does not treat specially the prediction of category labels. The algorithm has successfully modeled 
much of the empirical literature on human categorization. This paper describes its application to a number of 
data sets from the machine learning literature. The algorithm performs reasonably well, having its onty serious 
difficulty because the assumption of independent features is not always satisfied. Bayesian extensions to deal with 
nonindependent features are described and evaluated. 
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1. I n t r o d u c t i o n  

We have been engaged in a project  to unders tand  h u m a n  categorization which has led us 

to develop a machine  learning algori thm. Our  research began as an explorat ion of the issue 
of whether  h u m a n  categorization can  be considered optimal .  We were interested in this 
both as a phi losophical  issue and as a practical means  for predict ing h u m a n  behavior. As 
to the phi losophical  score, i f  human  categorizat ion can be shown to be opt imal  this would 
be further evidence for the view that human  cogni t ion  in general  is strongly adapted to 

its environment .  As a practical  matter, if  optimal,  one can predict  human  categorization 
by investigating what  is opt imal  in a par t icular  categorization situation, thus bypassing the 
tradit ional  path of  proposing specific cognit ive mechan i sms  and all the murky  issues of 
identif iabil i ty that come with a mechanis t ic  approach (Anderson ,  1990). 

To pursue the issue of whether  human  cognit ion is optimal requires specifying two things. 

First ,  we need a defini t ion of optimality. Second,  we need a specif icat ion of the structure 
of the env i ronment  so we can de termine  what  behavior  is opt imal  in that envi ronment .  
These are the first two issues that we will  address in this paper. 

1.1. Preliminary definition of optimization 

Our  assumpt ion  has been  that the goal of  categorization is to predict  unknown  features 
of various objects that we encounter .  For  instance, when  one sees a creature on a oath 
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one would like to predict whether it is dangerous or not. One can gain accuracy in predic- 
tion of certain features by identifying the category (e.g., tiger) from which the object comes. 
Optimal prediction behavior is behavior that achieves a maximal tradeoff between accuracy 
of prediction and cost of computing the prediction. It is clear we need this trade-off. An 
exquisitely accurate estimate of the danger of this object would do no good if it took hours 
to compute. It is the constraint of minimizing computation that leads to a concern with 
the efficiency of the algorithm for computing the prediction. 

Thus, there are the issues of how to measure accuracy, computational cost, and how to 
combine them. With respect to accuracy, we have adopted in this paper the goal of minimizing 
absolute error. In the case of predicting discrete features, this comes down to predicting 
the most probable value. In the case of predicting features with continuous normal distribu- 
tions, this comes down to predicting the mean value. In terms of a Bayesian decision 
framework (e.g., DeGroot, 1970), one might not always want to minimize accuracy in terms 
of absolute error. For instance, one might not always want to predict the most probable 
discrete value. A possible example of this is treating an animal as dangerous even if it is 
more likely friendly because the cost of misclassifying a dangerous animal as friendly is 
greater than the cost of misclassifying a friendly animal as dangerous. However, since we 
do not have such complex utility metrics available in our applications, we have opted for 
minimizing absolute error. 

With respect to computational cost we have chosen to focus on minimizing time. This 
ignores potentially relevant considerations such as space but time is generally viewed as 
a more precious commodity in the human case. It is also the case that the steps we will 
take to minimize time will also substantially reduce storage costs. Minimizing time is a 
somewhat underspecified goal and will require further statement of the constraint under 
which the minimization takes place. We will develop these later in the paper. 

To have a precise definition of optimization, we need a rule for combining error and 
time to come up with a total cost. Assuming each unit of time has a cost a and each unit 
of error has a cost b, the total cost should be cast as a weighted sum of time and error-- 
i.e., a function of the form aT + bE where T is time and E is absolute error. Before we 
can more precisely specify time or error, we need to discuss the structure of the environment. 

1.2. The structure of the environment 

Our theory of the structure of the environment has been focused on the structure of living 
things (arguably, the largest portion of the objects in the world) because of the aid biology 
gives in objectively specifying the organization of these objects. In particular the theory 
developed rests on the structure of living objects produced by the phenomenon of species. 
Species form a nearly disjoint partitioning of the living things because of the inability to 
interbreed between species. Within a species there is a common genetic pool which means 
that individual members of the species will display particular feature values with probabilities 
that reflect the proportion of that phenotype in the population. Another useful feature of 
species structure is that the display of features within a freely-interbreeding species is largely 
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independent. For instance, there is little relationship between size and color in freely- 
interbreeding species where those two dimensions vary. Thus, the critical aspects of 
speciation is the disjoint partitioning of the object set and the independent probabilistic 
display of features within a species. 

An interesting question is whether other types of objects display these same properties. 
The other common type of object is the artifact. Artifacts approximate a disjoint partition- 
ing but there are occasional exceptions--for instance, mobile homes which are both homes 
and vehicles. Other types of objects (stones, geological formations, heavenly bodies, etc.) 
seem to approximate a disjoint partitioning but here it is hard to know whether this is just 
a matter of our perceptions or whether there is any objective sense in which they do. One 
can use the understanding of speciation for living creatures and understanding of the in- 
tended function in manufacture in the case of artifacts to objectively test the hypothesis 
of disjoint partitioning. 

In the case of our psychological applications we try to argue that this characterization 
of the universe is approximately correct for most domains humans face. However, in the 
context of a machine learning paper we rather take the stance that we are describing a 
learning algorithm which is optimal in the case that these assumptions about the structure 
of the domain are satisfied. Certainly, there will be domains (real or made-up) where 
categories exist that violate the assumption of independent display of features. It is also 
the case that there will be relationships among features that cannot be captured by a dis- 
joint partitioning. So, for instance, what happens to an object when it is thrown is to be 
predicted by the physics of the throwing and not by its category membership. As with all 
learning algorithms, the current one works for certain domains. In our case we start w l~  
a specification of what these domains are. 

One thing to stress about this characterization of the universe is that it sees nothing special 
about category labels. Category labels are just another feature one might want to predict 
about an object. There is nothing logically different about predicting an object is called 
a tiger than predicting it is dangerous. Because of the arbitrariness of labels and their large 
possible number, one cannot have strong priors about what an object will be called in con- 
trast to some dimensions. As we will see this means that category labels are distinguished 
from some other dimensions in terms of the parameters of their treatment but it does not 
mean that they are logically any different. 

2. Algorithms for prediction 

Recall that we want an algorithm that minimizes a weighted sum of time and error. We 
wilt start with what we call the ideal algorithm which produces an absolute minimum in 
error. Then we will describe an incremental algorithm which locally trades off accuracy 
in prediction for computation time. Finally, we will describe what we call a radical in- 
cremental algorithm which is the extreme of the iterative algorithm which is achieved by 
placing a very large premium on minimizing computational time. This last is the algorithm 
that was used to obtain most of the results reported in this paper. 
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2.L The ideal algorithm 

Given this specification of the goal of categorization and the structure of the environment 
we can proceed to sketch the ideal prediction algorithm if computational considerations 
were not an issue. This would be to consider all the different ways the objects seen so 
far could be broken up into categories, determine the probability of each such partitioning, 
and use this to weight the probability that the object will display a particular feature if 
that were the partition. Formally, this amounts to calculating: 

gi(.ylFn) = ~ P(xlFn)f(y[x) (0) 
X 

where gi(y[Fn) is the function specifying the probability an object will display a value 
y on a dimension i given F n the observed feature structure of all the objects. The sum- 
mation is across all possible partitionings x of the n objects into disjoint sets, P(xlFn) 
is the probability of partitioning x given the objects display feature structure F n, and 
fi(YlX) is the function giving the probability the object in question would display value 
y on dimension i if x were the partition. Anderson (1990) describes a Bayesian scheme 
for estimating P(x[Fn) and f](y[x) such that equation (0) can be used to estimate the true 
posterior distribution of gi (Y[Fn). Given the information of the distribution gi (ylFn), One 
can then select a value of y that will minimize expected absolute error. However, the scheme 
described in Anderson (1990) is not of  much interest because the cost of calculating equa- 
tion (0) is unacceptably high. The problem with this algorithm is that the number of parti- 
tions of n objects grows exponentially as the Bell exponential number (Berge, 1971). Thus, 
the computational cost grows exponentially with the number of objects to be classified. 

There is another aspect of  this algorithm which is unacceptable for its intended applica- 
tions. This is that it does not make commitment to any specific hypothesis about the 
categorical structure of the experienced objects. This contradicts our common experience 
of seeing objects as belonging to a specific category and is in conflict with the goal of 
most machine learning programs for categorization which are also trying to come up with 
a specific categorization. 

2.2. Incremental algorithms 

At the other extreme from this ideal algorithm are the radical incremental algorithms such 
as those of Fisher (1987) and Lebowitz (1987). Rather than maintaining all possible parti- 
tionings of the object set just a single partitioning is maintained. When a new object comes 
in, different extensions of that partitioning are considered to accommodate that object. 
One extension is selected as best by some criterion and becomes the new partitioning. 
This will be the kind of algorithm that we will use but it is hard to see directly how such 
an algorithm relates to the optimality criterion that we sketched out earlier. However, 
c)ne can see under what assumptions these algorithms might be ideal if one first considers 
a class of incremental algorithms which are intermediate between the ideal algorithm and 
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these radical incremental algorithms. Rather than keeping all partitions or just one, these 
algorithms maintain some number of partitionings, constantly pruning away partitions which 
are judged not to be worth their computational cost. 

Consider a system which is looking at a set of partitions and is considering whether it 
is worth deleting one of its partitions. This judgment should be made by comparing the 
cost of keeping the partition with the contribution of the partition to the overall accuracy 
of prediction. The cost of a partition is linearly related to the number of categories in the 
partition. Therefore, the system should delete the partition from the set when 

n .ccos t  > L 

where n is the number of categories in the partition, ccost is the cost per category, and 
L is the loss in accuracy of prediction. The parameter ccost would be defined as aT/b 
where a is the weighting of time, b the weighting of accuracy, and T the time per category. 
Thus, it reflects the ratio of the cost of processing a category to the cost associated with 
a unit loss in accuracy. 

Let us assume that the loss, L, is proportionate to the reduction in the accuracy of the 
prediction caused by removal of partition t. With the partition in, the prediction is given 
by equation (0). When we remove the partition t the prediction becomes: 

gi,(ylFn) = x* ,  
1 - P ( tJF. )  

The loss in accuracy can be shown to be 

L = g i ( Y [ F n )  - g i ' ( Y ] F n )  -- P ( t l F n )  ( f i ( y [ t )  - g i ( Y [ F n ) )  
1 - P ( t t V . )  

The value of gi(y]t) - g'(y]Fn) will depend on the object and feature being predicted. 
In choosing to delete a partition, one typically does not know what predictions one will 
be asked to make. Indeed, one is really interested in an expected value of L over all predic- 
tions weighted by the probability of having to make that prediction. It hardly seems 
reasonable to make all these calculations before deleting a partition for the purpose of making 
these calculations more efficient. Therefore, it seems reasonable to replace fi(Ytt) - 
gi(ylFn) by a single value which is a measure of how tar off the prediction for a partition 
is an average from the true value. Replacing this by a constant pcost gives us the following 
criterion for deleting a partition: 

n'cost > P(tLF.) 
1 - P(tlF,,) 

where cost = ccost/pcost. Thus, it reflects the cost of processing a category, relative to 
the cost of the average deviation in prediction. This is a criterion which tends to reject 
low probability partitions with many categories. 
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One can then replace the idea/ algorithm with the following iterative algorithm. 

1. Before seeing any objects, the set of category partitionings has a single partitioning 
and this is the partitioning that contains the empty set of no categories. 

2. Given a set of partitionings for the first n - 1 objects, a set of  partitionirlgs for the 
first n objects is created as follows: 
(a) For partitionings with m categories, create m + 1 new partitionings, each formed 

by assigning the new object to a different category or by assigning the new object 
to its own category. 

(b) Calculate for each resulting partitioning x, the probability P(x]Fn). 
3. Filter these partitionings as follows: 

(a) Find a partitioning t with the largest value of 

P(tlF.) 
n ' c o s t  - -  

1 - e(t]Fn) 

and delete it if that value is positive 
(b) Recalculate the probabilities by the formula: P ' (x]F , )  = P(xlFn)/1 - P(t]Fn). 
(c) Go back to step (a) as long as there are partitionings to delete. 

4. To predict value y on an unobserved dimension i for the nth object with feature struc- 
ture F~ use equation (0) with the remaining partitionings. 

This essentially describes a beam search in which the algorithm chooses to expand the 
most probable branches. Each expansion to accommodate a new object is optimal by the 
criterion given. However, as is true of beam search, this local optimality brings no guarantee 
of global optimality. That is to say, it is possible that some of the branches that are pruned 
off would have grown to become the most probable interpretations. 

Of course, one cannot pursue all possible partitionings to insure against the danger of 
missing global optima by maximizing local criteria. The probability that a branch will prove 
to be a global optima is related to its local probability. Thus, we have already built into 
our pruning criterion a measure of how likely a partitioning is to prove a global optima. 
One can view this as part of the pcost associated with deleting a partitioning. 

2.3. A radical incremental algorithm 

If  cost is set to 1 or greater in the pruning criterion, then the incremental algorithm will 
reject all but the most probable partitionJ Thus, by setting cost to 1, we turn the general 
incremental algorithm into a radical one that considers only single partitioning at a time. 
This is an algorithm that places a high premium on accuracy relative to time--that the 
gain in prediction from including an extra partition is not worth the cost associated with 
processing even one category in that partition. The radical iterative algorithm can be im- 
plemented more simply because there is only one partitioning at a time. 
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1. Before seeing any objects, the category partitioning of the objects is initialized to be 
the empty set of no categories. 

2. Given a partitioning of the first n - 1 objects into categories, calculate for each category 
k the probability P(klF) that the nth object comes from category k given that the object 
has features E Let P(OIF) be the probability that the object comes from a completely 
new category. 

3. Create a partitioning of the n objects with the nth object assigned to the category with 
maximum probability. 

4. To predict value y on an unobserved dimension i for the nth object with observed features 
F calculate 

gi(y[F) = "~ P(klF) f(y[k) (1) 
k 

where P(klF) is the probability the nth object comes from category k andj~(ylk) is the 
probability of an object from category k displaying value y on dimension i. 

The basic algorithm is one in which the category structure is grown by assigning each 
incoming object to the category it is most likely to come from. Thus, a specific partition- 
ing of the objects is produced. Note, however, that the prediction for the new nth object 
is not calculated by determining its most likely category and the probability of y given 
that category. This calculation is performed over all categories. This gives a much more 
accurate approximation to the ideal gi(.Y]Fn) because it handles situations where the new 
object is ambiguous between multiple categories. It will give approximately equal weight 
to these competing categories. Note also equation (1) calculates a probability distribution 
although for most purposes we will be predicting a single value from that distribution. 
The full distribution is available should it be needed for some application. 

This algorithm has the property that if the partitioning of the first n - 1 objects is the 
true partitioning, the partitioning of the first n objects will be the maximum likelihood 
partitioning and the partitioning that will minimize squared error. However, neither 
guarantee is true for the partitionings assigned after further objects. Of course, the goal 
of the algorithm is not to identify the maximum likelihood partitioning but the partitioning 
that will yield the closest approximation to the predictions of the ideal algorithm. This 
is frequently not the maximum likelihood partitioning but usually one of considerably greater 
than average probability. In the fourth section of this paper, we will consider the conse- 
quences of choosing one high probability partitioning rather than another. 

3. Probability calculations 

It remains to come up with formula for calculating P(klF) and f(ylk) in equation (1). 
Since f(y[k) turns out to be involved in the definition of P(kIF), we will start with 
P(klF). In Bayesian terminology P(klF) is a posterior probability that the object belongs 
to category k given that it has feature structure F. Bayes' formula can be used to express 
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this in terms of a prior probability P (k) of coming from category k before the feature structure 
is inspected and a conditional probability P(F[k) of displaying the feature structure F given 
that it comes from category k. 

P(klF) = P(k)P(FIk) (2) 

~ P(j)P(FIj) 
J 

where the summation in the denominator is over all the categories j currently in the parti- 
tioning and a potential new one. This then focuses our analysis on the derivation of a prior 
probability P(k) and a conditional probability P(FIk). 

3.1. Prior probability 

With respect to prior probabilities, the critical assumption is that there is a fixed probability 
c that two objects come from the same category and this probability does not depend on 
the number of objects seen so far or  the position of these objects in the sequence. This 
is called the coupling probability. If  one takes this assumption about the coupling probability 
between two objects being independent of the other objects and generalizes it, one can 
derive a simple form for P(k) (See Anderson, 1990, for the derivation): 

P(k) = cn~ (3) 
(l - c )  + cn 

where c is the coupling probability, nk is the number  of objects assigned to category k so 
far, and n is the total number  of objects seen so far. Note for large n this closely approx- 
imates nk/n which means that we have a strong base rate effect in these calculations with 
a bias to put new objects into large categories. Presumably the rational basis for this is 
apparent. 

We also need a formula for P(0) which is the probability that the new object comes from 
an entirely new category. This is 

P(0) = (1 - c) (4) 
(1 - c )  + cn 

For large n this closely approximates (1 - c)/cn which is again a reasonable form-- i .e . ,  
the probability of  a new category depends on the coupling probability and number of  ob- 
jects seen. The greater the coupling probability and the more  objects, the less likely it 
is that the new object comes from a new category. 

3.2. Conditional probability 

Within a category we will consider the probability of  displaying features on various dimen- 
sions to be independent of  the probabilities on other dimensions. Then we can write 
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P(FIk) = I I  f~(y[k) (5) 
i 

The reader will recognize f(y[k)  from equation (1) which is the probability of display- 
ing value y on dimension i for an object which comes from category k. The independence 
assumption in equation (5) is reasonably justified for freely interbreeding species. It is 
less clear how well justified it is for other categories. 

This independence assumption does not prevent us from recognizing categories with 
correlated features. Thus, we may know that being black and retrieving sticks are highly 
correlated for Labradors. This would be represented by high probabilities of the stick- 
retrieving and the black features in the Labrador category. 2 What the independence assump- 
tion prevents us from doing is representing categories where values on two dimensions 
are either both one way or both the opposite. Thus, it would prevent us from recognizing 
a single category of animals which were either large and fierce or small and gentle, for 
instance. The algorithm would create two categories in the face of such a structure. 

The effect of equation (5) is to focus us down on an analysis of the individual f (ylk) .  
Derivation of this quantity is itself an exercise in Bayesian analysis. A special case deriva- 
tion for a discrete dimension is described in Anderson (1990). Here we will describe a 
more general derivation. We will indicate the major mathematical steps in this derivation 
for the discrete case to show how the Bayesian analysis works. We will not give the 
mathematical detail for the derivation of the continuous case which is more complex. There 
we will just state the final result. 

3.3. Discrete dimensions 

It is assumed that there is some prior probability density for the probabilities pj of display- 
ing value j. Note E pj = 1. The typical prior density for this is the Dirichlet density 
(Berger, 1985): 

fD(P~, P2, " ' ' ,  Pml~Xl, 0~2, ' ' ' ,  O~m) = ~(~0) f l  pT~-i (6) 

f i  r(~j)  j=~ 
j= !  

where o~ 0 = Z o~j and the gamma function, I', is defined as in Beyer (1987). 3 In this 
distribution the mean expected value for pj is @c~0. 

The next step in a Bayesian analysis is to specify the conditional probability of the ob- 
served distribution of values on dimension i given a set of probabilities pj. Let cl, c2, 
. . . .  Cm be frequency counts for the number of objects showing each of the m values on 
dimension i. What we have observed is n multinomial trials corresponding to the objects 
and the probability of this sequence is described by 
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fM(Cl, C2, "" " ,  Cm]pl,  P2, "" ", Pro) = CLC2""  "Cm j = l  (7) 

What we next need to do is to calculate the posterior distribution of the pj given the ob- 
served cj. This is calculated by the standard Bayesian formula for posterior densities: 

f(Pl,P2 . . . . .  pmlCl,  C2, " ' ' ,  Cm) : 

fM(Cl , C2 . . . . .  Cm] Pl ,  P2 . . . .  ,Prn) f l g ( P l ,  P2 . . . . .  Pm[al ,  c~2, " " " ,°~m) 

(" {'JolJo I-pI '"JoI-Pl-'-Pm--fM(CI,C2(' 2 . . . . .  Cm]Pl,P2 . . . .  ~Ptn)fD(PDP2 . . . . .  PrnlOll,O~2 . . . . .  °~m)dPl ,dp2 . . .dPm-I  

= f o ( P l ,  P2 . . . .  ,Pml~l + el ,  0~2 + c2 . . . . .  °~m + Cm) ( 8 )  

The posterior distribution of probabilities is also a Dirichlet distribution but with parameters 
c~j + cj (Berger, 1985). 4 This implies that the mean expected value of  displaying value 
j on dimension i is (~j + cj)/Zj(c~j + cj). This isj~(j[k) for equation (5): 

f ( j l k )  = cj + c 9 (9) 
l~lk .+ O~ 0 

where nk is the number of objects in category k which have a value on dimension i and 
cj is the number of objects in category k with the same value as the object to be classified. 
For large nk this approximates c /n~  which one frequently sees promoted as the rational 
probability. However, it has to have this more complicated form to deal with problems of 
small samples. For instance, if  one has just seen one object in a category and it has had 
the color red, one would not want to guess that all objects are red. I f  there were seven 
colors equally probable on prior grounds and the c~j were 1, the above formula would give 
1/4 as the posterior probability of red and 1/8 for the other six colors unseen as yet. It 
is an interesting question how to set the ~j. In most cases there is no basis entertaining 
a strong belief as to possible values of these parameters. There are a number of conven- 
tions in the Bayesian literature for setting non-informative priors in such cases. In this paper, 
we have chosen to set the ~j at 1.0 which is probably the most commonly practiced con- 
vention (see Berger, 1985; Lee, 1989). The one exception in the paper concerns category 
labels. Here we have set c~j to be equal but at a much lower value of .01 to reflect the very 
large number  of  possible labels and very weak prior basis for believing any would be used. 
Setting of c~j = 1.0 means our priors are given the same weighting as a single observation 
while setting aj = .01 means our priors are given 1/100 the weighting of an empirical 
observation. 

3.4. Continuous dimensions 

Below we will briefly state what is probably the most useful Bayesian analysis for con- 
tinuous distributions (for details, see Lee, 1989). The natural assumption is that the variable 
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is distributed normally and the induction problem is to infer the mean and variance of that 
distribution. In standard Bayesian inference methodology, we must begin with some prior 
assumptions about what the mean and variance of  this distribution is. It is unreasonable 
to suppose we can know in advance precisely what either the mean and variance will be. 
Our prior knowledge must take the form of probability densities over possible means and 
variances. This is basically the same idea as in the discrete case where we had a Dirichlet 
distribution giving priors about probabilities of various values. The major  complication 
is the need to separately state prior distributions for mean and variance. 

One suggestion for the prior distributions is that the variance ~2 is distributed accord- 
ing to an inverse chi-square distribution or more  specifically, 

~,2 ~ aocr~ X ~o~ 

where a02 reflects the mean prior variance and a 0 reflects the confidence in that prior var- 
iance. The obvious suggestion for the prior distribution of the mean, M, is that it has a 
normal distribution. One manifestation of this is the following assumption: 

M - N /z 0, 

where #0 is the prior mean and ~0 reflects confidence in this prior. 
Given these prior distributions, the probability of displaying value y on dimension i in 

category k, after n observations, has the following t distribution: 

f(ylk) = tai(l~i, f f ix /1 + 1/~,i) (10)  

where a i are the degrees of  freedom, /z i is the mean,  and aicri2(1 + 1 / X i ) / ( a  i - 2) is the 
variance. The parameters ai ,  izi, ¢ri, and X i are defined as follows: 

Xi = X0 + n (11) 

a i = a o + n (12) 

/~i ~--- )k0/z0 -[- f / f  (13)  
X 0 + n  

Xon 
a/~ = a0a02 + (n - 1)s 2 + X0 + n (#o - 37) 2 (14) 

a 0 + n  

where 37 is the mean of the n observations and S 2 is the variance. These equations basic- 
ally provide us with a formula for merging the prior mean and variance,/zo and a 02, with 
the empirical mean and variance, 37 and s 2, in a manner that is weighted by our confidences 
in these priors, Xo and a0. 

As with the case of discrete dimensions there arises the issue of how to set the parameters 
of  the model. We have used the following reasonable conventions for setting noninformative 
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priors (see Berger, 1985; Lee, 1989). We set the prior means of the continuous distribu-- 
tions to be the halfway point of the range of all instances and we set the prior variance 
so that it was equal to the square of a quarter of the range. We set the strengths of belief 
in the prior mean and variance, a0 and X0, to both be 1. This setting means that we weight 
our priors as much as we would one empirical observation. 

Equation 10 for the continuous case describes a probability density in contrast to equa- 
tion (9) for the discrete case which gives a probability. The product of conditional prob- 
abilities in equation (5) can then be a mixture of probabilities and density values. Basic- 
ally, equations (5), (9) and (10) give us a basis for judging how similar an object is to the 
category's central tendency. 

4. Properties of the algorithm 

Before looking at the application of this algorithm to other data sets, it is worthwhile to 
consider some of its important properties and their potential consequences. Before doing 
that it is worthwhile to have an example of the algorithm applying to a data set. 

4.1. Illustration of the algorithm 

The first experiment in Medin and Schaffer (1978) is a nice one for illustrating the detailed 
calculations of the algorithm. They had subjects study the following six instances each with 
binary features: 

1 1 1 1 1  
1 0 1 0 1  
0 1 0 1 1  
0 0 0 0 0  
0 1 0 0 0  
1 0 1 1 0  

The first four binary values were choices in visual dimensions of size, shape, color, and 
number. The fifth dimension reflects the category label. They then presented these 6 ob- 
jects without their category label plus six new objects also without a label: 011L_, ll0k__._, 
11t0___, 1000__, 0010__, and 0001__. Subjects were to predict the missing category label. 
The two advantages of the Medin and Schaffer data set are that the number of objects is 
relatively small and so we can do exhaustive analyses and that there is experimental data 
on humans against which we can compare our algorithm. It is also representative of the 
kinds of materials used in psychological experiments. 

We derived simulations of this experiment by running the program across various ran- 
dom orderings of the stimuli and averaging the results. Figure 1 shows one simulation run 
where we used the order 11111, 10101, 10110, 00000, 01011, 01000 and had the coupl-. 
ing probability c = .5 (see equations (3) and (4)) and set all % = 1 (see equation (9)). 5 
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Figure 1. An illustration of the operation of the iterative algorithm in the material from the first experiment of 
Medin and Schaffer (1978). 

What is illustrated in figure 1 is the search behavior of the algorithm as it considers 
various possible partitionings. The numbers associated with each partition are measures 
of how probable the new item is given the category to which it is assigned in that partition. 
These are the values P(k)P(FIk) calculated by equations (3) through (9). Thus, we start 
out with categorizing 11111 in the only possible way--that is, assigning it to its own category. 
The probability of this is the prior probability of a 1 on each dimension or (.5) 5 = .0313. 
Then we consider the two ways to expand this to include 10101 and choose the categoriza- 
tion that has both objects in the same category because that is more likely. Each new object 
is incorporated by considering the possible extensions of the best partition so far. We end 
up choosing the partition {11111, 10101, 10110}, {00000, 01000}, {01011} which has 
three categories. Note the systems' categorization does not respect the categorization of 
Medin and Schaffer. The Medin and Schaffer categorization does not maximize the overall 

. probability of the examples given our parameter values. 
Having come up with a particular categorization, we then tested the algorithm by present- 

ing it with the 12 test stimuli and assessing the probabilities it would assign to the two 
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possible values for the fifth dimension which is the label. Figure 2 relates our algorithm 
to their data. Plotted along the abscissa are the 12 test stimuli of  Medin and Schaffer in 
their rank order determined by subjects' confidence that the category label was a t. The 
~rdinate is the algorithm's probability that the missing value was a 1, Figure 2 illustrates 
three functions for different ranges of  the coupling probability. The best rank order cor- 
relation was gotten for coupling probabilities in the range .2 to .3, In Anderson (1990, 1991) 
we consistently get best fits to human data setting c = .3. This setting of the coupling 
probability seems rather high, We suspect it is as high as it is to reflect a bias to assign 
aew objects to existing categories to avoid the computational expense associated with a 
large number of categories. 

The reader will note that the actual probabilities of category labels estimated by the model 
in figure 2 only deviate weakly above and below .5, This reflects the very poor category 
structure of  these objects. With better structured material much higher prediction prob- 
abilities are obtained as we will see in the applications to follow. 

4.2. Order sensitivity 

As noted earlier, the algorithm is order sensitive in terms of what partition it will select. 
This shows up more  strongly in cases of  relatively unclear category structure such as the 
Medin and Schaffer material. There are 720 permutations of their six training stimuli and 
203 possible partitionings. We ran the radical incremental algorithm over all 720 orders 

60 

55 
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45 
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c=7 -  ~ r= ,43  

c=  2 -  3 r=87  

c = .4 ~ 5 {" ~ 66  
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0 1 0 ~ 0 1 0 1 1 0 0 
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Figure 2. Estimated probability of category 1 for the 16 stimuli in the first experiment of Medin and Schaffer 
(1978). Different functions are for different ranges of the coupling probability. 
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using the parameter settings of C = .50 and aj = 1. Depending on the permutations, the 
incremental algorithm came up with one of the following partitionings: 

A. (10101, 10110, 11111) (01011, 00000, 01000) 
B. (01011) (00000, 01000) (10101, 10110, 11111) 
C. (11111, 01011) (00000, 01000) (10101, 10110) 

Partitioning A is the most probable (.046) and is selected for 61% of the presentation orders; 
B is the second most probable (.041) and is selected 22% of the time; C is eleventh most 
probable (.019) and is selected 6% of the time. By way of comparison, a partitioning that 
merges all items into one category is eighth most probable (.020), one that splits them 
up into six categories is 36th most probable (.008), and the absurd partitionings (11111, 
00000), (01000, 10101), (10110, 01011) and (11111, 00000), (01000, 10110), (10101, 
01010) are tied for least probable with a probability of .00008. 

As this example illustrates, the algorithm tends to uncover the more probable partition- 
ings. The question of interest is how well does the algorithm do in prediction relative to 
the ideal prediction. We compared predictions for the 12 stimuli in figure 1 using six bases: 
the predictions of the ideal quantity which can be computed since there are only 203 parti- 
tions for 6 stimuli, the predictions from each of the three chosen partitions (A-C), predic- 
tion from one of the worst partitions, and the average prediction obtained by weighting 
each of the three partitions by the frequency with which it is chosen. 2~ble 1 presents the 
correlations among all these quantities. 

These results show that each of the selected partitions correlates reasonably highly with 
the ideal and that the worst partitions do not correlate well. Interestingly, the most prob- 
able does not have the highest correlation with the ideal. This is because it represents less 
than 5 % of the probability. This situation frequently arises in which there are multiple 
reasonable partitionings and little basis for selecting among them. The model will do well 
in prediction if it selects any of these. 

Thus, it is our conclusion that the order sensitivity of this algorithm is not a problem 
with respect to its stated goal which is maximizing predictive accuracy while minimizing 
computational cost. We are not bothered by the fact that there is not always a dearly most 
probable interpretation nor that we fail to always select the most probable partitioning. 
This could be distressing if one's goal were to find the best interpretation of the data as 
is the case with some categorization programs. However, this is not our goal. 

Table I. Correlations among the various basis for predicting the stimuli for Figure 2. 

Ideal A B C Worst 

Partition A .89 X X X X 
Partition B .89 .49 X X X 
Partition C .98 ,81 .86 X X 
Worst .00 ,00 .00 .00 X 
Average ,96 ,92 .78 .96 .00 
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4.3. Computational performance 

The computational time is proportional to the number of categories (p), number of dimen- 
sions per category (m), and number of instances (n). Thus, the time to process n instances 
is proportional to n × m × p. This is the minimum computational function for an algorithm 
that is going to relate each feature of each object to each category. 6 The major cost is in 
calculating fi (ylk) which assigns a probability to a feature-category correspondence. By 
replacing the t distribution (equation (10)) by the more easily calculated normal approx- 
imation we are able to reduce computation time by a factor of at least 3. 

4.4. Bias in estimation 

One of the consequences of maintaining only a single partitioning is that one's categories 
and predictions can become biased towards extreme values. A simple case to see this is 
the following: Suppose the instances come from two categories and only have one feature, 
a continuous dimension. Both categories have normally distributed values with variances 
1. One category has mean 0 and the other mean 2. Then, because it only keeps the max- 
imum likelihood interpretation, our algorithm is going to assign all instances with values 
less than 1 to one category and greater than 1 to another category. This will lead to a sys- 
tematic bias in the mean of the two distributions (to - .17 and 2.17) and reduction in their 
variances (to .64) because of the systematic misclassification of all observations close to 
mean of the other distribution. 

However, it does not seem that this has significant consequences. It is a strange situation 
to be classifying stimuli that only have a single dimension. This situation can not have 
any predictive consequence since prediction involves using the values on some dimensions 
to predict the values on other dimensions. The simplest case where this bias might have 
some effect on prediction is where there are two dimensions and one can use a value on 
one dimension to predict another. 

We explored the situation where there were two categories each with two dimensions. 
The values for two dimensions for one category had means 0 and variances 1 while for 
the other category they had means 2 and variances 1. To see asymptotic performance, we 
exposed our algorithm to a mixture of 10,000 randomly general instances from each category. 
Then we tested it with another 10,000 instances from each category with the first value 
present and the second to be predicted. 

About 99% of the instances were sorted to be one of two categories with a few odd-ball 
instances finding their ways to other categories. The means and variances of the two major 
categories were somewhat biased but not as much as in the one dimensional case. The 
means were biased .05 rather than .17 in the one-dimensional case and the variances were 
reduced to .85 rather than .64. Then we explored the consequences for prediction. Figure 
3 shows the predictions of the algorithm for various values in the other dimension and 
compare these values to the true values. It can be seen that the amount of overestimation 
or underestimation is less than .10. 

As more dimensions are added, the tendency to misclassify instances will decrease fur- 
ther and the resulting bias in prediction will decrease further yet. Thus, while this is a 
problem in principle we do not regard it as a problem in practice. 
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Figure 3. Bias in prediction because of misclassification of two-dimensional stimuli, 

5. Psychological modeling 

We have enjoyed great success in applying this algorithm to the psychological data and 
have successfully reproduced every major empirical trend that we have noted. These appli- 
cations are reviewed in detail in Anderson (1990) and Anderson (1991). Here we will just 
briefly overview the major empirical trends that we have captured. 

Our algorithm makes categorization a function of the distance of an instance from the 
central tendency of the category just as human subjects do. This holds both for categories 
defined by discrete dimensions where distance is measured by number of non-majority 
features an instance displays and for categories defined by continuous dimensions where 
the measure is Euclidean distance from the mean. In addition to sensitivity to central tenden- 
cy, human subjects and our model are sensitive to the existence of individual instances 
or clusters of instances different from the overall central tendency of a category. Both sub- 
jects and the model will more reliably classify test instances close to these deviant instances 
than they do other instances equally distant from the overall central tendency. In the model 
this is because a separate category is grown to accommodate the deviant instances. 

The model often forms multiple internal categories to correspond to items that are assigned 
a single categorical label by an experimenter. This enables it to capture correlations that 
exist within an official category. The experiment by Medin, Altom, Edelson, and Freko 
(19-32) is a nice one for illustrating this. They had subjects study the 9 cases in table 2 
which were all supposed to represent instances from one disease category, burlosis. This 
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Table 2. Symptoms of burlosis (from Medin, et al. (1982)). 

Case Blood Skin Muscle Condition Weight 
Study Pressure Condition Condition of Eyes Condition 

1. R.L. 0 1 0 1 1 
2. L.F. 1 1 0 1 1 
3. J.J. 0 0 1 1 1 
4. R.M. 1 0 1 1 1 
5. A.M. 1 1 1 1 1 
6. J.S. 1 1 1 1 1 
7. S.T. 1 0 0 0 0 
8. S.E. 0 1 1 0 0 
9. E.M. 1 1 1 0 0 

(A 0 denotes absence of  the symptom and a 1 denotes presence.) 

was simulated by presenting these 9 cases to the model with a sixth dimension, a disease 
label which was always burlosis. This was arbitrarily treated as a binary dimension. Note 
that each of the five symptoms show a majority of ones associated with the disease. 

The critical feature of these materials from the perspective of correlated features con- 
cerns the fourth dimension of condition of eyes and the fifth dimension of weight. Values 
are either both 1 or both 0. The first six items in table 2 have two l's in these dimensions; 
the last three have two O's. The question is how should one go about representing such 
correlated features. When these stimuli were fed into the algorithm with c = .3, it typically 
extracted 3 categories--one to represent the first six items, one for the seventh, and one 
for the last two. Thus, the way it dealt with correlated discrete features was to break out 
separate categories for the different possible values of the correlation. It is not so easy 
to deal with correlated continuous features as we will see in some of the applications to 
be reported in this paper. 

There is more evidence that the model is correct in treating category labels as just another 
feature to be predicted rather than something intrinsically tied to category membership. 
Most experiments have looked at subjects trying to predict category labels given features, 
but recently Heit (1990) has looked at what happens when we have subjects predict other 
features as well. In his research he gives subjects various subsets of attributes associated 
with an item and asks them to predict other subsets. He finds nothing special about a category 
label whether it is a feature to be predicted or feature to predict from. Research has also 
been done looking at the effect of category labels during training. Some subjects are trained 
without the feedback of category labels and some subjects are given labels. Labels prove 
just to be another feature that can make the category structure apparent when it is corre- 
lated with the other features. Our model can simulate this array of results (Anderson, 1991). 

The model also is able to simulate the array of evidence showing sensitivity to statistical 
properties of the stimuli. It is influenced by the base rates of various categories such that 
it is more likely to assign a stimulus to a category with a higher base rate as subjects do. 
In situations where the categorization rule is probabilistic it will assign instances to categories 
with probabilities that match the objective probabilities as subjects do. When the instances 
it learns form a hierarchy of categories, it chooses as its categories those that optimize the 
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predictive structure of the stimuli. These are the basic-level categories which Rosch (e.g., 
Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) studied at great length. All of these 
phenomena are discussed in detail in Anderson (1990). 

6. Application to machine learning data sets 

In this section we will discuss the application of the algorithm to a number of standard 
data sets in the machine learning literature. 7 Our model does well sometimes and not so 
well other times. We will examine the characteristics of each data set to understand the 
pattern of the performance. This is in keeping with our intention, announced at the begin- 
ning of the paper, which is to understand the algorithm in terms of what domains it is op- 
timized to. We think the point has passed where it is informative to engage in horse races 
between learning algorithms. Different algorithms will work optimally given different data 
sets and it should be our first task to understand the characteristics of the domains to which 
the algorithms are adapted. If one wants to engage in competition among algorithms that 
should be done by arguing which domain characteristics are more typical of real problems. 

One can only understand the performance of our model by understanding the relation- 
ship between the domain characteristics it assumes and the characteristics of a particular 
data set. Thus, part of our effort in these analyses has been to come to a better understand- 
ing of the data sets to which we apply the model. We feel that one of the accomplishments 
of our applications is this deeper understanding of these data sets which have become part 
of the machine learning literature. 

In subsequent subsections we will give detailed discussions of our applications to various 
machine learning data sets. Table 3 is a summary, describing the size of the training set, 
size of the test set, number of attributes excluding category on which the objects varied, 
number of categories, and performance of the radical iterative algorithm in predicting 
category membership. While our algorithm is concerned with much more than predicting 
category membership, this is the performance measure used to evaluate most other algo- 
rithms. Throughout our performance measures are averaged over 10 randomized runs. 

Table 3. Summary of application to machine learning data sets. 

Training Test Set 
Size Size No. Attributes No. Classes Performance 

LED 50 50 7 10 74% 
Iris 75 75 4 3 91% 
Soybean 290 340 34 15 92 % 
Congressional Voting 217 218 16 2 95 % 
Breast Cancer 143 143 9 2 72% 
Waveform 100 100 21 3 78 % 

6.1. LED display domain 

One of the more straightforward data sets for illustration of the algorithm is that concerned 
with the classification of noisy LED displays (Breiman, Friedman, Olshen, & Stone, 1984). 
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The LED contains 7 light-emitting diodes for displaying digits. There are 3 vertical bars 
and 4 horizontal bars (see figure 4). Each diode is in one of two states, on or off. There 
is a 10% probability of having the value of any diode inverted. It turns out that the optimal 
classification rate for these stimuli is 74% since some test items can randomly be transformed 
into others. For instance, if one vertical bar is randomly turned off and another randomly 
turned on, a 2 can be transformed into a 3. Other classification programs (Quinlan, 1987; 
Tan & Eshelman, 1988) approach this theoretical maximum although they require more 
training trials than does our program. 

This is an ideal domain for illustrating our algorithm because the stimuli correspond 
precisely to the assumptions of our model. There are in fact 10 disjoint categories cor- 
responding to the 10 digits. Each category has 7 binary features which it displays pro- 
babilistically (p = .90). In training there is an eighth 10-valued feature present which is 
the category label. In test, the seven binary features are presented and the task is to predict 
the eighth. Since these were all discrete features we had to set the a parameters for equa- 
tion (9). These were set to 1.0 for the binary features and .01 for the 10-valued label dimen- 
sion in keeping with the policy discussed earlier for labels. We were able to achieve an 
optimal classification rate of 74 % with 50 training instances. Ten categories emerged which 
corresponded to the 10 external categories. 50 training instances (5 per category) was enough 
to reliably identify the majority value for all dimensions for all categories. The odds that 
all of the 70 dimensions (10 categories by 7 features) would be the majority value is about .8. 

So with little surprise our algorithm works optimally in this domain with respect to the 
classification task. However, it is worthwhile to look beyond the classification task. Recall 
that the algorithm is not especially designed to predict category labels. It is also intended 
to predict the other dimensions. Therefore, we explored how well this algorithm could do 
in predicting the values of any of the 7 binary dimensions given the values of the remaining 
dimensions. What we have calculated for current purposes is proportion errors. The results 

I 1 I 
2 3 
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Figure 4. The seven diodes for the LED display. 
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Table 4. Proportional error of prediction in the LED data base. 

Incremental Algorithm Majority Value Linear Regression 

Top Bar .08 .23 .15 
Top Left .09 .44 .20 
Top Right .07 .21 .18 
Middle .10 .30 .16 
Bottom Left .12 .39 .14 
Bottom Right .11 .17 .20 
Bottom .07 .28 . i3 

are shown in table 4. We have given a number of  possible different sets of  numbers. One 
is what is gotten with our categorization algorithm. A second is what is gotten with an 
algorithm which simply chooses the majority value over the instances. The third is what 
is gotten with a linear regression model that tries to predict one value by regressing it 
on the rest. The considerable improvement in fit represents what is gained by using the 
10 categories over just one (majority model) or linear regression. This improvement in 
prediction is the raison d'etre for the rational categorization algorithm. 

6.2. Iris data base 

We also applied the algorithm to the Iris data base described by Fisher (1936). Three species 
of  Iris, Iris setosa, Iris versicolor, and Iris virginica are described in terms of  four con- 
tinuous dimensions which are sepal length, sepal width, petal length, and petal width. 
There are 50 instances of  each type described. As it turns out this considerably under- 
represents the dimensional complexity of  irises which vary in other dimensions including 
color, shape, overall size, and texture of  the various parts. Still the data base has been 
used as a target for many classification efforts including the Autoclass program of 
Cheeseman, Kelly, Self, Stutz, Taylor and Freeman (1988) which is one of  the very few 
attempts that claims success in identifying all three of  the underlying categories. We will 
discuss this program later since it represents a Bayesian approach to classification. 

In attempting to apply our model to this data, we split the set randomly into a training 
set of  75 instances and a test set of  75 instances. Applying equations (10) through (14) 
to the continuous dimensions we set the parameters. X0 = 1, ao = 1, ~ to all the mean 
of  all 150, and ~ to the square of  one-quarter of  the range. Again, we set c~ = .01 for 
the one discrete dimension of  category membership. 

There are two ways to apply the model in training. One is to give it access to the category 
labels or, as is the more typical practice with this data set, only give the continuous dimen- 
sions and see how well the categories it induces correspond to the categories associated 
with the labels. Either way we took the categories formed during training and used these 
to predict the labels of  the 75 test instances. In the case where category labels were not 
present during training we nonetheless attached labels to the categories formed in propor- 
tion to their frequency during training. Thus, if a category was formed with 25 Iris versi- 
color and 10 Iris Virginica (as sometimes happened) at training we would credit the category 
with 25 counts of  one label and 10 counts of  the other for application of  equation (9). 
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With the guide of category labels the program was able to extract out the three categories. 
It classified correctly anywhere from 88 % to 98 % of the test instances depending on the 
randomization. The average classification performance (over 10 runs) was 91% .s It appears 
that an occasional iris from one category appears indiscriminable from irises from another 
category, perhaps reflecting the rather impoverished stimulus description. On the other 
hand, when trained without labels the algoritlma vacillated between identifying two categories 
or three depending on randomization. In the case of two categories there was always one 
category that corresponded to the Iris setosa, and another that corresponded to the two 
remaining species. In the case of three categories, there was again one that corresponded 
to the Iris setosa, one that included most or all of the Iris versicolor and some Iris virginica, 
and one that contained the larger Iris virginica. Using the categories without label feedback 
for prediction, the algorithm varies from 67 % correct to 90% in predicting category labels 
with an average of 75%. The three species varied in size of sepal length, petal length, and 
petal width with the Iris setosa being smallest and quite discriminable from the other two 
and the Iris virginica being slightly larger than the Iris versicolor. In fact, there is no con- 
sensus in the botanical world about whether Iris virginica and Iris versicolor should actually 
be considered separate species (Mathew, 1981). Interestingly, when we present human sub- 
jects with computer-drawn flowers that vary in just these four dimensions they tend to re- 
produce the behavior of this algorithm--that is, they either extract two categories merging 
the Iris versicolor and the Iris virginica or they produce a category containing the Iris ver- 
sicolor and about half of the virginica and a separate category for the other half of the 
larger virginica. 

From the perspective of our model, it is a rather unnatural task to pose to a system to 
ask it to be able to predict the labels of categories when it has had no training on these 
labels. The algorithm is forming categories in order to be able to extrapolate from experience 
on dimensions of old instances to possible values on those dimensions for new instances. 
Therefore, we decided to compare the performance of various versions of this program 
with respect to predicting the four continuously varying dimensions. We presented test in- 
stances with three of the dimensions present and looked at accuracy in predicting the fourth 
dimension. We looked at this for a number of cases--when three categories were formed 
with the use of category labels, when two or three categories were formed in the absence 
of category labels, when all the instances were merged into a single category, when separate 
categories were formed for each training instance (75 categories in all), and a linear regres- 
sion model. The results averaged over 10 runs in each case are displayed in table 5. 

Table 5. Mean-squared error in prediction for the iris data set. 

Incremental 
3 Perfect 2 or 3 Imperfect Just 1 75 Singleton Linear Algorithm with 

Categories Categories Category Categories Regression Correlation 

Sepal length .39 .39 .82 .79 .11 .11 
Sepal width .13 .15 .17 .16 .09 .08 
Petal length .2l .41 3.21 3.08 .09 .08 
Petal width .05 .10 .59 .56 .04 .04 
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The prediction is somewhat better given the perfect three-category structure than the 
imperfect categorization derived from the iterative algorithm. However, both are much better 
than just one or 75 categories. Interestingly, prediction based on any categorization is quite 
clearly outperformed by a linear regression model. The reason is that there are strong cor- 
relations among the three dimensions of sepal length, petal length, and petal width. The 
three categories just occupy three overlapping positions along what amounts to an overall 
dimension of size. If  one has two or three categories one is in position to estimate the overall 
linear relationship by extrapolating from the two or three points along the dimension (the 
problem with one category is we only have one point, and with 75 is that the points are 
not accurately measured). However, any attempt at categorization obscures the fact that 
this linear relationship exists as much within as between categories. Thus, a linear regres- 
sion model does best. 

The basic problem is that these dimensions are not independent. It is curious that we 
find nonindependence in a domain of living things since the structure of living things was 
used to motivate the independence assumption in the first place. The problem is that we 
are looking at dimensions which are all reflections of one underlying genetic trait which 
is size. Just as one would not be surprised by a correlation between length of the left arm 
and length of the right arm, one should not be surprised by these correlations. This points 
out an important constraint on the application of this model to the biological domain--the 
dimensions chosen have to reflect separate genetic traits. We will return at the end of this 
section to the issue of how to deal with such nonindependence within the framework of 
our algorithm. We report there an extension of our model. The data from this extension 
is in the last column of table 5. 

6.3. Soybean data base 

A data base that has become a classic for the testing of categorization programs is the soy- 
bean disease data base of Michalski and Chilausky (1980). This consists of 290 training 
instances and 340 test instances where the instances are descriptions of soybean diseases. 
There are some 15 disease categories and each instance is described by up to 35 attributes 
with potentially missing attributes. The best categorization applications (e.g., Michalski 
& Chilausky; Tan & Eshelman, 1988) result in approximately 95 % ability to predict the 
disease category of test instances from the underlying features. When we mn our categoriza- 
tion algorithm on this data base using c~ = .01 for category label, it fails to separate all 
the categories and only extracts 11 categories and gives 79% performance in the final 
classification cost. We need to set c~ = .0001 to reliably separate the categories. At this 
level it yields 92 % correct classification which is comparable to past programs. On the 
other hand there is no indication that it does any worse at predicting any of the other 35 
features with c~ = .01 than c~ --- .0001. Table 6 gives the performance of various methods 
on predicting the category label and the other features. We give separate statistics for the 
33 discrete dimensions (percent accuracy) and for the 2 interval dimensions (mean square 
error). Many of the discrete dimensions are pretty arbitrary which explains why the average 
statistics are quite low. It is worth noting that our model can sort through this noise to 
identify the disease categories given a sufficiently low value of c~ for category label. 
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Table 6 Accuracy of prediciton and mean-squared error for the soybean data set. 

11 Categories 15 Categories 
One Category 290 Categories with c~ = .01 with c~ = .0001 

Prediction of 
disease label 14% 82% 79% 92% 

Prediction 
of other 33 
discrete 
features 67 % 72 % 76 % 76 % 

Prediction 
of 2 interval 1.84 1.26 1.18 1.14 
features M.S.E. M.S.E. M.S.E. M.S.E. 

The performance of  the program when it is forced to merge all categories into one gives 
us a definition of  chance guessing performance. As can be seen, compared to this, the 
other three approaches perform quite well. The case where 290 categories are extracted 
represents an instance-based model which has been quite common in psychology (Medin 
& Schaffer, 1978; Nosofsky, 1988). Performance is not quite as good with instance-based 
prediction replicating results of  table 5. The problem is that one observation does not allow 
reliable statistics to emerge. Prediction of  the other discrete dimensions is not that much 
improved over the chance one-category level in any of  the multi-category conditions. This 
indicates that for this data base the category label is more predictable than any other 
dimension. 

6.4. Congressional voting 

Another data set that we have applied the algorithm to is the congressional voting records 
that have been used by Schlimmer (1987) and Fisher (1987). This data base consists of  
435 members of  Congress and their votes on 16 key uses in 1984. A typical use o f  this 
program has been to predict party membership from voting record. Schlimmer reports 
about 90% to 95 % success for his Stagger program. We applied our program to this using 
our split-half method of  having it learn on a random half of  the set and predict the other 
half. We compared the accuracy of  (a) an instance scheme that forced each member into 
its own class; (b) a scheme that formed exactly two classes corresponding to the parties; 
and (c) the standard incremental program free to form its own categories. As before we 
looked at prediction of  each attribute by the remainder. The incremental program averaged 
8 categories. There are two large categories recognizable as liberal Democrats and con- 
servative Republicans, two smaller categories recognizable as conservative Democrats and 
liberal Republicans, and smaller, more esoteric categories. Performance on predicting party 
affiliation is 91% using individual categories, 90 % using two categories, and 95 % using 
the incremental categories. Prediction of  the vote on the other 16 issues is 76% using in- 
dividual categories, 7 1% using two categories, and 77 % using the incremental categories. 
Thus, this is a set where the iterative model appears to fare quite well. Forcing all the 
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congressmen into their party categories misses predictable variance. On the other hand, 
keeping all the congressmen separate misses the opportunity to separate systematic trends 
from accidental. It is a bit of a curiosity that congressional voting patterns should corre- 
spond so well to the assumptions derived from a genetic model of species. 

6.5. Breast  cancer  

Another frequently used data set is a set of 286 cases of breast cancer 9 where the goal 
has been to predict recurrence of breast cancer given nine attributes which describe the 
characteristics of the patient, the original cancer, and the treatment. Typical applications 
(Michalski, Mozetic, Hong, & Lavrac, 1986; Clark & Niblett, 1987; Tan & Eshelman, 
1988; Cestnik, Konenenko & Bratko, 1987) have reported accuracies from 65 % to 73.5 % 
with Cestnik et al. getting 78%. Using the split-half methodology, we compared the per- 
formance of our algorithm when it extracted just one category, singleton categories for 
each individual, extracted a number of categories according to the iterative algorithm (it 
extracted on average 4.4 categories) and non-recurrence cases. Table 7 compares the per- 
formance of the algorithm under these various conditions. In each case these are the averages 
of 10 runs based on different random split halves. 

Chance level of performance in prediction of recurrence is 70 % as indicated by the ac- 
curacy in the one-category condition. This is gotten by predicting the majority outcome 
(no recurrence) all the time. The performance in the multiple-category conditions is only 
marginally better at 72 %. These numbers are also in the range of other applications which 
suggests that this is not a particularly predictable data set. We also looked at predictions 
of the other features. Except for the dimensions of age and menopause, all categorical struc- 
tures were performing at about chance level. There is an obvious correlation between age 
and menopause which is being partially identified in the case of singleton categories. This 
is another case where there is a correlation among dimensions that is not being captured 
by our independence assumption. 

The low level of performance of all algorithms in this data base compared to chance 
level (70%) suggests that this is not a particularly predictable domain. In fact, recurrence 
of breast is notoriously hard to predict. 

6.6. Waveform data base 

The final data set that we applied our algorithm to was the waveform data base (Breiman, 
Friedman, Olshen, & Stone, 1984). Three underlying waveforms were created as illustrated 
in figure 5. Each waveform is represented by 21 measurements. Three classes are generated 

Table 7. Accuracy of predictions for the breast cancer data set. 

One Singleton Incremental Two 
Category Categories Categories Categories 

Recurrence 70 % 72 % 72 % 72 % 
Age and menopause 39% 56% 40% 39% 
Other features 53 % 55 % 55 % 54% 
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Figure 5. The three underlying waveforms being mixed. 

as random mixtures of forms 1 and 2, forms 1 and 3, and forms 2 and 3. A random mixture 
of two waves is created by taking P% of the first wave and 100 - P% of the second where 
P is uniformly chosen from the interval 0 to 100. In addition a substantial random error 
is added to each of the 21 points so that the resulting pattern is quite noisy. Breiman, et 
al. report 72 % accuracy in classification for their CART algorithm and 78 % for a nearest 
neighbor algorithm. This is given 300 training instances. 

We trained the program on a random 100 of such stimuli and then tested it another ran- 
dom 100. Table 8 shows the performance of the algorithm in cases where we extracted 
just one category, where we extracted a separate category for each instance, where we allowed 
our iterative algorithm to run which extracted 2 to 5 categories per run (averaging 3), and 
where we forced all instances with the same category level into the same category. Com- 
pared to the chance level defined by the one-category condition, the other three conditions 
were all performing as well. With respect to predicting category label, the intervention 
of forcing the category structure to mirror the labels led to best performance. This is as 
it should be because in this case category label was a perfect indicator of underlying category 
membership. We get with 100 instances classification as good as Breiman et al. were able 

to get with 300 instances. 
Table 8 also reports performance at predicting the 21 points. We have aggregated sets 

of three adjacent points as well as reporting average error over all 21 points. Worse perfor- 
mance is obtained with using the three correct categories than using either singleton or 
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Table 8. Accuracy of prediction and mean square error for the waveform data set. 

One 100 Singleton Incremental Three-Perfect 
Category Categories Categories Categories 

Category Level 35% 69% 66% 78% 

Point Prediction: 
First three 1.49 1.64 1.42 1.42 
Second three 2.73 1.80 1.81 2.07 
Third three 3.37 1.80 1.85 2.28 
Fourth three 2.73 1.90 2~21 2.12 
Fifth three 3.50 1.81 1.95 2.37 
Sixth three 3.27 1.97 2.14 2.40 
Seventh three 1.47 1.71 1.39 1.36 

- -  

Overall error in 
point prediction 2.65 1.80 1.82 2.0l 

iterative categories.  This is because there are correlations among adjacent points of  a 
waveform that are not captured by the category averages. The singleton categories and 
iterative categories formed were able to reflect this. The problem is not that one applica- 
tion is better for predicting category labels and another for predicting points. The prob- 
lem is that the within-category independence assumption on which both models depend 

" is violated. 

6. 7. Extension to correlated dimensions 

In principle it is not that difficult to extend our Bayesian approach to include correlations 
among continuous dimensions and we have tried a couple of  applications using this exten- 
sion which involved one revision in our starting assumptions. 

The revision in our starting assumption is that, rather than assuming a pair of  continuous 
dimensions i a n d j  are independent, we assume the more general multivariate normal model 
which allows for a correlation rij between each pair  of  dimensions i a n d j .  One can essen- 
tially proceed as before except that one needs a basis for estimating rij. The basic solu- 
tion is to calculate an empirical  correlat ion be tween  two dimensions within a category 
and merge these with a pr ior  correlat ion to come up with a posterior correlation estimate. 
We use the approach recommended in Box and Tiao (1973) and Lee (1989) for combining 
the empirical  correlation r and the pr ior  ~r to get an estimated ~ according to the following 
formula: 

~" = tanh l n~ tanh- l  r + n2 tanh- l  ~r + n2 

where n 1 is the number of  observations going into the empirical  sample (i.e., the number 
of items in the category) and n2 is the strength of belief  in ~r. We felt, since correlations 
can vary from - 1  to +1, the obvious prior  to have in absence of any expectation was 
~r = 0 which is what we used. We also hold a considerable belief  that dimensions will 
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be independent and so we set n2 = 10. This means that it will take 10 empirical observa- 
tions before we will weight the empirical correlation as strongly as the prior. Also em- 
pirical correlations become non-trivial only when nl -> 3 and so f" was always 0.0 when 
category size was less than 3. 

With these specifications we then applied the algorithm to the Iris data base which is 
one case where there was considerable evidence for a correlation among dimensions. The 
iterative algorithm still extracts 2 or 3 categories which still tend to merge Iris versicolor 
and Iris virginica. Its performance in predicting the four continuous dimensions is reported 
in the last column of table 5. Perhaps not surprising, the rational algorithm is now doing 
as well as the multiple regression approach. 

However, there is not always improvement in cases where one might have expected it. 
We also applied this algorithm to the waveform data in table 8. Since neighboring points 
are correlated, one might have expected an improvement in prediction but none was observed 
over the iterative algorithm. This is because of the noise associated with the manifestation 
of any of the points. Apparently, the category structure identified by the iterative algorithm 
captured all of the predictable structure that could be captured. 

While this algorithm can lead to improved performance in some cases, it is not without 
a considerable computational cost. The amount of computation that is required to calculate 
the correlations and regression coefficient for m dimensions is on the order of m 3 (we have 
to process on the order o fa  m x m matrix to make predictions about each of the m dimen- 
sions). Moreover, these calculations are substantial. This makes the complexity of the overall 
algorithm on the order of n x m 3 × p compared to n x m x p for the original algorithm. 
The cost of the m 3 was particularly apparent when we applied it to the waveform data set 
with its 21 continuous dimensions. 

Thus, we do not believe this reflects a reasonable approach in full generality. Rather, 
we think people and the algorithm should be sensitive to correlations among a few select 
dimensions which possibly might be related to one another. It remains a future research 
issue how we might identify such candidate dimensions for correlational monitoring. 

7. Comparisons to other systems 

There are a good many learning systems that we might compare our system to. In doing 
this it is important to keep clear on what the goals of the systems are and what assumptions 
they make about the nature of the environment. It is a fair generalization to say that most 
systems take as their primary goal to produce a categorization of the object set. They are 
interested in prediction, if at all, as a side benefit of the categorization they produce. In 
contrast, our system is primarily concerned with prediction and only does categorization 
as a means to an end. 

7.1. Deterministic models 

The majority of machine learning systems (e.g., Aha, Kibler, & Albert, 1991; Clark & 
Niblett, 1989; Lebowitz, 1987; Michalski, Mozetic, Hong, & Lavrac, 1986; Quinlan, 1986; 
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Salzberg, 1991) take a fundamentally deterministic view of the environment in contrast to 
ours which is fundamentally probabilistic. This is seen in the frequent reference to dealing 
with "noise." A basic assumption in these systems is that there is a correct category assign- 
ment for a particular object description and if the data set contains objects identical in 
description but mapped to different categories, this is a sure sign of noise. Rather our view 
is that this is to be expected and all we can do is estimate a probability of a category label 
or any other feature. 

A natural assumption would be that our model would do better in domains fitting our 
assumptions while the other models would do better in domains fitting their assumptions. 
To see whether this was true, we created two artificial environments--one satisfying the 
deterministic assumptions and one satisfying the probabilistic assumptions. Both domains 
involved generating instances for four categories. The categories, in addition to a category 
label, had four continuous dimensions with values concentrated in the interval 0-4. 

In the case of the deterministic domain, two hyperrectangles were associated with each 
category. The hyperrectangles were generated by applying the following rule for each 
dimension: 

1. Choose a random width for the dimension uniformly between 0 and 2. 
2. Choose a random starting point for the dimension between 0 and 2. 

Thus, if .8 were selected in step 1 and 1.5 in step 2, the hyperrectangle would range from 
1.5 to 2.3 on that dimension. Since these hyperrectangles potentially overlapped, they were 
ordered from first hyperrectangle for first category to first hyperrectangle for last category 
and then second hyperrectangle for first category to second hyperrectangle for the last cate- 
gory. A point was judged to be in the category corresponding to the first hyperrectangle 
that included it in the ordering. In essence we had an ordered set of eight rules for classify- 
ing points. This was done to produce a complex but deterministic partition of the space. 
For training and test, 25 instances were generated randomly by selecting uniformly from 
each hyperrectangle. Since there were two hyperrectangles for each of four categories, there 
were 200 training and test instances. 

The probabilistic domain was created by associating two four-dimensional normal distribu- 
tions with each category. The mean of the distribution on each dimension was randomly 
selected on the interval 0-4 and the standard deviation on the interval 0-1. For study and 
test, 25 instances were randomly generated from each distribution and assigned to that 
category. Note that the same instance in principle could be generated from more than one 
category in contrast to the deterministic case. Since there were two distributions for each 
of the four categories, there were 200 training and test instances. 

We applied our algorithm to both of these domains and, as a representative of a deter- 
ministic algorithm, the NGE algorithm of Salzberg (1991). It was chosen both because it 
was tailor-made for this deterministic domain and because it was very simple to irnple- 
ment given the clear specifications of Salzberg. Our algorithm delivers a probability of 
each category. To make it correspond to NGE, we had it choose the most probable category. 
We ran 25 experimental runs of both algorithms in both domains. The results are reported 
in table 9. 
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Table 9. Comparison of the rational algorithm on Salzberg's NGE for two artificial domains. 

NGE Rational Algorithm 

Deterministic domain 93.5 % 88.6 % 91. ! % 
Random domain 81.1% 84.3 % 82.7% 

87.3% 86.5% 

An analysis of variance was run on these data. It revealed a significant effect of domain 
(E l ,  96 = 41.4; p < .001) no significant effect of algorithm (F~, 96 = .4 )  and a significant 
interaction between algorithm and domain (F1, 96 = 10.0;  p < .005). 

It is interesting that the larger effect is due to domain with both algorithms doing better 
in the deterministic domain. However, there is also evidence that these algorithms do bet- 
ter, relatively speaking, when the domain matches their assumptions. There is no guarantee 
that NGE is optimally tuned to the deterministic domain and we know the incremental 
Bayesian algorithm only yields an approximation to the ideal quantity (equation (0)). Still 
this exercise does illustrate the point about match between assumptions of the learning pro- 
gram and the domain. 

7.2. Comparisons to hierarchical models 

There are a number of models which try to retrieve a hierarchical organization of the in- 
stance set. Lebowitz (1987) and Fisher (1987) are interesting contrasts to our system because 
they also use incremental learning algorithms. Fisher's COBWEB is particularly close to 
ours because it is also trying to optimize a probability measure. COBWEB tries to find 
a categorization of the objects which will maximize the following quantity (taken from 
Gluck & Corter, 1985): 

k ~ y 

which has obvious similarities to equations (2) and (5) which determine our partitioning 
in that it emphasizes priors and conditional probabilities of the features. 1° Our model in 
effect replaces the summations by products and so does not need a squaring of the condi- 
tional probabilities to get non-linearity. The motivation for the COBWEB equation is largely 
intuitive but it will correlate highly in many cases with our metric. 

Being an incremental model, COBWEB faces the same problem as our model of finding 
the partition that maximizes the quantity without searching the whole space. In our case, 
it is not a serious matter whether we find a partitioning that optimizes our probability 
measure. What is critical is that we get a partitioning with predictions that closely approx- 
imate the true predictions computed over all partitionings. However, this is a serious prob- 
lem in COBWEB since its goal is to uncover a partitioning that will be informative in itself. 

COBWEB places objects in existing categories or creates new categories according to 
what will optimize its probability measure, just as does our model. However, it maintains 
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a hierarchical structure of these categories so it can consider merging categories together 
or splitting up a category into subcategories. 

Anderson and Matessa (1991) report experiments on use of such a hierarchical system 
within our system. While it did retrieve category structures which were marginally more 
probable and intuitively more appealing, the hierarchical algorithm failed to produce any 
improvement in the accuracy of the predictions. The cost of the merging and splitting (in 
particular computing whether a merge or split is justified) can be quite high. 

7.3. Comparisons to Autoclass 

Our model is probably closest in spirit to the Autoclass model of Cheeseman, Kelly, Self, 
Taylor, and Freeman (1988). Like our model they take a fundamentally probabilistic view 
of the nature of categories. They try to optimize the same conditional probabilities that 
we do except that they appear to use the normal approximations to the t-distribution. There 
are two major points of contrast, however. 

First, their model buys into the notion of categorization as the primary goal rather than 
the means to an end of prediction. This leads them as others to place a premium on finding 
the most probable interpretations of the data even though, as we saw, this leads to no ap- 
parent advantages in achieving prediction. Their model is not designed to deliver predic- 
tions although it could be easily extended to do so. 

Second, they do not use incremental algorithms. Rather they use the EM algorithm for 
optimization (Dempster, Laird, & Rubin, 1977). They start out with more categories than 
expected and their task is to find the assignment of objects to categories. This model infers 
a probability that an object is in each category rather than assigns an object to a category. 
They observe that the algorithm often emerges with a high probability assignment to a 
single category. Any categories which result with negligible assignment of objects are deleted. 
The basic assumption of the model is that the likelihood of the data given a category struc- 
ture will overwhelm any considerations of the prior probability of that category structure. 

The basic iteration in the algorithm involves a computation that is a function of the pro- 
duct of number of categories, number of objects, and number of attributes which is the 
same computational complexity as faced by our model. The number of iterations required 
is unclear. The algorithm also has to take special measures to try to avoid being trapped 
in local optima. 

This algorithm is designed to run once and is poorly adapted to the situation we are 
interested in where one must have a basis for prediction after each object. To run the 
algorithm after each object would mean its cost would grow with the square of the number 
of objects. 

With respect to prediction it would have to work with a partitioning in which objects 
are fractionally assigned to categories rather than our case where all objects (except the 
one to be predicted) are assigned to one category. This provides no better or worse a basis 
for approximating the ideal values which would have to be calculated over all ways of assign- 
ing objects to categories. 
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8. Conclusions 

The outcome of the application of the algorithm to various domains, real and artificial, 
has been mixed. Basically, the algorithm is successful to the extent that the structure of 
the domains satisfies the basic assumptions of its model of the environment. This is not 
altogether an obvious outcome because the iterative algorithm gives only an approxima- 
tion to the true quantities prescribed by that statistical model. However, as advertised it 
appears that nothing is seriously lost by this approximation. 

The success of the overall algorithm is predicated on three key features. The first is the 
use of the efficient iterative algorithm to deliver approximations to the ideal model. The 
second feature of this approach is that its goal is to deliver accurate predictions and not 
to find the "true" categorical structure. This performance-oriented focus means that we 
can tolerate situations where the underlying categorical structure may seem a bit peculiar 
and intuitively not appealing. The third feature is also related and this is the denial of any 
special status for category labels. By treating category labels as just another feature to be 
predicted we often gain overall predictive power. A noteworthy feature of this approach 
is that it does predict the values on all dimensions without any extra work. 

Finally, we close by stressing once again the observation that the success of the model 
does prove to be a function of the structure of the domain to which it is being applied. 
We think the direction to go in extending our work is one in which we inquire as to what 
other types of structure exist, develop models for these structures, and perhaps develop 
ways of detecting one structure versus another. We want to emphasize starting with the 
structure of the domain and not the learning algorithm. From the observations of the per- 
formance of our algorithm, we feel that the most important kind of structure which is found 
in the real world and which our model does not capture concerns correlated features. We 
have shown that we can extend the algorithm to deal with such features but that in general 
the computational cost would be unacceptably high. 
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No~s 

1. If cost is set to 0, the algorithm becomes the ideal algorithm and calculates all partitionings. We have im- 
plemented this adjustable algorithm although we will only report results from the radical incremental version. 

2. As this example makes clear, human intervention has created the breed (e.g., Labrador), a specialization 
within the species (i.e., dog). It is the breed and not the species that defines the freely interbreeding unit 
and for our purposes the category. 

3. I'(X) = (X - l)! for integer X. 
4. Because the posterior distribution is of the same form as the prior distribution, the Dirichlet distribution 

is referred to as the conjugate prior for the multinomial. 
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5. For purposes of this illustration only, the e~j for the category label is 1.0. In the applications to be reported, 
it will be set at 0.1 which creates a considerable reluctance to merge items with different labels into the same 
category. 

6. It is possible to imagine an algorithm which would only select some features for some categories. 
7. These data sets were obtained from UCI ML database maintained by David W. Aha. 
8. Weiss and Kapouleas (1989) reported a special crafted rule that classifies 97% of Irises in the Fisher data 

base. This is the best result that we know of but it is probably a case of overfitting the data and would not 
do as well on a new data set. 

9. This data is provided by M. Zwitter and M. SoNic of the University Medical Center, Institute of Oncology, 
Ljubljana, Yugoslavia. 

10. We have recast the Gluck and Corter quantity in our notation. 
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