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Abstract. Decision trees that are based on information-theory are useful paradigms for learning from exam- 
ples. However, in some real-world applications, known information-theoretic methods frequently generate non- 
monotonic decision trees, in which objects with bettet attribute values are sometimes classified to lower classes 
than objects with inferior values. This property is undesirable for problem solving in many application domains, 
such as credit scoring and insurance premium determination, Where monotonicity of subsequent classifications 
is important. An attribute-selection metric is proposed here that takes both the error as weil as monotonicity 
into account while building decision trees. The metric is empirically shown capable of significantly reducing the 
degree of non-monotonicity of decision-trees without sacrificing their inductive accuracy. 

Keywords: information theory, monotonic decision trees, consistency, accuracy, monotonic classification 
problems 

1 Introduct ion  

Suppose a college admissions committee decides to use decision trees to determine whom 
to admit based on standardized test scores and grades. For reasons such as fairness and 
liability, the college would not want to use a decision tree that admits an applicant with 
certain scores, and then rejects another who scores as high or higher on each measure. 
Similarly, a life insurance company would not wish to rely on a decision tree that quotes a 
young and heatthy applicant a higher premium rate than one that has been quoted to an old 
and unhealthy person. 

The classifications in both the school admissions and the life insurance premium problems 
are required to be monotonic with respect to the attribute values. These problems are, 
therefore, called monotonic classification (MOC) problems. MOC problems are important 

because they are very common, and deal with many aspects of out life. In addition to the 
examples given above, MOC problems include, among others, credit scoring (Carter, 1987), 

consumer choice (Jacoby, 1974), school and transportation selection, investment decisions, 
referee and editorial decisions (Larichev, 1988), employee selection, lecturer evaluation, 
and certain social workers decisions (Ben-David, 1992). The examples that are used to 
construct decision trees for real-world MOC problems are frequently non-monotonic with 
respect to each other, in particular, when the examples are taken from past human decisions 
(Jacoby, 1974; Hayes-Roth, 1983). 

Ideally, decision trees, for MOC problems should be monotonic, regardless of whether 
their training sets are monotonic or not. Unfortunately, information-theoretic top-down- 
induction decision tree (TDIDT) algorithms (Quinlan, 1986), that use entropy as the criterion 
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Figure 1. Non-monotonic decision trees. 
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for attribute selection may produce non-monotonic decision trees. Figure 1 illustrates two 
such cases of simplified credit scoring decision trees. The attributes are assets ,  and i ncome  

+ asse t s  respectively. The decisions are shown at the leaves. It is quite evident that the 
decision tree of asse t s  does not make much sense. A client with low assets is authorized a 
$ 5K line of credit, while one with more assets is refused. It is easy to show that the i ncome  

+ asse t s  decision tree suffers from similar anomalies. 
TDIDT algorithms that use the E-score as their attribute selection metric do not consider 

the order within the attribute values and among the classes. The same observation applies 
to Mantaras's distance-between-partitions measure (Mantaras, 1991), and to Nunez's back- 
ground knowledge (Nunez, 1991). Consequently, TDIDT algorithms are not weil adapted 
to deal with MOC problems. The above shortcoming is shared by some other well known 
learning from examples paradigms: Feed-forward neural networks (Rumelhart, 1986), 
most of Michalski's AQ family of models (Michalski, 1983), CN2 (Clark & Niblett, 1989), 
and Fisher's COBWEB (1987), suffer from the same limitation while dealing with MOC 
problems. 

However, decision trees are also required to provide acceptable inductive accuracy. Un- 
fortunately, in real-world cases, these two goals offen conflict. Clearly, the tradeoffbetween 
monotonic classifications and inductive accuraey is domain dependent. Legal requirements, 
if applicable, push toward monotonicity of classifications (see above). Human-related con- 
siderations also motivate the use of monotonic decision trees, since end-users often consider 
non-monotonic classifications of MOC problems as unacceptable (see also Larichev & 
Moshkovich, 1988; Ben-David, 1992). 

This paper presents a metric that can improve the monotonicity of decision trees, with 
little, or no loss of accuracy. The metric's properties are empirically studied on five real- 
world MOC problems. 

2 Monotonicity and decision trees 

We begin with a few formal definitions. 

DEFINITION 1. Let X = ( X l ,  X 2 ,  . .  • , Xn) and Y = (Yl,  Y2, • • . ,  Yn) denote two instances 
in the same problem domain, described by attributes 1 through n. All the attribute values, 
xis  and y is ,  are assumed to be ordinal (i.e., ordered) or numeric. An order between X and 
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Table 1. A monotonic training set. 

Example Income Assets Credit history Class 

#1 high plenty good $10K 
#2 high low bad $ 5K 
#3 low medium bad no credit 

Y is defined as follows: 

X = Y if  xi = Yi ¥i = 1, 2 . . . . .  n 
X > Y if  xi > Yi gi  = 1, 2 . . . . .  n 
X > Y if  xi > Yi OR Xi = Yi V = 1, 2 . . . . .  n 
X < Y i fx i  < y i  V i =  1,2  . . . . .  n 

X < Y if  xi < Yi OR xi = Yi Vi = 1, 2 . . . . .  n 

The non-monotonic relation between attribute-class pairs is defined now: 

DEFINITION 2. Let (X, Cx) and (Y, Cy) represent two attribute-class pairs, where X and 
Y are attribute values as in Definition (1). The classes of  X and Y are denoted by Cx and Cy 
respectively. The attribute-class pairs (X, Cx) and (Y, Cy) are non-monotonic with respect 
to each other il: 

X <_ Y A Cx > Cy OR 

X >_ Y A Cx < Cy OR 

X : Y A Cx • Cy 

The monotonic relation between attribute-class pairs can now be defined as: 

DEFINITION 3. Two attribute-class pairs (X, Cx) and (Y, Cy) are monotonic with respect 
to each other if  they do not meet any of  the conditions set forth in Definition (2). 

The definition of monotonici ty between attribute-class pairs can be extended to attribute- 
test/answer-node paths in decision trees. 

DEFINITION 4. Let  (P,  Ce) and (Q, Cq) be two attribute-test/answer-node paths in the 
same decision tree, were P and Q are attribute-tests, and Cp and Cq are answer-nodes. The 
paths (P,  Cp) and (Q, Cq) are monotonic with respect to each other if they do not comply 
with any of  the conditions set forth in Definition (2). 

DEFINITION 5. A decision tree is monotonic if all its attribute-test/answer-node pairs are 
monotonic with respect to each other. 

To illustrate a basic problem that frequently occurs while building decision trees for MOC 
problems, consider the following example: Credit worthiness is determined by considering 
income level, assets, and credit history. There are only three examples in our simplified 
case, and they are shown in Table 1. 
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It is easy to show that all the examples of Table 1 are monotonic with respect to each 
other. We apply now the ID3 algorithm to the examples of Table 1. The E-score (i.e., 
entropy) of income, E(income) = 0.667 bits (2/3 • 1 + 1/3 • 0). The entropy vanishes 
on assets, E(assets) = 0. Although the examples in the training set were all monotonic 
with respect to each other, the resulting decision tree, shown on the right side of Fig. 1, is 
non-monotonic. It is, however, unambiguous as far as information theory is concerned. We 
formalize the above observation in the following proposition: 

PROPOSITION 1. A training set in which all the examples are monotonic with respect to 
each other is not guaranteed to generate monotonic decision trees via information-theoretic 
TDIDT algorithms that use entropy for attribute selection. 

PROOF. The example of Table 1. 

Clearly, statistical outlier-detection techniques may be employed on non-monotonic ex- 
amples. However, these methods are not guaranteed to be effective, since non-monotonic 
examples are not necessarily outliers. Note that even if those methods could have always 
ended with monotonic training sets, we have just seen that information-theoretic metrics 
cannot generally guarantee the generation of monotoniß decision treés from monotonic 
training sets. 

3 Building accurate monotonic  decision trees 

While information-theoretic metrics attempt to minimize the error without regard to mono- 
tonicity, other known algorithms, such as matrix-based methods, and the OLM (Ben-David, 
1989; 1992), result in purely monotonic decision trees without regard to error. The main dis- 
advantage of both currently known TDIDT algorithms and monotonicity-oriented methods 
for solving MOC problems sterns from their bias toward a single goal. In most real-world 
MOC applications, however, tradeoffs between accuracy arid monotonicity do exist. This 
section proposes a metrie that allows such tradeoffs. 

TDIDT algorithms are quite weil known, and will not be reiterated here. Matrix-based 
methods represent relations among k branches of a decision tree by a k x k symmetric 
matrix M. The mij element of M is 1 if branch i is non-monotonic with respect to branch 
j ,  and 0 otherwise. Each row (column) is associated with a counter, in which the sum 
of the respective row (column) is recorded. Beginning with those branches that are non- 
monotonic with respect to most of the other branches, their rows and columns are deleted, 
and the counters are updated. The branch pruning repeats until either all row (column) 
counters are zero (i.e., the tree is monotonic), or the matrix M becomes of size 1 x 1. The 
matrix M is called a non-monotonicity matrix. 

Another algorithm that can be used for generating monotonic decision trees is the Ordinal 
Learning Model (OLM) (Ben-David et al., 1989, 1992). The OLM picks a branch of a 
decision tree at random and declares it monotonic. It later picks a second branch at random. 
If the second branch is monotonic with respect to the first, it is also declared monotonic. 
Otherwise, the second branch is discarded. The monotonicity checks continue for all the 
branches. Each branch has to be monotonic with respect to its predecessors that already 
have been declared monotonic. Otherwise, it is rejected. This simple conflict resolution 
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strategy is relatively fast, and it will be used here later in the Empirical Results section. 
Other, more complex, conflict resolution methods are discussed in the above mentioned 
publications as well as in the references therein. 

Unlike the above single goal models, a new metric is proposed here that takes into account 
both error and monotonicity considerations. We first define a measure of  non-monotonicity 
of decision trees: 

DEFINITION 6. A non-monotonicity index is the ratio between the actual number of non- 
monotonic branch pairs of  a decision tree, and the maximum number of  pairs that could 
have been non-monotonic with respect to each other in the same tree. 

To find the non-monotonicity index of a given decision tree with k branches, construct a 
k x k non-monotonicity matrix M as discussed earlier. The sum of M's  entries is denoted W. 

k k 

w=Z~Zm,, 
i=1 j = l  

At most (k 2 - k) entries of  M m a y  be labeled non-monotonic (a braiach cannot be non- 
monotonic with respect to itselÜ. The non-monotonicity index of  a decision tree with 
attribute tests al ,  a2,.  • •, av is defined as: 

Wal ,a2,.., av 
l a  I a 2 a "~- 

. . . . . . .  k ä l , a » . . . , a , ,  - -  k a b a » . . . , a ,  ' 

Consider,' again, the assets decision trees of Fig. 1. There is one non-monot0nic pair of  
branches in the assets tree: 

(low, $ 5K), (medium, no credit). 

The non-monotonicity matrix is always symmetric, hence Wassets = 2. The number of  
branches is kassets ~--" 3. Therefore, the non-monotonicity index of  the assets decision tree is 

2 
lassets = 32 ' 3  = 0.333 

The income + assets decision tree of  Fig. 1 has two pairs of  inconsistent branches: 

(high, plenty, no credit), (high, medium, $10K), and 

(high, plenty, no credit), (low, (don't care), $ 5K), 

Note that if the (don't care) is replaced by low, the latter pair is clearly non-monotonic with 
respect to each other. Therefore 

2 + 2  
Iincome+assets -- - -  -- 0.667 

32 -- 3 

The non-monotonicity index is used in the following definition: 
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DEFINITION 7. The o r d e r - a m b i g u i t y - s c o r e  of a decision tree is defined in terms of the 
non-monotonicity index. 

{ 0 
Aal  a2 a = I -1  . . . . . . .  -(log2 al,a~,..,a,,) 

if I« 1,,,2 ........ = 0 

otherwise 

The order-ambiguity-score is added to the E-score as follows: 

DEFINITION 8. The t o ta l -amb igu i t y - s core  is the sum of the E-score, as defined in the ID3 
algorithm, and the order-ambiguity-score. 

Tat,a2,..,aù ~ Eaba2,..,a,j ~- Aal,a2,..,a,, 

The metric that is proposed here selects the attribute with the lowest total-ambiguity- 
score. The total-ambiguity-score has some desirable properties for MOC problems. Unlike 
ID3's E-score, it considers both the error as well as monotonicity. The value of the order- 
ambiguity-score increases with the non-monotonicity index. The use of a logarithmic scale 
for the definition of the order-ambiguity-score is only natural, since the total-ambiguity- 
score is defined as the sum of the E-score (which is logarithmic), and the order-ambiguity- 
score. 

The above definition of the total-ambiguity-score does not imply that monotonicity con- 
siderations necessarily dominate the tree building procedure. Rather, the value of the 
order-ambiguity-score is lower than 1 for non-monotonicity indices lower than 0.50. In 
realistic MOC problems, such as those to be studied in the next section, the values of the 
non-monotonicity indices are substantially lower than 0.5, and one has to verify that the 
values of the order-ambiguity-scores are not too low relative to the E-scores. 

An effective way of expressing tradeoffs between entropy and monotonicity can be 
achieved by introducing an additional parameter to the total-ambiguity-score. 

Tai,a2,..,aù = Eal,a2,..,a,, + RA~1,~2 ........ 

The parameter R expresses the relative importance of monotonicity relative to inductive 
accuracy in a given problem. When R = 0, the total-ambiguity-score uses only its E- 
score component as the hill-climbing guide. If R has a very high value, monotonicity 
considerations dominate the building of the decision tree. Several iterations with different 
values of R on a sample of the training set may be helpful for determining an appropriate 
value for R. 

To illustrate how the proposed metric works, we apply now the ID3 algorithm to the data 
of Table 1, using the total-ambiguity-score instead of the E-score as the attribute selection 
metric. We choose R = 2, to express the relative importance of monotonicity versus 
ambiguity, and trace the computation: 

Eincome = 0 . 6 6 7  b i t s  

/income ~" Aincome ~--- 0 

Tincome = 0.667 (0.667 + 2 * 0) 
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Figure 2. MID's decision tree. 

no credit 

plenty/ ~ o w  

$ lOK $5K 

Eassets : 0 bits 
/assets ~--- 0.333 (2/(32 - 3)) 

Aassets = 0.630 ( - l o g  2 0.333) -1 
Tassets ~--" 1.260 (0 + 2 * 0.630) 

Ecredit history -=" 0.667 bits 
Icredit history = Acredit history = 0 

Tcredit history = 0 . 6 6 7 .  

The total-ambiguity-scores of income and credit history are the lowest, and we assurne 
that the attribute income is selected as the first attribute-test. 

The total-ambiguity-score of income + assets is checked now: 

Eincome+asset s = 0 bits 

lincome+assets = Aincome+assets = 0 

Tincomé+asset s = 0:  

Unlike the decision tree that has been obtained earlier by applying ID3 with the E-score 
metric on the same training set, the decision tree that results of applying ID3 with the 
total-ambiguity-score is monotonic, and its E-score vanishes as well. Figure 2 shows the 
resulting decision tree. In order to distinguish between the original version of ID3 that uses 
the E-score and the monotonicity-oriented version of ID3 that uses the total-ambiguity- 
score as its metric, the latter will be called here MID. 

The additional computation of the total-arnbiguity-score, relative to ID3's E-score, stems 
from the monotonicity checks, and the calculation of the order-ambiguity-scores. It can 
be shown that in the worst case, the nurnber of monotonicity checks is O (d2n2), where 
d denotes the number of attributes, and n is the number of examples in the training set. 
The number of order-ambiguity-score calculations is identical to the number of the E-score 
calculations in ID3. 

An empirical evaluation of the effectiveness of the total-arnbiguity-score metric 1: eiven 
in the hext section. 

4 Empirical results 

Two key questions that arise with respect to the total-ambiguity-score metric are examined 
here using five real-world MOC problems: 
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Table 2. Details of the data sets. 

MOD ERA EFE ESL LEV 

No. of attributes 5 4 8 4 4 
Number of possible values: 

Attributes 6 7 5 10 5 
Classes 2 7 5 10 5 

Number of examples 121 125 124 122 125 

Table 3. Main results. 

Method/Domain MOD ERA EFE ESL LEV 

ID3: MAE 0.244 1.002 0.638 0.641 0.696 
Non-monotonicity (%) 14.757 8.230 9.389 3.056 4.246 

MID (R = 1): MAE 0.245 0.992 0.670 0.638 0.701 
Non-monotonicity (%) 14.089 7.403 8.591 2.694 4.002 

MID (R = 10): MAE 0.231 0.998 0.647 0.618 0.670 
Non-monotonicity (%) 13.174 7.144 8.156 2.414 3.401 

MID (R = 100): MAE 0.233 0.998 0.668 0.635 0.670 
Non-monotonicity (%) 13.174 7.144 7.771 2.414 3.401 

MID (R -~ 1000): MAE 0.233 0.998 0.668 0.635 0.670 
Non-monotonicity (%) 13.174 7.144 7.771 2.414 3.401 

ID3 + OLM: MAE 0.267 1.410 0.502 0.637 0.752 
Non-monotonicity (%) 0.000 0.000 0.000 0.000 0.000 

A. Does the proposed  metric succeed in generating decision trees that ba';'e significantly 
lower non-monotonicity indices when compared with decision trees that are generated 
using the E-score  metric? 

B. Does the proposed metric bring about any significant loss of  classification accuracy 
relative to the E-score? 

We begin by introducing the problem domains. 
Moody's BondRating (MOD): Includes ratings of bonds according to several key financial 

ratios. The bonds are partitioned to two groups: 'Good '  bonds with Moody ' s  AAA,  AA,  
and A ratings, and ' r isky '  bonds with lower Moody ' s  ratings. 

Employee Rejection/Acceptance (ERA): The data set includes attributes of hypothetical 
applicants for a job,  and evaluations of  Business Administration students regarding their 
qualifications. 

Examination Form Evaluation (EFE): Includes attribute values of proposed matriculation 
examinations, and experts '  judgements  about their quality. 

Employee Selection (ESL): This data set includes actual attribute values of  applicants 
for an industrial opening, and judgments of recruiting experts about their qualifications for 
these jobs. 

Lecturers Evaluation (LEV): Includes attribute values of  hypothetical lecturers, and opin- 
ions of  Business Administrat ion students about their teaching qualifications. 

Al l  the above data sets involved actual human decisions, and they all included non- 
monotonic examples.  Al l  the attribute and class values were integers. The examples for 
ERA, ESL, and LEV were randomly selected from larger data sets, such that the training 
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Figure 3. MAEs and non-monotonicity indices; MID (R = 1,100) vs. ID3. 

sets and holdout samples had the same size in all the application domains. This strategy 
was adopted in order to reduce the number of variables in the experiment. 

More details about the data sets are shown in Table 2. 
The experiment was conducted as follows: Each data set was randomly partitioned into 

a training set and a holdout sample on a 50%-50% basis. This procedure was repeated 
ten times (at random) for each data set. The total-ambiguity-score was used by ID3 with 
four values of R (R = 1, 10, 100, and 1000), and the inductive capabilities of the resulting 
decision trees were tested using the respective holdout samples. The ID3 algorithm was 
similarly applied using the E-score. The non-monotonic branches of ID3's decision trees 
were later removed using the OLM. The latter experiment is labeled ID3 + OLM. Table 3 
summarizes the main findings. Table 3 shows the mean absolute error (MAE) for the 
holdout samples (i.e., [predicted class value--true class value[). The non-monotonicity 
indices of Definition (6) are shown in percents rather than as fractions (i.e., 100 • I). All 
the empirical results that are reported in this paper are averages of the 10-fold validation 
method discussed above. Appendix A details the relevant statistics, as well as the mean 
square error (MSE). 

Figure 3 shows the MAEs of the total-ambiguity-score's decision trees (MID, R = 1, 
100) relative to those of ID3. The non-monotonicity indices of the former relative to ID3 
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are also shown. All the results are expressed as percents relative to ID3. Figure 3 clearly 
shows that the total-ambiguity-score resulted in decision trees with lower non-monotonicity 
indices than the E-score. A significant statistical difference (at a confidence interval of 0.95) 
has been observed between MID's and ID3's non-monotonicity indices in MOD, EFE, ESL, 
and LEV (R = 10, 100, and I000). This observation also applies to ERA, but within a 
slightly lower confidence interval. More importantly, no (statistically) significant difference 
between the MAEs of the two metrics has been observed in any application domain. 

The MAEs of ID3 + OLM and MID (R = 1) are similarly shown in Fig. 4. In three 
problem domains (MOD, ERA, and LEV) the MAEs of ID3 + OLM deteriorated relative 
to the corresponding MAEs of ID3. This deterioration was statistically significant (at a 
confidence interval of 0.95) in ERA and LEV, and insignificant in MOD. In two application 
domains (EFE and ESL), the MAEs improved. However, only in EFE was this improvement 
statistically significant. The observation that ID3 + OLM's MAEs deteriorated in some 
application domains and improved in other domains (when compared with ID3) is not 
surprising, since the OLM does not consider the error during its operation. 

Figure 5 shows another important property of ID3 + OLM. The variances of ID3 + 
OLM's MAEs increased substantially (relative to the variances of ID3's MAEs) in two 
application domains, ERA and ESL. Both these differences were statistically significant. 
MID's variances of MEAs, on the other hand, were relatively close to those of ID3. This 
observation is also explained by the fact that the OLM does not consider accuracy during 
its operation. 

5 Conclusions and further research 

It has been argued that monotonicity of classifications is a very important consideration 
while solving MOC problems. Unfortunately, current TDIDT attribute selection measures 
do not take monotonicity into account. They may result in non-monotonic decision trees, 
even when all the examples in the training set are monotonic with respect to each other. 
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Unlike the E-score, the total-ambiguity-score metric that has been proposed hefe considers 
both monotonicity as weil as inductive accuracy. 

Using five real-world problem domains, it has been shown that the total-ambiguity-score 
generates decision trees with signifieantly lower non-monotonicity indices than those that 
are generated by the E-score metric. More importantly, the former achieves this goal 
without a significant deterioration of the inductive accuracy (again, when compared with 
ID3's E-score). 

Although the discussion has been focused on extensions to Quinlan's well known E-score 
attribute selection measure, it is also pertinent to other attdbute selection metrics, such 
as Quinlan's gain-ratio, or Mantaras's distance-based attribute selection metric. TDIDT 
algorithms that were not studied here, such as C4.5 (Quinlan, 1987), ID4 (Schlimmer & 
Fisher, 1986), and ID5R (Utgoff, 1989), may also be adapted to deal with MOC problems 
using a similar approach. 

Since MOC problems are so common in human daily life, it is worthwhile to address some 
interesting open questions in future research: For example, the order-ambiguity score, as 
defined here, does not take into account the severity of non-monotonic conflicts. A measure 
that considers the severity of these conflicts may be helpful for some applications. The 
effects of windowing on the performance of the proposed metric are also of interest. Also, 
it is worthwhile to investigate whether the inclusion of the order within the attributes and 
classes in background knowledge ean provide better results than those that were obtained 
via the total-ambiguity-score metric. 

Appendix A 

General explanations 

Appendix A shows detailed results by application. The statistic T tests the hypothesis 
that the average value shown to its left significantly differs from the one obtained via ID3. 
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Table A1. MOD. 

Method Avg T Var F 

MSE: 

1D3 0.244 0.002 
MID (R = 1) 0.245 0.406 0.002 0.98 

MID (R = 10) 0.231 1.008 0.002 0.91 

MID (R = 100) 0.233 0.877 0.002 0.82 

MID (R = 1000) 0.233 0.877 0.002 0.82 

ID3 + OLM 0.267 1.091 0.001 0.70 

MAE: 

ID3 0.244 0.002 
MID (R = 1) 0.245 0.406 0.002 0.98 
MID (R = 10) 0.231 1.008 0.002 0.91 

MID (R = 100) 0.233 0.877 0.002 0.82 
MID (R = 1000) 0.233 0.877 0.002 0.82 

ID3 + OLM 0.267 1.091 0.001 0.70 

Non-monotonicity (%): 

ID3 14.757 3.613 

MID (R = 1) 14.089 1.617 1.517 0.420 

MID (R = 10) 13.174 2.591 1.621 0.449 

MID (R = 100) 13.174 2.591 1.621 0.449 

MID (R = 1000) 13.174 2.591 1.621 0.449 

ID3 + OLM 0.000 24.550 0.000 0.000 

T.able A2. ERA. 

Method Avg T Var F 

MSE: 

ID3 1.621 0.048 
MID (R = 1) 1.618 0.205 0.038 0.787 

MID (R = 10) 1.628 0.284 0.045 0.929 
MID (R = 100) 1.628 0.284 0.045 0.929 

MID (R = 1000) 1.628 0.284 .0.045 0.929 

ID3 + OLM 2.957 4.708 0.798 16.501 

MAE: 

ID3 1.002 0.009 
MID (R = 1) 0.992 1.285 0.007 0.724 
MID (R = 10) 0.998 0.404 0.007 0.772 
MID (R = 100) 0.998 0.404 0.007 0.772 

MID (R = 1000) 0.998 0.404 0.007 0.772 
ID3 + OLM 1.410 5.268 0.061 6.444 

Non-monotonicity (%): 

ID3 8.230 5.083 
MID (R = 1) 7.403 1.456 2.057 0.405 

MID (R = 10) 7.144 1.738 1.351 0.266 
MID (R = 100) 7.144 1.738 1.351 0.266 
M1D (R = 1000) 7.144 1.738 1.351 0.266 
ID3 + OLM 0.000 11.554 0.000 0.000 



MONOTONICITY MAINTENANCE 4 ] 

Table A3. EFE. 

Method Avg T Var F 

MSE: 

ID3 1.134 0.118 
MID (R = 1) 1.182 0.908 0.128 1.092 
MID (R = 10) 1.104 0.346 0.111 0.941 
MID (R = 100) 1.138 0.038 0.170 1.443 
MID (R = 1000) 1.138 0.038 0.170 1.443 
ID3 + OLM 0.769 3.805 0.013 0.107 

MAE: 

ID3 0.638 0.015 
MID (R = 1) 0.670 1.794 0.017 1.112 
MID (R = 10) 0.647 0.290 0.015 0.981 
MID (R = 100) 0.668 0.969 0.027 1.764 
MID (R = 1000) 0.668 0.969 0.027 1.764 
ID3 + OLM 0.502 3.987 0.003 0.170 

Non-monotonicity (%): 

ID3 9,389 4.466 
MID (R = 1) 8.591 1.543 2.412 0.540 
MID (R = 10) 8.156 2.053 2.974 0.666 
MID (R = 100) 7.771 2.347 3.084 0.690 
MID (R = 1000) 7.771 2.347 3.084 0.690 
ID3 + OLM 0.000 14.049 0.000 0.000 

T.abl¢ A4. ESL. 

Method Avg T Var F 

MSE: 

ID3 0.902 0.015 
MID (R = 1) 0.911 1.174 0.015 1.025 
MID (R = 10) 0.856 1.325 0.019 1.271 
MID (R = 100) 0.901 0.016 0.038 2.615 
MID (R = 1000) 0.901 0.016 9.038 2.615 
ID3 + OLM 0.923 0.235 0.102 6.962 

MAE: 

ID3 0.641 0.005 
MID (R = 1) 0.638 0.389 0.004 0.790 
MID (R = 10) 0.618 1.038 0.006 1.397 
MID (R = 100) 0.635 0.271 0.009 1.880 
MID (R = 1000) 0.635 0.271 0.009 1.880 
ID3 + OLM 0.637 0.104 0.023 4.972 

Non-monotonicity (%): 

ID3 3.056 0.311 
MID (R = 1) 2.694 1.578 0.596 
MID (R = 10) 2.414 2.317 0.461 
MID (R = 100) 2.414 2.317 0.461 
MID (R = 1000) 2.414 2.317 0.461 
ID3 + OLM 0.000 17.324 0.000 

1.915 
1.483 
1.483 
1.483 
0.000 
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Table A5. LEV. 

Method Avg T Var F 

MSE: 

ID3 0.958 0.053 
MID (R = 1) 0.984 0.813 0.050 0.940 
MID (R = 10) 0.914 1.106 0.022 0.405 
MID (R = 100) 0.914 1.106 0.022 0.405 
MID (R = 1000) 0.914 1.106 0.022 0.405 
ID3 + OLM 1.079 2.101 0.096 1.809 

MAE: 

ID3 0.696 0.011 
MID (R = 1) 0.701 0.549 0.011 0.949 
MID (R = 10) 0.670 1.841 0.006 0.547 
MID (R = 100) 0.670 1.841 0.006 0.547 
MID (R = 1000) 0.670 1.841 0.006 0.547 
ID3 + OLM 0.752 2.252 0.018 1.617 

Non-monotonicity (%): 

ID3 4.246 1.926 
MID (R = 1) 4.002 1.579 1.845 0.958 
MID (R = 10) 3.401 2.583 0.772 0.401 
MID (R = 100) 3.401 2.583 0.772 0.401 
MID (R = 1000) 3.153 2.299 0.770 0.400 
ID3 + OLM 0.000 9.675 0.000 0.000 

For example, the MAE of the MOD application domain (see Table A1) is 0.233 for MID 
(R = 100), and the respective MAE of ID3 is 0.244. The T statistic, 0.877, indicates that 
the difference between these two means is (statistically) insignificant within a confidence 
interval of  0.95. The statistic F is written similarly. It tests whether the differences between 
the variances are significant. The comparison is done against the respective variance that 
was obtained by applying ID3. 
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