
Machine Learning, 15, 5-24 (1994) 
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Incremental Abductive EBL 

WILLIAM W. COHEN 
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 

(WCOHEN@RESEARCH. ATT,COM) 

Editor: Paul Utgoff 

Abstract. In previous work, we described a knowledge-intensive inductive learning algorithm called abductive 
explanation-based learning (A-EBL) that uses background knowledge to improve the performance of a concept 
learner. A disadvantage of A-EBL is that it is not incremental. This article describes an alternative learning algorithm 
called IA-EBL that learns incrementally; IA-EBL replaces the set-cover-based learning algorithm of A-EBL with 
an extension ofa perceptron learning algorithm. IA-EBL is in most other respects comparable to A-EBL, except 
that the output of the learning system can no longer be easily expressed as a logical theory. In this article, IA-EBL 
is described, analyzed according to Littlestone's model of mistake-bounded learnability, and finally compared 
experimentally to A-EBL. IA-EBL is shown to provide order-of-magnitude speedups over A-EBL in two domains 
when used in an incremental setting. 
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1. Introduct ion 

In previous work, we described a hybrid explanation-based/inductive learning algorithm 
called abductive explanation-based learner (A-EBL) that uses background knowledge to 
improve the performance of a concept learning (Cohen, 1992a). This learning system was 
shown to satisfy Valiant's criterion of  pac-learnability (Valiant, 1984) and was also em- 
pirically validated on two learning problems that arose in the context of learning from the 
information and examples in a textbook on the game of contract bridge. 

A disadvantage of  A-EBL is that it is not incremental. I f  new training examples become 
available after a learning episode, there is no way to adjust the hypothesis of the learner 
incrementally to account for the new data; the only way of using the new data is to add 
them to the old set of training examples and re-run the learning system. This may be a 
disadvantage in some settings. In particular, incremental learning is useful for "serial learn- 
ing tasks" (Utgoff, 1989), in which a stream of training instances is provided, rather than 
a single fixed set of instances; in this case, repeatedly revising an existing hypothesis may 
be less expensive than repeatedly re-forming a hypothesis from scratch when each new 
instance appears. Another motivation for considering incremental learning algorithms is 
that they are, in general, more plausible as models of human learning (Langley et al., 1987). 

This article describes an alternative learning algorithm called IA-EBL that learns in- 
crementally. IA-EBL replaces the set-cover based learning algorithm of A-EBL with an 
extension of a perceptron learning algorithm. In most respects, IA-EBL is equivalent to 
A-EBL; in particular, it is competent for the same class of problems as A-EBL and has 
similar convergence properties, and thus inherits all of the strengths (and weaknesses) of 
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A-EBL. However, IA-EBL can update its hypothesis efficiently in response to new data, 
and is therefore more efficient in incremental settings. 

In this article, IA-EBL is described, analyzed according to Littlestone's model of  mistake- 
bounded leamability, and compared empirically to A-EBL. The analysis and the experimental 
results show that the hypotheses of  IA-EBL are comparable to those of A-EBL in predic- 
tive accuracy. The main disadvantage of  IA-EBL is that, unlike A-EBL, the hypotheses 
of  IA-EBL cannot be expressed easily as logical theories; thus hypotheses are in general 
less perspicuous. 

2. Background 

2.L Description of  A-EBL 

A-EBL is a learning algorithm that solves the theory specialization problem (Flann & Diet- 
terich, 1989): 

Given: 1) an overgeneral theory To, 
2) examples of  correct/incorrect predictions made using To, 

Find: a theory Ts that specializes T 0, and only leads to correct predictions. 

The specialization T s of  the initial theory To will be called the talget theory. A-EBL 
forms a target theory by using EBG on the initial theory To and the examples to generate 
a small set of rules that explains all the positive data. This small set of rules becomes the 
new specialized theory T s, and the original theory is discarded. As an example of  an ap- 
plication of this technique, A-EBL has been used to specialize an initial theory T O for the 
concept "plausible opening bid" into a theory T s for the concept "correct opening bid" 
using the examples given in a textbook on contract bridge. 

A brief outline of  the A-EBL algorithm is shown in table 1. A-EBL takes as input a set 
of  positive examples S +, a set of  negative examples S - ,  a theory To, and an operational- 
ity predicate O. First, all possible generalizations of the positive training examples are 
enumerated, where "all possible generalizations" means all generalizations formed by ap- 
plying EBG to sorne explmaation structure of  a positive example. (We use the phrase "'some 

Table L The A-EBL learning algorithm. 

Algorithm A-EBL(S +, S ~', To, 0): 

1. Compute the explanation structure of every proof in T o of every example in S +. 
2. For each explanation structure found in step 1, find the set of candidate rules that can be formed by applying 

the final stage of EBG to the resulting explanation structure, i.e., by replacing constants with variables in 
the explanation structure and then extracting a rule from the generalized structure. 

3. Filter the set of candidate rules by removing any rule that covers an element of S- .  
4. Use a greedy set cover to find a small set of the remaining candidate rules that covers all of the examples in S +. 
5. Return that set of rules as the theory T s. 
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explanation structure" rather than "the explanation structure" because A-EBL allows one 
to have multiple explanations for each example. A-EBL is thus suited to initial theories 
that suffer from the muln'ple explanation problem (Rajamoney & DeJong, 1988; Pazzani, 
1988).) This phase of the algorithm requires the initial theory To to be tractable in the 
sense that all explanations of every example can be generated easily. Inconsistent generaliza- 
tions (those that match some negative example) are then filtered out, and finally, a greedy 
set cover algorithm is used to find a small set of the remaining candidate rules that covers 
all the positive examples. 

Notice that the rules found by A-EBL are not added to the original theory To, but are 
pulled out into a separate theory Ts; the intention is that Ts will model the data more ac- 
curately than the original overgeneral theory T 0. One can think of A-EBL as learning by 
"throwing away" the incorrect parts of an overgeneral theory; in this respect, A-EBL is 
similar to Flann and Dietterich's (1989) IOE technique and is an example of the use of 
EBL for knowledge-level learning, as discussed by Rosenbloom and Aasman (1990). 

2.2. Discussion of A-EBL 

We should note that A-EBL has several limitations that will not be addressed in this arti- 
cle. One limitation is that it must be possible to generate all explanations of each example. 
There are interesting classes of first-order theories that do have this property--the class 
of circuit diagnosis theories described in section 5.2.1 is one example--but unfortunately, 
it is hard to restrict initial theories syntactically so that this property must hold without 
eliminating large classes of potentially interesting theories. For example, even propositional 
Horn-clause theories can have an exponential number of proofs. The practical implication 
of this fact is that the initial theory must, to some degree, be engineered by the user. 

Another limitation is that the problem A-EBL solves, theory specialization, is a special 
case of the more general problem of theory revision (Ourston & Mooney, 1990; Pazzani 
et al., 1991; Towell et al., 1990), in which the initial theory is assumed to be overly general. 
It might be asked why we choose to study this special case, rather than the general one. 
However, as we have argued previously (Cohen, 1991), the type of theory specialization 
performed by A-EBL is more general than it appears; in particular, A-EBL's style of theory 
specialization is also useful for several other types of knowledge-based learning tasks, in- 
cluding "Induction over the Unexplained" (Mooney & Ourston, 1989), theory completion 
(Danyluk, 1989; Fawcett, 1989; Ali, 1989), theory-based constructive induction (Drastal 
et al., 1989), and learning from a weak theory containing determinations (Mahadevan, 
1989). The ability to solve many types of restricted knowledge-based learning problems 
is a useful complement to the ability to solve very general knowledge-based learning prob- 
lems such as general theory revision. This is particularly true given recent evidence that 
special-purpose theory revision systems can dramatically outperform general-purpose ones 
on some learning tasks (Cohen, 1992b). 

A second reason for considering theory specialization is that it is more tractable analytic- 
ally than the general case of theory revision. We are thus able to develop a rigorous 
understanding of theory specialization algorithms, which may ultimately shed light on the 
general problem. 
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3. A formal model of incremental learning 

Our major formal result is to present a provably efficient incremental version of A-EBL; 
the efficiency of this algorithm is proved relative to the model of efficient incremental learn- 
ability introduced by Littlestone (1988). In this model, at each time step i, the following 
sequence of events occurs: 

1. The learning algorithm ILEARN receives a new example xi. 
2. ILEARN then makes a prediction of 0 or 1. This prediction is a guess of the value of 

~Crs(xi), the correct classification of xi with respect to the target concept T~. 1 
3. Finally, ILEARN receives the correct classification of xi .z This classification is used to 

update the rules used in step 2 to make a prediction. 

The learnability model is summarized in figure 1. Notice that previous examples are 
not stored (except implicitly, in the rules used in step 2 to make a prediction). As the figure 
shows, one natural implementation of an incremental learning algorithm is as a pair of 
functions (predict, update ) together with a standard protocol for using these routines. The 
protocol must require that predict is used only to predict the classification of a new exam- 
ple xi, and update is used only to adjust incrementally the rules used by predict. 

How can one evaluate such a learning system analytically? It is relatively easy to analyze 
the time that an incremental learner will require to process each xi. The harder task is 
to determine the number of examples required to learn a target concept. One problem is 
that if an adversarial sequence of examples is presented (for example, if some xi is repeated 
an arbitrary number of times), exact identification of the target may take place only at the 
limit. One way to avoid this problem is to evaluate the learner by measuring the worst-case 
number of prediction errors or mistakes the learning algorithm makes en route to exact 
identification. This measure is called the mistake bound of the learner. 

More precisely, define a presentation of T s to be a (possibly infinite) sequence of pairs 
p = (Xl, 9Cr(xl)) . . . .  , (xi, ~Cr(xi)) . . . .  , and let MISTAKES(ILEARN, p) denote the 

example zi " ~  

cl~ssificationXr(x~) ,-,~---~ upJate ] .  

. prediction pi 

LEARN 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t 

Figure I. An incremental learning system. 
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number of prediction mistakes made by ILEARN given the presentation p. Finally, let 
be some space of possible target concepts, and let ~r~ n denote the set {h E ~ : size(h) < 
n}. The function b(n) is a mistake bound for ILEARN and the concept class 3£ n if and 
only if for all T s E ~n, and for all presentations p of T~, 

MISTAKES(ILEARN, p) < b(n) 

In the remainder of this article, the mistake bound of an incremental learner will be used 
to evaluate its efficiency: an efficient incremental learner will be one that spends polynomial 
time on each input xi, and has a polynomial mistake bound. 

It has been shown (Littlestone, 1988, 1989a) that the mistake bound of an incremental 
learner is closely related to the number of examples required to achieve predictions that 
are probably approximately correct (pac) (Valiant, 1984). In particular, existence of a 
polynomial mistake bound for a concept class ~ implies existence of a pac-learning 
algorithm with a polynomial sample complexity. The converse, however, is not true (Blum, 
1990); thus, mistake-bounded learnability is a strictly stronger model than pac-learnability. 

4. An incremental version of  A-EBL 

One class of incremental learning methods that can learn disjunctions are the various percep- 
tron learning methods. Littlestone has described several perceptron learning algorithms 
with polynomial mistake bounds (Littlestone, 1988, 1989b). Since A-EBL learns a theory 
that is essentially a disjunction of EBG rules, it seems plausible that these perceptron 
algorithms can be adapted to the A-EBL learning problem. The main obstacle is that percep- 
tron learning algorithms require all the features of the disjunction to be known in advance. 
For A-EBL, the "features" that are to be disjoined are rules created by using EBG on a 
fixed initial theory, and it may be impossible--and is generally speaking impractical--to 
enumerate all of these in advance. 

We have extended the WINNOWl perceptron learning algorithm (Littlestone, 1988) to 
handle the A-EBL learning problem. The WINNOW1 algorithm was chosen because it 
is easy to analyze and is relatively insensitive to the number of potential features; the latter 
property is crucial in our setting, where the number of potential features is large or (in 
the case of a recursive theory) infinite. 

Table 2 shows our extension, which we call IA-EBL. The IA-EBL algorithm associates 
a weight with each possible rule R; by default, this weight is proportional to 2-size(R), where 
size(R) denotes the number of nodes in the explanation structure used to create the rule 
R? For each input xi, the algorithm computes the set gxl of all candidate rules that explain 
xi, and then predicts that xi is in the target concept if and only if the sum of the weights 
of the candidate rules is greater than the threshold value 1. If the prediction is wrong, the 
weights of the candidate rules are either increased (by doubling) or set to zero, depending 
on whether the sum was too large or too small. Setting a weight to zero means that the 
rule will have no later effect, and is effectively the same as discarding the rule. In the limit, 
only consistent explanations will have a nonzero weight, and those that support many positive 
examples will have the largest weights. An example will be predicted to be in the target 
concept if there are enough strongly weighted candidate rules. 
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Table 2. The IA-EBL learning algorithm. 

In the code below, 

• gx is the set of candidate mAes for an example x as computed in steps 1 and 2 of A-EBL. 
W is a set of ordered pairs, initially empty, shared by predict and update. Conceptually, the pairs in W are 
used to define a mapping from a rule R to a real-number value weight(R), which is computed as follows: 

( w 
weight(R) =- .~ 

2-size(R)'l°g2(l Tol + 1) 

if (R, w) E W 

otherwise 

where IT01 denotes the number of rules in the initial theory T 0. 

Algorithm IA-EBL(xl, flC~(xi), To, 0):  

Predict: Return the prediction 

1 
if ~ weighffR) ~_ ~ 

Pi = REgx i 

otherwise 

Update: 

• I f  the prediction was 0 and the correct classification is I, then for each R ~ ~;xi, double weight(R) by replac- 
ing W with 

W - {(R, weight(R))} U {(R, 2 * weight(R))} 

* If the prediction was 1 and the correct classification is 0, then for each R ~ gxi, zero weight(R) by replacing 
W with 

W - {t R, weight(R) ) } U {( R, 0 )} 

The procedure for assigning weights may seem somewhat unmotivated; however, the 
basic idea is not counterintuitive. First, rules are initially given very small weights to en- 
sure that the total weight of any example is within a bounded range, even if that example 
happens to have many proofs; this makes it easier to design update procedures that always 
terminate. The update procedures move weights in the "right direction" to classify an 
example correctly. Weights for rules that justify a negative example are reduced to zero, 
since they cannot be part of the target theory. It can be shown easily that this is the op- 
timal choice, in the sense that it moves the weights as far as possible in the right direction. 
On the other hand, while it is clear that weights for rules justifying a misclassified positive 
example must be increased in some way, we cannot know how far to increase each weight, 
since we do not know which rules are part of the target concept (and thus should have 
a high weight) and which are not (and hence should have a low weight). The solution 
is to increase the weight of each rule by the same small amount; thus, a rule will have 
a large weight only if it supports many positive examples. Finally, since the weights start 
out exponentially small, increasing the weights by adding some constant does not work; 
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instead, we must multiply by a constant. The constants one half and two are somewhat 
arbitrary; a different version of the convergence theorem (below) could probably be proved 
for other constant values. 

We note also that this algorithm employs a nove way of using EBG rules: a weight is 
given to each rule, and a new instance x is assumed to be a member of the learned concept 
only if the sum of the weights of applicable rules is over a certain threshold. This scheme 
is somewhat less rigid than most previous schemes for using EBG rules, including the scheme 
employed by A-EBL itself. 

5. Results 

5.1. Formal results 

The main formal result of this article is the following theorem, which shows that IA-EBL 
has a polynomial mistake bound on the class of problems solvable by A-EBL. 

Theorem 1. Let 3~2 be the set o f  theories T s that each contain a set o f  rules {R 1 . . . .  , 
Rk} such that every R i is in the candidate set o f  rules generated by A-EBL in steps 1 and 
2 f o r  some sample S+ ; that is, let 3¢. be the set o f  target theories learnable by A-EBL. 
Let the size measure on some h ~ 3C be defined as 

k 

size({Rl, . . . ,  Rk}) = Z size(Ri) 
i=1  

where size(Ri) is defined as the number o f  nodes in the explanation structure f rom which 
R i w a s  der ived;  again, this is the size measure used by A-EBL. Recall that 3E n denotes 
the set {h ~ ~ : size(h) <_ n}. Finally, assume that T o is tractable in the sense that all 
explanations for  any example x i can be generated in time polynomial in the size o f  xi. 

Then IA-EBL runs in time polynomial in the size o f  xi, and has a mistake bound on the 
concept class 3~2 n o f  

3n log2(lz0] + 1) + 2 

Proof. In the proof, we will adopt Littlestone's terminology: a promotion refers to the 
actions taken after a false negative, and an elimination refers to the actions taken after 
a false positive. We will let E denote the number of eliminations, P denote the number 
of promotions, and scale denote the quantity log2(lTol + 1). Finally, we will let (R denote 
the set of all rules that could be generated as candidate rules by A-EBL for some possible 
sample S +, T = { g i l  , . . . ,  ei~ } be the target concept, and r = scale * size(T). 
Throughout the proof, size will be the size function defined above. 

Clearly, the algorithm can be implemented in polynomial time. In fact, if a hash table 
is used for W(as in our implementation), it is linear in [~x[. Notice that since it is assumed 
that ~x is generated in polynomial time, it must be of polynomial size. 

To obtain the desired mistake bound, the following lenuna will be needed. 
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Lemma 1 

~ ]  1 _<1 
RE(R 2 scale*size(r) 

Proof. In theorem 3 of Cohen (1992a), we showed that each rule R can be encoded by 
the explanation structure from which it was derived, which in turn is uniquely defined 
by the sequence of clause labelings generated by the following procedure: traverse the nodes 
of the explanation structure in postfix order, reading off the names of the clauses that were 
used to prove each term. The symbol nil is used to indicate when an operational leaf is 
reached. The result of this is a string of length n whose letters are either the names of 
one of the IT01 clauses in the theory, or nil. Using this encoding, a rule R can be encoded 
in log2(IT01 + 1) * size(R) = scale * size(R) bits. 

Notice that since we can deduce the number of children of each node from the clause 
that labels that node, we can reconstruct the tree itself from the postfix order. Importantly, 
we can tell when the last node of the tree has been reached; the encoding is thus self- 
delimiting, and hence the set of all valid codes is prefix free. 4 The lemma thus holds by 
Kraft's inequality (Abramson, 1963, pp. 53). [] 

The remainder of the analysis closely follows the analysis in Littlestone (1988) of the 
perceptron learning algorithm WINNOW1. The mistake bound itself is obtained by an amor- 
tization argument. Consider the quantity 

k 

Q = I-[  weight(Ri/) 
j= l  

where the Ri.'s a r e  the rules in the target concept T = { R / I  , . . . ,  Rik }. The weights 
weight(Ri/) are always less than one, smce 1) weights are initially less than one, 2) the only 
way weights increase is by promotion, and 3) prior to a promotion, the sum of weights 
must be less than 1. Hence Q is always less than 1. But each promotion at least doubles 
Q; since Q is initially equal to 

k 1 _ 1 1 
H 2scale,size(Ri? 2scale,size(Rll)+.. "+scale,size(RiQ 2 r 
j= l  

it follows that the number of promotions is at most r, that is, 

P _< r (1) 

Now consider the quantity 

S =- ~ weight(R) 
R~R 
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Initially, S < 1 by the lemma. Each promotion increases S by at most 1, since promotion 
doubles a set of weights for which the weighted sum is at most ½. Analogously, elimina- 
tion decreases S by at least 1, since it eliminates a weighted sum larger than ½. Finally, 
S is always greater than 0; hence at all times, 

0 < S ~  1 + P - E 2  

Solving for E, we get E _< 2P + 2. Since P _< r by equation (1), we obtain the claimed result 

mistakes = E + P  < 2 r + 2  + r = 3 r + 2  = 3 r + 2  =31og2(]T0l + 1)*size(T) + 2  

completing the upper bound on the number of mistakes made by the algorithm. [] 

A corollary of this theorem is that IA-EBL learns (with a polynomial mistake bound) 
any target theory that is pac-learned by A-EBL; thus, the theorem also shows that IA-EBL 
is at least as general as A-EBL. Using Littlestone's (1989a) results relating mistake-bounded 
learnability and prediction accuracy, one can also show as a corollary that if the xi's are 
always chosen stochastically from a fixed distribution, then with probability at least 1 - 6, 
the predictions made by IA-EBL will have error no more than c after 

o ~ n  log lTo[ log 1 nloglT0[  )1 ? ~ 6 + e log(n log I z0l 

training examples have been processed. This is comparable to the bounds on sample com- 
plexity for A-EBL presented by Cohen (1992a). 

To summarize, we have shown that IA-EBL, like A-EBL, has a polynomial sample com- 
plexity in the worst case, and also that it processes each example in time polynomial in 
the size of that example. This last point indicates that IA-EBL in the limit will be faster 
than A-EBL when used incrementally. Consider the following argument. Let pb(t) be the 
polynomial run-time of A-EBL (for a set of examples of total size t), and letpi(n) be the 
polynomial run-time of IA-EBL (for a single example of size n). Now imagine that we 
have an ordered set of examples x 1 . . . .  , Xm, each of size n, and that we would like to 
process these incrementally--i.e., we would like to produce a hypothesis Tsi after each 
prefix xl, . . . ,  x i. To do this with A-EBL would require running A-EBL on the first ex- 
ample alone, then the first two examples, the first three, and so on: the time required for 
this would be 

~-]jpb(i * n) 
i=1  

However, to do this with IA-EBL will require only time proportional to 

~api (n)  
i=1 
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Assuming that Pb is at least linear, then when m ~> n, the first sum grows at least 
quadratically. However, when m ~> n, IA-EBL will take only time linear in m. 

5.2. Experimental results 

Unfortunately, the analysis above does not show that IA-EBL will be faster on reasonable- 
sized samples, nor does it give more than rough upper bounds on what the learning rate 
will be. It is also possible that IA-EBL may converge much more slowly than A-EBL in 
the average case, even though the worst-case bounds of each are comparable. In this sec- 
tion, we will compare IA-EBL empirically to A-EBL to verify that it is an efficient in- 
crementalization of A-EBL. 

5.2.1. Description of the learning tasks 

As an additional test of the efficiency and generality of IA-EBL, IA-EBL and A-EBL were 
compared empirically on two problems from two different domains. For both problems, 
the initial theory is a recursive first-order Horn clause theory. The first problem is that 
of learning bridge opening bids from random data, as described in Cohen (1992a). The 
second problem is inspired by one that has been well studied in the literature on abduction 
and model-based diagnosis: diagnosing a faulty circuit (de Kleer & Williams, 1987; Reiter, 
1987). This problem is often solved using abductive reasoning. Here we will consider a 
variant of this problem to which A-EBL is well suited: using examples to predict the behavior 
of a circuit that contains an unknown fault. In addition to providing an additional bench- 
mark for testing IA-EBL, this problem illustrates the relationship of A-EBL to traditional 
abductive reasoning. 

In modeling the circuit domain, we will make a number of standard assumptions. First, 
we assume that each circuit component computes a boolean function. Second, we assume 
that each component is either functioning normally, or is in one of two error states: it is 
either stuck at 1 (i.e., its output is always 1, regardless of the inputs) or stuck at 0. Given 
these assumptions, a diagnosis for a circuit is simply an indication of the state of each 
component: for example, one possible diagnosis for the circuit of figure 2 would be 
{stuckatl(xl), ok(x2), ok(a1), ok(a2), ok(ol)}. Finally, we assume that the circuit contains 
at most a single fault. 

Now we must construct a theory for this circuit that allows the behavior of the circuit 
to be predicted given a diagnosis for the circuit. First, we will specify the connectivity 
of the components as follows: 

fulL_adder(A,B,Cin,Cout,Sum) ~- 
xor gate(Fault,xl,A,B,Xlout) A 
and gate(Fault,a2,Xlout,Cin,A2out) A 
xor gate(Fault,x2,Xlout,Cin,Sum) A 
and gate(Fault,al,A,B,Alout) A 
or gate(Fault,ol, Alout,A2out ,Cout). 
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i Oul 
Cin 

Sum 

Cout 

Figure 2. A circuit for a full-adder. 

This specification requires that we define a series of predicates of describing the behavior 
of each gate type. For gates computing the function f, these predicates will have the follow- 
ing form: 

f_gate(Fault,GateId,Inputl . . . . .  Inputk,OUtpuh,.. • ,Outputn) 

We interpret this predicate as saying: "if  the gate with name Gateld is in a circuit with 
the single fault Fault, then it will produce outputs Output1, . . . ,  Outputn given inputs 
Inputl . . . .  , Inputsk." We will give the definition of and_gate only; the other predicates 
are defined analogously. 

The definition of and_gate requires three rules. If  the gate is stuck at 1, then its output 
is always 1, and the fault must be stuckatl(Gateld); the case for stuck at 0 is analogous. 

and gate(stuckatl(Gateld),Gate,Inl,In2,1) ~ stuckatl(Gateld). 
and_gate(stuckat0(GateId),Gate,Inl,In2,0) ~ stuckat0(GateId). 

Otherwise, if the gate is normal, then it computes the boolean AND of its inputs, regardless 
of what the fault in the circuit is. 

and gate(Fault,Gateld,Inl,In2,Out) ~- ok(Gateld) A and(Inl,In2,Ou 0. 

This theory allows one to predict the behavior of a circuit given a correct diagnosis: 
the problem, of course, is that the diagnosis is not known. To complete the process of 
modeling this problem as a theory specialization task, we will add to this theory the facts 
ok(G), stuckatl(G), and stuckatO(G) for every gate G. The theory now becomes overgeneral, 
and can be specialized by A-EBL. Notice that in the overgeneral theory, no example can 
have more than 2n + 1 explanations, where n is the number of gates in the circuit: this 
follows because once a value has been chosen for the single common Fault, the rest of 
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the explanation becomes fixed, and there are at most 2n possible faults (plus one diagnosis 
corresponding to a normal circuit). Thus, these circuit-diagnosis theories are also tractable. 

5.2.2. Discussion of the circuit domain 

This problem gives a good illustration of the similarities and differences between A-EBL 
and abduction. Abductive approaches usually produce as output the set of all simplest 
diagnoses consistent with the examples: the hope is that this set will contain the correct 
diagnosis and not too many incorrect ones. Unfortunately, abductive approaches based on 
set-covering are usually intractable, if for no other reason than that the set of minimal 
diagnoses may be exponentially large. (However, finding a single minimal set cover is also 
computationally hard.) 

In contrast, A-EBL and IA-EBL use a polynomial-time algorithm to generate a single 
hypothesis. This hypothesis may or may not correspond to the correct diagnosis; indeed, 
it may not correspond to a valid diagnosis at all:  However, it can still be guaranteed that 
this hypothesis will predict the behavior of the system being diagnosed accurately on novel 
cases drawn from the same distribution as the training cases; in other words, if the diagnosis 
is not correct, the behavior of the system will be very nearly the same as if the diagnosis 
were correct. 

This surprising result is echoed by results in computational learning theory in which 
learning is made tractable by increasing the class of possible hypotheses. For example, 
k-term DNF is not pac-learnable if the hypotheses of the learner are constrained to be k- 
term DNF formulae (Kearns et al., 1987); however, k-term DNF is learnable if the learner 
is allowed to use the larger class of k-CNF formulae as hypotheses (Valiant, 1984). In short, 
the difficulty in learning k-term DNF is that the search problem is overconstrained; using 
a larger hypothesis space makes the search tractable. Similarly, while the problem of find- 
ing a consistent diagnosis is intractable, by allowing A-EBL to generate inconsistent diagnoses 
as hypotheses, the problem of searching for a hypothesis that explains the data is made 
tractable. As in the case of k-term DNF, the hypothesis space used by A-EBL is still small 
enough that a consistent hypothesis will be accurate on novel examples. 

5. 2.3. Methodology 

The small circuit of figure 2 is extremely easy to diagnose; we judged it too easy to form 
a good basis for comparing the two learning algorithms. In the experiments, we used in- 
stead an eight-bit ripple-carry adder. The examples of the behavior of this circuit were 
generated by simulating a circuit to which a random fault had been introduced, and were 
examples of the predicate nth output(N, ABits,BBits,Out), which is true if Out is the N-th 
output of the adder when given as inputs ABits and BBits; each of the inputs is a list of 
binary inputs. This predicate can be implemented using a theory of the sort used in the 
example above; notice that the theory is recursive and makes some use of function symbols. 
However, this problem is a hard one for diagnosis systems: since the circuit is very deep, 6 
there are many different possible components whose failure might affect a given output. 
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For both the bridge domain and the circuit diagnosis domain, the following experiment 
was conducted. First, a testing set of 1000 examples was generated and set aside. Next, 
a training set (containing 300 examples for the bridge domain and 100 examples for the 
circuit domain) was generated. This training set was presented to A-EBL and IA-EBL in 
small "batches" (20 examples for the bridge domain and 10 examples for the circuit do- 
main). The ordering of batches and of examples within each batch was random. After each 
batch was presented, A-EBL was run using the examples in that batch together with all 
previous batches. IA-EBL, however, was simply trained on the new batch of data until it 
correctly classified these new examples. The hypothesis of each system was then tested 
to determine its accuracy. Each experiment was repeated 10 times, and the results were 
averaged to obtain the learning curves in figure 3. In the circuit domain, a different ran- 
dom fault was introduced in each trial. 

Notice that since IA-EBL adjusts its weights gradually, it may be that an example needs 
to be presented several times before being correctly classified; ~ this means that many passes 
needed to be made over each new batch of examples. In the experiments, we adopted the 
following heuristics for cycling through the elements of a batch. On the first cycle, each 
example in the batch is presented to IA-EBL in turn, and weights are updated repeatedly 
until that example is correctly classified. In subsequent cycles, only examples that were 
misclassified in the previous cycle are presented. If no examples were misclassified in a 
cycle, a final pass is made through the entire batch to see if any examples are misclassified, 
and if so, they are collected together, and the procedure described above is repeated. No 
batches in these experiments required more than 11 such cycles, and most required only 
one or two. 

This ordering seemed to be faster than the obvious procedure of simply cycling through 
all elements repeatedly. 8 Two other tricks were used to speed up learning. First, the set 
of explanations of each example was cached, so that this set did not need to be recomputed in 
each cycle. Second, when a positive example xi had total weight t, where t < 1, weights 
were multiplied by 2 Ll°g2~J -1 rather than simply being doubled. This is precisely equiva- 
lent to presenting the example /log2 t~/ - 1 times, and hence does not affect the con- 
vergence result; however, it means that the classification of x i will be corrected 
immediately. 

In the figures, the system described above is labeled "IA-EBL (no memory)" As a variant 
of this procedure, we also considered a hybrid batch/incremental version of IA-EBL, labeled 
"IA-EBL (full memory)." This system is identical to IA-EBL, except that all examples 
that have ever been seen are saved. After each new batch is processed, the "full memory" 
version of IA-EBL reads in the full set of examples and then processes it in the same way 
that it processes a batch of new examples; this allows the learner to correct any classifica- 
tion errors on old examples that were introduced in setting the weights for the new examples. 

5.2.4. Interpreting the results 

Figure 3 shows the results of the experiments. On the bridge domain, IA-EBL with full 
memory had exactly the same error rates as IA-EBL with no memory, so only one curve 
is shown. On both domains, A-EBL's hypotheses are on the average slightly more accurate 
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Figure 3. Comparison of A-EBL and IA-EBL. 

than IA-EBL's. Although statistically significant, 9 the actual difference in accuracy is small: 
the average difference between A-EBL and IA-EBL is only 0.6 % on the bridge domain 
and 3.8 % on the circuit domain. 

However, as figure 3 shows, IA-EBL is much faster in this incremental setting. In the 
bridge domain, the no-memory version of IA-EBL averages about 11.4 seconds 1° for each 
update, while A-EBL averages 170.4 seconds. In the circuit domain, IA-EBL averages 42.9 
seconds to A-EBL's 625.8 seconds. Thus, in both cases, time is reduced by a factor of about 
15. More importantly, while A-EBL's training time grows with the number of examples 
seen, IA-EBL's training time stays constant: in both domains, the average time for the last 
five updates is actually slightly less than the average time for the first five updates. 

Somewhat surprisingly, IA-EBL is faster even when used non-incrementally: for both 
problems, the cumulative training time for IA-EBL was less than half the time required 
for A-EBL to train on the entire problem set once. This constant-factor speedup in the 
non-incremental setting is, of course, not scientifically significant. However, it does strongly 
support our claim that IA-EBL is an efficient incrementalization of A-EBL. 

The full-memory version of IA-EBL is also faster than A-EBL, although not as fast as 
the no-memory version. Unlike the no-memory version of IA-EBL, the training time for 
the full-memory version of IA-EBL grows (slowly) over time. The full-memory version 
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of IA-EBL also is less accurate than A-EBL, suggesting that the difference in accuracies 
is not due simply to the information that has been lost by discarding old examples, but 
is due instead to the differences in the learning algorithms. 

One disadvantage of IA-EBL is that it takes somewhat longer to classify a new example 
using the hypotheses of IA-EBL than the hypotheses of A-EBL; in the bridge domain, for 
example, classification averaged 0.32 seconds for A-EBL's hypotheses, and 0.53 seconds 
for IA-EBL's hypotheses. This is because to classify with A-EBL's hypotheses, it is only 
necessary to find a single explanation from the selected set, while to classify with IA- 
EBL's hypotheses, all explanations must be enumerated and their weights retrieved. 

5.3. Incrementalizing ANA-EBL 

In previous work (Cohen, 1990), we also described an extension to A-EBL called ANA- 
EBL. In this extension, the set of candidate generalizations generated is not the set of all 
generalizations formed by applying EBG to some explanation structure of a positive exam- 
pie, but rather the set of generalizations formed by first marking up to k internal nodes 
of some explanation structure as operational, and then applying EBG to the resulting ex- 
planation structure. These extended generalizations can be matched by a new problem that 
is similar to, but slightly different from, the original training example; in particular, they 
can be matched by any example with an explanation that differs from the training example 
in up to k sub-proofs. Inconsistent generalizations are then filtered out as before, and the 
greedy set cover algorithm is used to find a small set of the remaining candidate rules. 

A parallel extension to IA-EBL can be made by simply changing the set of candidate 
rules ~x. Inspection of the proof shows that the formal analysis still holds for this extended 
algorithm, which we will call IANA-EBL. Repeating the experiment described above for 
k = 1 shows that the generalization behavior of IANA-EBL is comparable to that of ANA- 
EBL for the full memory version of IANA-EBL, but somewhat worse for the no-memory 
version of IANA-EBL (see figure 4). Again, IANA-EBL is much faster, especially the no- 
memory version. 

Notice, however, that on this experiment there is a substantial gap in speed between the 
full-memory and no-memory versions of IANA-EBL, which was not the case before. Using 
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the full-memory version of IANA-EBL still provides a large speedup with little loss in 
accuracy; however, the advantage in efficiency gained by using the incremental technique 
is substantially diminished. The reason for this is not clear. One contributing factor is that 
while both ANA-EBL and IANA-EBL ultimately rely on enumerating all the explanations 
of an example, the current implementation of ANA-EBL makes use of special techniques 
to prune some of the explanations, while IANA-EBL does not. These pruning techniques 
contribute more when k is large. ~ 

5.4. Summary of results 

To summarize, formal results indicate that both A-EBL and IA-EBL will produce accurate 
hypotheses from a polynomial number of examples, and that IA-EBL will be faster in the 
limit if all the examples are of bounded size. Experimental results on two domains show 
that IA-EBL provides an order-of-magnitude speedup in time complexity in exchange for 
a relatively small reduction in accuracy. Finally, additional experiments show that IA-EBL 
is also an efficient incrementalization of ANA-EBL, at least for small values of k. However, 
the gains from incrementalization are smaller than was the case for vanilla A-EBL. 

6. Related work 

In previous work, we argued that A-EBL improves on existing theory-specialization 
techniques--notably IOE (Flann & Dietterich, 1989) and IVSM (Hirsh, 1990)--in that it 
simultaneously handles relational initial theories, the multiple explanation problem, and 
disjunctive target theories. IA-EBL inherits these properties from A-EBL, and is additionally 
efficient as an incremental learning algorithm. IA-EBL also satisfies a somewhat stronger 
formal criterion of learnability than A-EBL. 

Some recent theory revision systems (Bergadano & Giordana, 1990; Pazzani et al., 1991; 
Richards & Mooney, 1991; Wogulis, 1991) have capabilities comparable to A-EBL; in ad- 
dition, these systems can correct several other types of errors in initial theories. However, 
none of these other systems yet have the formal guarantees on performance that A-EBL 
or IA-EBL have; also, none of them are incremental. Another class of related systems are 
those that use abduction to complete an incomplete theory (O'Rorke, 1988; O'Rorke et 
al., 1989). This work is complementary to A-EBL in that it addresses theory completion 
(i.e., generalization) rather than theory specialization. 

As noted above, the IA-EBL algorithm is closely related to the WINNOW1 algorithm 
(Littlestone, 1988). Another possible incremental learning algorithm would be simply to 
use an instantiation of WINNOW1 in which each feature is associated with a possible EBG 
rule, such that the feature is "on" for an example if and only if the rule is applicable. Little- 
stone's analysis of WINNOW1 suggests that this alternative algorithm would converge in 
time linear in the size of the target concept and logarithmic in the number of possible EBG 
rules. Unfortunately, for many theories the number of possible EBG rules is extremely 
large or (for recursive theories) infinite; in these cases, this approach would be quite inef- 
ficient. One can think of the learning algorithm employed in IA-EBL as an extension of 
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WINNOW1 to infinite sets of attributes; IA-EBL can thus learn even for recursive theories, 
for which there are infinitely many possible EBG rules. Furthermore, IA-EBL's sample 
complexity is completely independent of the number of possible EBG rules, and only 
logarithmically dependent on the size of the initial theory. 

The fact that WINNOW1 can be strengthened to deal with an infinite number of poten- 
tially relevant attributes is perhaps somewhat surprising. Formal results (Blum et al., 1991) 
show that, in general, an algorithm (such as WINNOW1) that tolerates exponentially many 
irrelevant attributes can be converted to an algorithm that tolerates infinitely many irrele- 
vant attributes. However, our mistake bound for IA-EBL is much tighter than the mistake 
bound of the general construction used in (Blum et al., (1991). In particular, their mistake 
bound depends on the maximum number of features that are "on" for any example (in 
the case of IA-EBL, this corresponds to the maximum number of explanations of an exam- 
pie), while ours does not. However, IA-EBL's time complexity does depend on the number 
of possible explanations for an example. 

At a high level, the IA-EBL algorithm can be viewed as using a perceptron learning 
algorithm to learn a concept using explanations (or more accurately, the applicability of 
rules derived from explanation structures) as features. IA-EBL thus represents one approach 
to integrating explanation-based methods with neural network learning methods. Several 
alternative schemes for integrating these techniques have been proposed. Katz (1989) 
describes an EBL technique that can be used to reduce the time it takes for a neural net- 
work to operate. This corresponds roughly to using EBL to speed up theorem proving 
in a theory; the neural network corresponds to the logical theory, and the operation of 
introducing new links between nodes in the network corresponds to adding rules to the 
logical theory. This integration scheme is quite different from IA-EBL; even the goal of 
learning is different (Katz's goal is improving performance, rather than improving classifica- 
tion accuracy.) Towell et al. (1990) describe a technique called KBANN, in which an ex- 
planation structure derived from a propositional domain theory is used to choose an initial 
network topology for a neural network. The network is then trained further using the back- 
propagation learning algorithm. This technique is more similar to IA-EBL; however, in 
IA-EBL, explanations are used as features to be fed into a network, while in KBANN, 
explanations are used to form the network itself. Unlike IA-EBL, KBANN is applicable 
only to propositional domain theories; however, also unlike IA-EBL, it can make use of 
theories that are incomplete. 

7. Conclusions 

This article has described an alternative version of the A-EBL learning system called IA- 
EBL that addresses the problem of learning incrementally. IA-EBL can be viewed as using 
a variant of the perceptron learning algorithm to learn a concept described by a set of EBG 
rules. This is a novel way of using EBG rules: the learning algorithm ascribes a weight 
to each rule, and a new instance x is assumed to be a member of the learned concept only 
if the sum of the weights of the explanations relevant to x is above a certain threshold. 
The main disadvantage of IA-EBL relative to A-EBL is that IA-EBL's hypotheses are not 
expressed as Horn clause theories but rather as a weighted sum over a set of rules. This 
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means that the hypotheses of the system are somewhat harder for people to understand. 
It is also generally the case that it is slightly less efficient to use the hypotheses of the 
incremental system to classify novel instances. Unlike A-EBL, however, IA-EBL is an effi- 
cient incremental learner. 

Formally, the IA-EBL algorithm was shown to be efficient according to Littlestone's 
mistake-bounded model of incremental learning. A consequence of this is that the predic- 
tions made by IA-EBL become probably approximately correct after a polynomial number 
of training examples. It was also shown analytically that IA-EBL converges to any target 
theory that is learnable using A-EBL. 

Experimentally, IA-EBL was shown to be efficient in incremental settings, in both time 
and sample complexity. In time complexity, it was shown to be far superior to A-EBL when 
used in an incremental setting, providing an order-of-magnitude speedup in two different 
test domains. Finally, an incremental version of ANA-EBL, an extension of A-EBL, was 
described, and shown to improve on ANA-EBL in efficiency, although not as dramatically 
as IA-EBL improves on A-EBL. 
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Notes 

1. We use ~C s to denote the characteristic function of a set S; recall that the characteristic function ~Es(X) of 
a set S is 1 if x ~ S and 0 otherwise. 

2. In Littlestone's original model, this information was encoded as a reinforcement, which indicated whether 
or not the prediction was correct. 

3. This is the size measure used in A-EBL. It was chosen for A-EBL because it is easy to analyze, and because 
it allowed some important optimizations in the implementation. We retain the same size measure here to 
lessen the differences with A-EBL. 

4. A set S of strings is prefix free if, whenever a string s is a member of S, no prefix of s is a member of S. 
5. For example, one might assume that component 1 is faulty in one part of the specialized theory, and that 

component 1 is functioning normally in another part. Abductive reasoning systems would discard such in- 
consistent hypotheses. 

6. There are 23 levels of logic involved in computing the final bit of the sum. 
7. The property of needing to examine a datum many times before it is properly treated is inherited from the 

WINNOW1 perceptron learning algorithm and is common to many neurophysiologically inspired learning 
algorithms. 

8. Notice that using an ordering procedure is perfectly compatible with the formal results, which hold for any 
ordering, even an adversarial one. 

9. All apparent differences in the graphs in this article are statistically significant at the 99.5% level or above. 
All differences other than the difference in accuracy between IA-EBL with full memory and no memory 
on the circuit domain are statistically significant at the 99.999% level or above. 
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10. Time is measured in CPU seconds on a Sparc 1 +. A-EBL and IA-EBL are both implemented in Quintus 
Prolog 3.1. 

11. It is even possible that as k is increased, the computational advantage of using IANA-EBL will disappear, 
at least using the current implementation. Unfortunately, limitations on computer memory made experimental 
confirmation of this impossible. 
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