Skip to main content
Log in

Allocating fixed-priority periodic tasks on multiprocessor systems

  • Published:
Real-Time Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of allocating a set of periodic tasks on a multiprocessor system such that tasks are scheduled to meet their deadlines on individual processors by the Rate-Monotonic scheduling algorithm. A new schedulability condition is developed for the Rate-Monotonic scheduling that allows us to develop more efficient on-line allocation algorithms. Two on-line allocation algorithms—RM-FF and RM-BF are presented, and shown that their worst-case performance, over the optimal allocation, is upper bounded by 2.33 and lower bounded by 2.28. Then RM-FF and RM-BF are further improved to form two new algorithms: Refined-RM-FF (RRM-FF) and Refined-RM-BF (RRM-BF), both of which have a worst-case performance bound of 2. We also show that when the maximum allowable utilization of a task is small, the worst-case performance of all the new algorithms can be significantly improved. The worst-case performance bounds of RRM-FF and RRM-BF are currently the best bounds in the class of on-line scheduling algorithms proposed to solve the same scheduling problem. Simulation studies show that the average-case performance of the newly proposed algorithms is significantly superior to those in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Burchard, A. A., J. Liebeherr, Y. Oh, and S.H. Son (1994). Assigning Real-Time Tasks to Homogeneous Multiprocessor Systems, submitted for publication, January 1994.

  • Coffman, E.G.JR. (ED.) (1975). Computer and Job Shop Scheduling Theory, New York: Wiley, 1975.

    Google Scholar 

  • Coffman, E.G.JR., M.R. Garey, and D.S. Johnson (1985) Approximate Algorithms for Bin Packing — An Updated Survey, In Algorithm Design for Computer System Design, (49–106) G. AUSIELLO, M. LUCERTINIT, and P. SERAFINI (Eds), Springer-Verlag, New York, 1985.

    Google Scholar 

  • Davari, S. and S.K. Dhall (1986). An On Line Algorithm for Real-Time Tasks Allocation, IEEE Real-Time Systems Symposium, 194–200 (1986a).

  • Davari, S. and S.K. Dhall (1986). On a Periodic Real-Time Task Allocation Problem, Proc. of 19th Annual International Conference on System Sciences, 133–141 (1986b).

  • Dhall, S.K. and C.L. Liu (1978). On a Real-Time Scheduling Problem, Operations Research 26:127–140 (1978).

    Google Scholar 

  • Gafford, J.D. (1991). Rate-Monotonic Scheduling, IEEE Micro, 34–39 (June 1991).

  • Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP- completeness, W.H. Freeman and Company, NY, 1978.

    Google Scholar 

  • Johnson, D.S. (1993). Near-Optimal Bin Packing Algorithms, Doctoral Thesis, MIT, 1973.

  • Joseph, M. and P. Pandya (1986). Finding Response Times in a Real-Time System, The Computer Journal, 29(5):390–395, 1986.

    Google Scholar 

  • Lehoczky, J.P., L. Sha, and Y. Ding (1989). The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average Case Behavior, IEEE Real-Time Symposium, 166–171 (1989).

  • Lehoczky, J.P., L. Sha, and J.K. Strosnider (1987). Enhanced Aperiodic Responsiveness in Hard Real-time Environments, IEEE Real-Time Systems Symposium, 261–270 (1987).

  • Lehoczky, J.P. and S. Ramos-Thuel (1992). An Optimal Algorithm for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems, IEEE Real-Time Systems Symposium, 110–123 (1992).

  • Leung, J.Y.T. and J. Whitehead (1982). On the Complexity of Fixed-Priority Scheduling of Periodic, Real-Time Tasks, Performance Evaluation, 2:237–250 (1982).

    Google Scholar 

  • Liu, C.L. and J. Layland (1973). Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment, JACM, 10(1):174–189 (1973).

    Google Scholar 

  • Oh, Y. and S.H. Son (1993). On-line Task Allocation Algorithms for Hard Real-Time Multiprocessor Systems, Submitted for Publication, October 1993.

  • Ramamritham, K. (1990). Allocation and Scheduling of Complex Periodic Tasks, International Conference on Distributed Computing Systems, May 1990.

  • Ramos-Thuel, S. and J.K. Stronider (1991). The Transient Server Approach to Scheduling Time-Critical Recovery Operations, IEEE Real-Time Systems Symposium, 286–295 (1991).

  • Serlin, P. (1972). Scheduling of Time Critical Processes, Proceedings of the Spring Joint Computers Conference, 40:925–932 (1972).

    Google Scholar 

  • Sha, L., J.P. Lehoczky, and R. Rajkumar (1986). Solutions for Some Practical Problems in Prioritized Preemptive Scheduling, IEEE Real-Time Systems Symposium, 181–191 (1986).

  • Sha, L., R. Rajkumar, J.P. Lehoczky, and K. Ramamritham (1989). Mode Change Protocols for Priority-Driven Preemptive Scheduling, Journal of Real-Time Systems, 1(3):244–264 (1989).

    Google Scholar 

  • Sha, L., R. Rajkumar, and J.P. Lehoczky (1990). Priority Inheritance Protocols: An Approach to Real-Time Synchronization, IEEE Transactions on Computers, 39(9):1175–1185 (1990).

    Google Scholar 

  • Sha, L., and J.B., Goodenough (1990). Real-time Scheduling Theory and Ada,” Computer, 53–66 (April 1990).

  • Sprunt, B., L. Sha, and J.P. Lehoczky (1989). Aperiodic Task Scheduling for Hard Real-time Systems, Journal of Real-Time Systems, 1:27–60 (1989).

    Google Scholar 

  • Tindell, K.W., A. Burns, and A.J. Wellings (1992). Mode Change in Priority Pre-emptively Scheduled Systems, IEEE Real-Time Systems Symposium, 100–109 (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, Y., Son, S.H. Allocating fixed-priority periodic tasks on multiprocessor systems. Real-Time Syst 9, 207–239 (1995). https://doi.org/10.1007/BF01088806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01088806

Keywords

Navigation